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Resumen

La tarea de clasificación de imágenes consiste en asignar una clase definida a una imagen.

Esta tarea es considerada sencilla para los humanos, sin embargo, es una tarea compleja para las

computadoras debido a todos los procedimientos que se tiene que realizar para que la computadora

adquiera esta habilidad. Debido a las múltiples aplicaciones de esta tarea, se han propuesto una

amplia variedad de modelos computacionales con diferentes enfoques. Uno de estos enfoques son

las Redes Neuronales Artificiales, las cuales están inspiradas en la biología del cerebro humano y

utilizan muchas herramientas estadísticas para lograr el objetivo de clasificación de imágenes. En

la última década, los modelos basados en Redes Neuronales Artificiales han tomado relevancia por

sus resultados obtenidos, sobrepasando incluso el error humano en ciertas tareas de clasificación.

A pesar de sus buenos resultados en imágenes seleccionadas, estos algoritmos sufren cuando usan

como entradas imágenes reales, debido a que la forma en la que adquieren sus habilidades aun

no es la más optima. Por estas razones nuevos enfoques se siguen desarrollando como las Redes

de Cápsula, las cuales consisten en extraer la información de las imágenes en forma vectorial y

encapsularla para no perder la información que ha surgido. Debido al aumento de la complejidad en

el manejo de la información en estas redes únicamente ha sido probado con imágenes sencillas y de

tamaño pequeño. Por lo que esta tesis propone un nuevo modelo computacional basado en Redes

de Cápsula que combina lo mejor de los algoritmos propuestos hasta el momento para el manejo

de imágenes reales y de mayor tamaño, como lo son las Redes Neuronales Convolucionales.

Como resultado, se realizan tres contribuciones relevantes al estado del arte: i) el estudio y la

agrupación de las limitaciones encontradas en los algoritmos considerados como el estado del arte

en la tarea de clasificación de imágenes, ii) la descripción de todos los elementos a considerar

para la implementación de un modelo computacional desde cero, iii) el diseño de un modelo

computacional basado en la combinación de dos enfoques capaz de clasificar imágenes complejas.

Los resultados experimentales muestran que la implementación del modelo produce resultados

comparables con algoritmos actuales sin necesidad de utilizar técnicas especiales para los datos de

entrada.





Abstract

The image classification task consists of assigning a defined class to an image. This task is

considered simple for humans, however, it is a complex task for computers due to all the procedures

that have to be performed for the computer to acquire this skill. Due to the multiple applications of

this task, a wide variety of computational models with different approaches have been proposed.

The Artificial Neural Networks are one of this approaches, which are inspired by the biology

of the human brain and use many statistical tools to achieve the goal of image classification.

In the last decade, the models based on Artificial Neural Networks has gained relevance for its

results, surpassing even human error in certain classification tasks. Despite their good results on

selected images, these algorithms suffer when using real images as inputs, because the way they

acquire their skills is not yet optimal. For these reasons new approaches are still being developed

such as Capsule Networks, which extract the information from the images in vector form and

encapsulating it in order not to lose it. Due to the increasing complexity of information handling

these new algorithms have only been tested with simple and small size images. Therefore, this

thesis proposes a new computational model based on Capsule Networks which combines the best

of the algorithms proposed so far for handling real and larger images like Convolutional Neural

Networks. As a result, three relevant contributions to the state of the art are made: i) the study and

clustering of the limitations found in the algorithms considered as the state of the art in the task

of image classification, ii) the description of all the elements to consider for the implementation

of a computational model from scratch, iii) the design of a computational model based on the

combination of two approaches capable of classifying complex images. Experimental results show

that the implementation of the model produces results comparable with current algorithms without

the need to use special techniques for the input data.
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1

Chapter 1
Introduction

Artificial Intelligence (AI) can be described as the effort to automate intellectual tasks normally

performed by humans [4]. An important branch of AI is computer vision. Computer vision is

an interdisciplinary field that deals with how computers can acquire high-level understanding

from digital images or videos [10]. This field has been extensively studied from different

perspectives, such as robotics, mathematics, statistics, and computer science. From a computer

science perspective, the goal of computer vision is to interpret and understand the visual world,

i.e., to identify people, name objects, or infer the geometry of things. Consequently, computer

vision involves a variety of tasks, including classifying a set of images into a predefined set of

categories, detecting and localizing objects into bounding boxes, and segmenting an image into

smaller components or sub-objects, among others.

Machine Learning (ML) is a branch of Artificial Intelligence (AI) where programs are taught

to identify patterns in data and subsequently make decisions and predictions from these patterns.

Machine Learning is defined as a field of study that gives computers the ability to learn without

being explicitly programmed [3, 11]. Also, ML can be classified according to the type of super-

vision that is used during training. This thesis focuses on the category of supervised learning. In

addition, the ML field uses a data-driven approach. Unlike classic programming, where the data

and the rules are the inputs for obtaining the desired output. Now the algorithm is fed with data
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and the desired output, where the challenge is to perform the reasoning that leads to the desired

result. This ability is obtained through a feature extraction stage performed by either a human or

an algorithm, and then the classification algorithm as shown on top of the Figure 1.1.

Figure 1.1. Differences between Deep Learning and Machine Learning.

A wide range of Machine Learning models have been proposed but there is one branch

of ML that excels in solving computer vision tasks, called Artificial Neural Networks (ANNs)

architecture. These networks are inspired by networks of biological neurons found in the human

brain [3]. ANNs are versatile, powerful, and scalable, making them ideal for tackling large and

highly complex ML tasks. Finally, in the last decade, a new approach have exhibited superior

performance compared to other ML algorithms in the image classification task [12]. This superior

performance is possible due to three important factors: a great amount of data available, powerful

hardware components, and new architectures [13]. This approach is called Deep Learning (DL)

which uses ANNs as a backbone to process data through various layers of algorithms and reach an

accurate decision without human intervention, where the feature extraction and the classification

task is performed by the ANNs at the same time, see at the bottom in Figure 1.1.



3 1. Introduction

Deep Learning architectures have been considered a revolution in the field of computer

vision, especially the Convolutional Neural Networks (CNNs) architecture. CNNs includes feature

extraction to analyze image inputs, without a preprocessing stage. The CNNs popularity is thanks

to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [12], which is one of the

most important challenges around the world in computer vision tasks, it started in 2010, known

simply as ImageNet. Since 2012, the CNNs won the ImageNet competition. From ImageNet,

several successful Deep Learning architectures have emerged including: AlexNet [14], ZFNet

[15], GoogLeNet [16], and ResNet [17], to mention just a few. Since the appearance of these

architectures, there has been an exponential increase in the use of CNNs in scientific papers [18].

Due to these satisfactory results, there is a great diversity of applications of these networks

in many fields. For example, the diagnosis of plant diseases to save crops [19], the detection of

endangered species in complex environments [20], the prediction of the 3D structure of the protein

from its amino acid sequence [21], the monitoring of water quality through the implementation of

biomonitoring using macroinvertebrates as indicators [22], facial recognition for security systems

and industrial applications, among many others [23]. Furthermore, there are several publications

that use CNN for medical diagnostics; e.g., pulmonary diseases as COVID or pneumonia [24],

detection of lung cancer [25], brain tumors [26, 27], and Alzheimer’s disease [28]. In particular,

some articles report on a procedure for the detection of breast cancer based on computerized

tomography scans [29, 30, 31] and also report on a method for identifying genetic disorders by

analyzing facial gestures [32].

However, several researchers have started to report that CNN models are brittle and that their

performance can be severely degraded in real-world applications [33, 34, 7, 35, 36]. When CNNs

cannot achieve an acceptable classification result, we say that CNNs have limited performance.

Several papers have identified some of these CNN limitations, but most of them report only one

type of limitation at most. So, one of the contributions of this thesis is to provide a description

and analysis of all current CNN limitations, and we propose to group them into the following

categories: data labeling, spatial relationship, invariance transformation, and adversarial attacks.

It is important to note that each limitation is still an open area of research.
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Due to all these limitations, it is necessary to look for other approaches that allow us to

improve these algorithms. A novel approach that addresses all of these limitations is called

Capsule Networks (CapsNets). These networks were introduced by Sabourn et al. in 2017 [7], to

improve the way the network passes information through its layers [8, 37]. For example, Figure

1.2 shows the conceptual differences between CNNs and CapsNet. CNNs excel at finding patterns

in images and detecting the components of the images. However, CNNs do not care about the

spatial relationship of the components, i.e. when detecting two eyes, a nose and a mouth, the

network infers that it is a face even if its location is not correct. On the other hand, CapsNets

besides detecting the components of the image make a prediction taking into account the location

of its component and the location of the other predictions to find coincidences that allow building

a coherent image. In order to achieve this behavior, it is necessary to encode a large amount

of information. These networks analyze images by switching from scalar operations to vector

operations. This analysis allows us to obtain good classification results with few training images.

In addition to classifying correctly, the CapsNet approach includes a stage in its architecture that

is responsible for reconstructing the input image. In this way, the algorithm verifies that the values

obtained in its training learn the most crucial image patterns.

Figure 1.2. Differences between CNN and CapsNets.

According to the literature, the promising CapsNets results mentioned previously were

obtained with simple image datasets such as MNIST, which is the most used dataset as benchmark

for a new architecture [38]. This dataset handles small images with a size of 28 × 28 pixels.
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However, CapsNets are limited when analyzing bigger size images. The architecture struggles

to understand the entire context of the image, generating a large number of parameters, resulting

in substantial computational effort [39]. For these reasons, some researchers have focused on

combining the advantages of CNN with those of CapsNets [39], [40], [41], [42], [39], [43].

Therefore, there is still work to be done to achieve state-of-the-art results in image classification

tasks with complex datasets.

Figure 1.3. Scope of this thesis.

So, this thesis focused on the field of Deep Learning as shown in Figure 1.3. This research

presents the design of a computational model called DRCaps for image classification using a

medical dataset for its validation. The model is based on the combination of CapsNet and CNN

architectures as shown in Figure 1.4. In addition, the DRCaps model is designed to be capable of

handling complex images and to use it in a real-world problem. The DRCaps model obtains an

accuracy in the image classification task of 90%.

Figure 1.4. DRCaps model.
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1.1 Research Question

How accurate is a computational model for image classification based on the novel CapsNets

approach compared to state-of-the-art Deep Learning models?

1.2 Research Objective

1.2.1 General Objective

To develop a robust computational model based on CapsNet that can be applied to image

classification tasks.

1.2.2 Specific Objectives

1. To implement the computational model of the original CapsNets architecture.

2. To validate the original CapsNet architecture with the MNIST benchmark dataset.

3. To propose improvements to the CapsNets architecture using the advantages of CNNs for

handling a complex dataset.

4. To select and adjust a medical image dataset for the image classification task.

5. To build a computational model based on CapsNet architectures for the selected medical

dataset.

6. To validate the computational model with the medical dataset.
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1.3 Research Contributions

According to the research objective described above, the following is the list of contributions to

this thesis.

• The study of CNN limitations, which are grouped into four categories: data labeling,

translation invariance, adversarial examples, and spatial relationship.

• A new computational model based on the Capsule Network approach that can handle

complex medical images with the use of dilated convolutions and stride hyperparameters.

• The implementation of Capsule Networks from scratch using Python, TensorFlow and Keras.

1.4 Research Methodology

Figure 1.5. Research methodology used in this project.

This research follows the methodology shown in Figure 1.5 to achieve its objectives. Initially,

a Machine Learning model was chosen to solve an image classification problem, and then applied

to a real use case. To do this, a deep investigation of CNN models was conducted, as they are

the state-of-the-art for image classification. This research revealed potential research opportunities

and explored solutions such as the CaspNet approach. After selecting the approach, an iterative

process was started between model design and model evaluation. Finally, the final configuration
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of the model was obtained. All these steps were developed together with the literature review.

This document presents the process of following the methodology described above, describing the

findings, the difficulties found, and the proposals made during the completion of this research.

1.5 Publications

This is the list of publications generated from this thesis:

• Rangel-Ramirez, G. and Cuevas-Tello, J.C. (2018) Computational models for visual

inspection in the automotive industry, XII Taller-Escuela de Procesamiento de Imagenes

(PI18), CIMAT, Guanajuato, Mexico

• Rangel-Ramirez G., Cuevas-Tello J.C. (2019) Algoritmos de Aprendizaje Profundo,

CONGRESO NACIONAL DE CIRCUITOS Y SISTEMAS 2019. pp. 54-55, ISBN: 978-

607-535-119-3

• Rangel, G., Cuevas-Tello, J. C., Rivera, M., & Renteria, O. (2023). A Deep Learning Model

Based on Capsule Networks for COVID Diagnostics through X-ray Images. Diagnostics,

13(17), 2858. https://doi.org/10.3390/diagnostics13172858 ISSN: 2075-

4418

• Rangel, G., Cuevas-Tello, J.C., Nunez-Varela, J.I., Puente, C., Silva-Trujillo, A.G. (2023)

A Survey on Convolutional Neural Networks and Their Performance Limitations in Image

Recognition Tasks, Journal of Sensors, under review

Also, I contributed in the following publications during my Ph.D.:

• Rojas-Aranda J.L., Nunez-Varela J.I., Cuevas-Tello J.C., Rangel-Ramirez G. (2020) Fruit

Classification for Retail Stores Using Deep Learning. In: Figueroa Mora K., Anzurez

Marín J., Cerda J., Carrasco-Ochoa J., Martínez-Trinidad J., Olvera-López J. (eds) Pattern

Recognition. MCPR 2020. Lecture Notes in Computer Science, vol 12088, pp 3-13.

https://doi.org/10.3390/diagnostics13172858
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Springer, Cham, DOI: 10.1007/978-3-030-49076-8_1 ISBN: 978-3-030-49075-1, eISBN:

978-3-030-49076-8

• Soriano-Mendez, M.A., Cuevas-Tello, J.C., Rangel-Ramirez G. (2019) Visual Recognition

With Machine Learning Using Cloud Services, Congreso Internacional de Supercómputo

(ISUM 2019)

1.6 Thesis Outline

Chapter 2: This chapter introduces the definition of computer vision from the viewpoint of this

thesis. Then it examines the challenges of the image classification task, followed by a presentation

of the datasets used in the experiments. Subsequently, a basic introduction to Artificial Neural

Networks is provided, and the difficulties associated with their training for the image classification

task are presented.

Chapter 3: This chapter explains all the conceptual foundations of CNNs. It mentions the main

datasets for CNN training and presents the two datasets used in this thesis. It also describes the

main CNN architectures and hyperparameters. Finally, it groups the limitations identified in the

state-of-the-art CNNs into four categories.

Chapter 4: This chapter presents the novel Capsule Network approach. First, it explains how

this approach works and why this new approach is important. Subsequently, the chapter makes an

in-depth analysis of this architecture, mentioning its main advantages and limitations. Finally, the

DRCapsnet model design process is described in detail.

Chapter 5: This chapter explains the results of the DRCaps computational model in a medical

image classification task. First, it describes the experimental platform used and explains all the

preprocessing needed for the medical dataset. Then, it explains the experimental setup and the

result related to the DRCapsNet model.

Chapter 6: This chapter summarizes the main findings obtained from the analysis of the CapsNet

approach. Finally, the chapter addresses the strengths and limitations of the CapsNet model and
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proposes areas for future research.
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Chapter 2
Theoretical Framework of Computer Vision

Tasks

This chapter introduces the definition of computer vision. Next, it examines the challenges

of the image classification task, followed by a presentation of the datasets used in the experiments.

Subsequently, a basic introduction to Artificial Neural Networks is provided, and the difficulties

associated with training them for the image classification task are presented.

2.1 Computer Vision

Today, computer vision is one of the most important and fastest growing research area, because

computer vision is an interdisciplinary field that touches many different areas such as physics,

biology, psychology, computer science, mathematics, engineering among others. It can be said

that computer vision is the study of visual data [1]. In this thesis, we study computer vision from

the perspective of artificial intelligence that aims to train computers to mimic the human brain to

interpret and understand the visual world, that is, to identify people, name objects, or infer the

geometry of things, among other tasks. The most popular computer vision tasks are:
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• Image classification: where algorithms produce a list of object categories present in the

image [12].

• Single-Object localization: where algorithms produce a list of objects categories present in

the image, along with an axis-aligned bounding box indicating the position and scale of one

instance of each object category [12].

• Object detection: where algorithms produce bounding boxes indicating the position and

scale of all instances of all target object categories [12].

As mentioned above, computer vision involves many tasks, but this thesis focused only on

the image classification task. Therefore, the next section describes the image classification task

and the challenges it presents.

2.2 The Image Classification Task

The image classification task consists of an input image being assigned a category from a

predetermined set of categories by some algorithm. As illustrated in Figure 2.1, where the cat

category achieves the highest value, compared with dog, deer and bird categories. This task appears

to be straightforward for humans, but it is a complex challenge for a computer. What a computer

perceives in an image is different from what a human sees. Instead of a picture, the computer sees

a large grid of numbers with values ranging from 0 to 255 (gray scale) in each pixel, as illustrated

in Figure 2.2. Each number corresponds to one pixel of the image.

Figure 2.1. Image classification problem in computer vision [1].
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Figure 2.2. Pixel representation of an image adapted from [1].

Image classification is a very difficult problem because a small change in the image in a

subtle way will cause the pixel grid to change internally. These changes could be if we perform

a viewpoint variation, such as rotating the image, scaling it, or mirroring, as shown in Figure 2.3.

However, it is still the same cat, so the algorithm must be robust to these changes.

Figure 2.3. Viewpoints variations of an image adapted from [1].

Moreover, there are other issues to consider in the robustness of the algorithm in addition to

the image point of view, as shown in Figures 2.4 and 2.5, such as illumination, deformations,

occlusion, background clutter where the background of the image is similar to the class, or

intraclass variation which defines the image variations that occur between different images of the

same class, among others.

Due to all these situations, the design of a robust classification algorithm is complicated.
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Figure 2.4. Images classification challenges: illumination, deformation, occlusion [1].

Figure 2.5. Background clutter and intraclass variation challenges [1].

Several attempts have been made to solve these challenges. At first, attempts were made to classify

on the basis of human experiences, such as writing complex code rules to recognize different

animals searching for specific features of an animal by finding edges and corners [44]. However,

this type of approach is not generalizable to other objects with the same algorithm [1]. Therefore,

a generalizable approach was needed, that is, one that can be trained with images of a single class

and then use the same algorithm with minimal variations to train another class or classes.

A variety of models from the ML domain have been suggested to address the image

classification task. Artificial Neural Networks, particularly Deep Learning, is the most advanced

technique for this purpose [45, 11, 13]. Therefore, this thesis concentrates on the Deep Learning

approach for image classification, as illustrated in Figure 1.3. Deep learning algorithms are able
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to achieve excellent results due to the availability of a large amount of labeled data. Next, the

importance of data is discussed in the following section.

2.3 Datasets

One of the key requirements for Machine Learning algorithms is to have enough data for training.

In fact, one of the reasons why the use of Deep Learning models decreased at the end of the

1990s was largely due to the lack of enough data to train the models [45]. However, in recent

years, technological advances (e.g., the Internet) have made it easier to produce a large number of

datasets for different problems. In particular, datasets that involve images, from datasets with a

few classes of objects to datasets with 22,000 classes (see Table 2.1).

Table 2.1. Some of the most common image datasets for computer vision tasks, such as detection

(D), segmentation (S) and classification(C). Some datasets do not define a specific number for

training and testing images, which is represented as Undefined (U).

Name Creator Year Types of Images Task Categories Training Testing

MNIST [38] New York University 1998 Digits C 10 60 K 10 K

PASCAL VOC [46] University of Oxford 2005 Miscellaneous D 20 U U

CIFAR-10 [47] University of Toronto 2009 Miscellaneous C 10 50 K 10 K

IMAGENET [12] Stanford University 2010 Miscellaneous D,S,C 1000 1.2 M 150 K

GTSDB [48] Institut Fur Neuroinformatic 2010 Traffic signals D 3 600 300

SUN [49] National Science Foundation 2010 Scenarios D 899 U U

CARS [50] Stanford University 2013 Cars C 196 8144 8041

COCO [51] Microsoft 2014 Miscellaneous D,S 80 U U

FASHION-MNIST [52] Zalando Research 2017 Cloths C 10 60 K 10 K

OBJECTNET [53] MIT + IBM 2019 Miscellaneous D 313 U 50 K

Another key requirement is labeling. For tasks such as object recognition, image

classification, or scene classification, datasets need to be labeled. This means that the dataset

contains the true values of what the data represent. The task of image labeling is indispensable,

unfortunately, it is a tedious and time-consuming process that humans should perform to make

sure the labels are correct (although there have been some attempts to automate this process [34]).

An important thing to note is that some datasets are also useful for comparing the performance of
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different approaches.

There are many datasets for image classification, as shown in Table 2.1. The dataset

considered the state-of-the-art for classification tasks is ImageNet, which was constructed with

public images from the Internet [45]. This dataset has more than 14 million high-resolution

images with 22,000 categories and is continuously increasing. There is a compact version of

this dataset that consists of 1,000 categories and approximately 1000 images for each category.

Unlike other datasets, ImageNet provides three sets of images: approximately 1.2 million training

images, 50,000 validation images, and 150,000 testing images. This compact version is one

of the most popular datasets due to its use in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) since 2012 [12]. Furthermore, all of the most famous CNN architectures,

with the exception of LeNet [54], were trained with the compact version of the ImageNet dataset.

Recently, a new dataset, called ObjectNet, has been created with a new approach [53]. This dataset

focuses on the object recognition task, which includes additional information about the objects, e.g.

rotation, viewpoints, and backgrounds. It consists of 50,000 images and does not have a training-

test division. All ObjectNet classes are objects that can be found in four different environments

(kitchens, living rooms, bedrooms, and washrooms). ObjectNet has 313 classes, of which 113

overlap with ImageNet.

For other tasks such as detection or segmentation, more complex datasets are needed. For

example, on a detection task, the target object must be localized and classified, whereas on the

segmentation task, it is necessary to change the image into something more meaningful and easier

to analyze [55]). Consequently, there are specific datasets such as: Cars [50], German Traffic Sign

Detection Benchmark (GTSDB) [48], Scene UNunderstanding (SUN) [49], Common Objects in

Context (COCO) [51] or ImageNet [45]. Because the scope of this thesis only reaches the image

classification task, this research only uses two datasets: MNIST and COVIDx V7A , which are

described below.
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2.3.1 MNIST Dataset

The Modified National Institute of Standards and Technology (MNIST) dataset has been widely

used in the image classification task and is considered a reference point. This dataset consists of

28× 28 pixel grayscale images of handwritten digits with ten classes (numbers 0 to 9) as shown in

Figure 2.6. This dataset has 60,000 training images and 10,000 testing images [38].

Figure 2.6. Examples of each digit in MNIST dataset.

2.3.2 COVIDx V7A Dataset

This thesis also used the open source COVIDx dataset [56], which is composed of different datasets

such as: COVID-Chestxray dataset [24], COVID-19 Chest X-ray Dataset Initiative [57], COVID-

19 Radiography Database [58], RSNA Pneumonia Detection Challenge [59], RSNA International

COVID-19 Open Radiology Database (RICORD) [60], among others.

The version used for the experiments in this thesis was COVIDx V7A, which contains 16,690

images with three classes: pneumonia, healthy, and covid. Each image has a 1024×1024 pixel size

in grayscale format. Figure 2.7 shows an example of each class in the COVIDx V7A dataset. In
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summary, Table 2.2 shows the distribution of the dataset in terms of classes (training and testing).

For training, we have 15,111 images spread over 5474 cases of pneumonia, 7966 cases of healthy

images, and 1670 COVID images. The training dataset is divided into 80% training (12,089

images) and 20% for validation (3022 images). In the case of testing, we have 1579 images:

594 with pneumonia, 885 healthy, and 100 with COVID.

Figure 2.7. Examples of each class in COVIDx V7A dataset: covid, pneumonia and healthy.

Table 2.2. COVIDx V7A dataset classes.

Data Pneumonia Healthy COVID Total

train 5474 7966 1670 15,111

test 594 885 100 1579
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2.4 Artificial Neural Networks

ANNs were first introduced back in 1943 by Warren McCulloch and Walter Pitts in the paper A

logical calculus of the ideas impermanent in nervous activity [61]. They presented a simplified

computational model of how biological neurons might work together in animal brains to perform

complex computations using propositional logic [3].

Although scientists are still exploring the details of how the brain works, it is generally

believed that the main computational element of the brain is the neuron. The neurons themselves

are connected with a number of elements entering them called dendrites and an element leaving

them called an axon. The neuron accepts the signals entering through the dendrites, performs

a computation on those signals, and generates a signal on the axon. These input and output

signals are termed activations. The axon of one neuron branches out and is connected to the

dendrites of many other neurons. Connections between a branch of the axon and a dendrite are

called synapses. So, Neural Networks take inspiration from the notion that a neuron’s computation

involves a weighted sum of the input values (see Figure 2.8).

Figure 2.8. Comparision between a neuron (nerve cell) and an artificial neuron.

Therefore, the fundamental building block of every ANN is a single neuron also called

a Perceptron. The perceptron takes an input or inputs xi, then each input is multiplied by a

corresponding weight wi and adds the result of all these multiplications together. Then, the result

of the sumatory is passed through a nonlinear function also known as an activation function, as
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shown in Figure 2.9. The purpose of activation functions is to introduce non-linearities into the

network.

Figure 2.9. The Perceptron architecture adapted from [2].

So, the mathematical formulation is the single equation yj = f(
∑

iwixi) where wi, xi and

yj are the weights, input activation and output activation, respectively, and f(•) is a non-linear

function. The operation yj defines how the perceptron propagates the information, and it repeats

in each neuron. Also, the operation of the perceptron can be simplified as shown in Figure 2.9.

Figure 2.10. An example of ANN formed by an input layer, two hidden layers and one output

layer, adapted from [2].

Now we can take a single neuron and start building it into something more complicated. If

we want to build a multi-layered output Neural Network, we can stack layers as shown in Figure

2.10, where each connection represents a weight. The layers between the input and the output are

also called hidden layers. Each neuron in each layer is connected to all the inputs of their previous
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layer and the outputs, this type of connection is called Fully Connected (FC). Then, the output is

going to be the next input of the next layer.

2.4.1 ANN Training for Image Classification

This subsection will explain briefly how ANNs are capable of classifying images. This

classification ability is obtained through training, where a large number of input images are

provided with their respective labels, also called true targets, to adjust many weights, which are

responsible for extracting the descriptive characteristics of the objects. Therefore, the ANN model

is a mathematical framework for learning representations from data.

In order to train an algorithm for a classification task, it is necessary to explain several

concepts for the correct selection of the algorithm’s parameters. Basically, the algorithm must

have these four elements:

1. Input data: In the case of image classification, the input data are images.

2. Example of expected output (true target or ground true); in the image classification task, the

expected outputs are labels.

3. A model to train means a network formed by many successive layers structured on top of

each other where the information goes through, as shown Figure 2.11.

4. A metric or a way to measure whether the algorithm is doing a good job; this is necessary to

determine the difference between the algorithm output and the expected output. The measure

is used as a feedback signal to adjust the algorithm.

Each layer in Figure 2.11 is formed by a defined number of neurons and each layer is

connected by weights. As mentioned above, the way the algorithm is capable of learning

representation is due to its weights. Information about what a layer does to its input data is stored in

the layer’s weights. Initially, these weights have random values. But the goal is to find the right set

of values for the weights of all layers in a network. Therefore, to know whether the weight values
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Figure 2.11. An example of Neural Network model for digit classification [3].

obtained are correct or not, the algorithm uses something called a loss function (J), also known as

an objective function or a cost function. Therefore, the algorithm is going to try to minimize the

loss function in order to find the right value for all weights.

So, the loss is a function of the network weights. and we can describe it as J(W), where W

is a set of all the weights in the network W = w1, w2, w3, w4, ...wm. To understand the function

of the loss function, assume that the model has a loss function that depends only on two weights

J(w0, w1), and we plot all combinations of weights as shown in Figure 2.12. The algorithm then

wants to find which set of weights gives it the smallest possible loss, that is, the lowest point in

Figure 2.12.

So, the algorithm starts by randomly selecting an initial value w0 and w1 and computes

the loss at that point. The algorithm then computes the gradient of the loss function defined by

Equation 2.1 by backpropagation. The backpropagation algorithm determines for each single

weight how much a small change in these weights affects the loss function, if it increases it or

decreases it, and how we can use that to improve the loss.

gradient =
∂JW
∂W

(2.1)

Therefore, the gradient is a function that evaluates the loss at all points. In addition, the

gradient knows the direction of the highest point, that is, the values that increase the loss. Because
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Figure 2.12. Example of the gradient descent algorithm, adapted from [2].

the objective is to decrease the loss, the algorithm negates the gradient value and updates the

weights. Also, it is important to consider that computing the gradient can be very computationally

expensive. One solution is that instead of computing the gradient over all the input data at once,

the algorithm loads the input data in batches. Then, the algorithm moves the loss function values a

small step, looking for the global minimum, as shown in Figure 2.12. This small step is called the

learning rate (η). The formula that describes this operation is as follows.

W = W− η
∂J(W)

∂W
(2.2)

The algorithm then repeats this process over and over again, evaluates the model weights at

the new location, and computes its gradient until it converges to the minimum value. Therefore,

a challenge facing ANNs algorithms in training is the selection of η, because a small η converges

slowly and could not converge to the global minimum in the function [3]. On the other hand,

if the algorithm selects a large η, the function could start to diverge from the solution [3]. So,

to select a good value η, we can try with different values η and see which offers the best result,

or we can select adaptive learning rate algorithms, also known as optimizers, such as Stochastic
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Gradient Descent, Adam, Adadelta, Adagrad, RMSProp among others [13, 11, 3]. Therefore,

optimizing this algorithm is difficult because some networks have thousands of weights and found

that determining the minimal value of the lost weight is a very complicated task.

In summary, the loss function’s job is to take the network’s predictions and the true target

(the labeled data) and compute a loss score, calculating how well the network has done on a batch

of input images. The algorithm then uses this score as a feedback signal to adjust the weight values

slightly in a direction that will lower the loss score for the current example. This adjustment is the

job of the optimizer, who implements what is called the backpropagation algorithm [62]. Figure

2.13 shows the training loop algorithm for an ANN model.

Figure 2.13. ANN training loop algorithm.

At first, the predicted output is far from the true target, and the loss score is high. But with

every example processed by the network, the weights are adjusted slightly in the correct direction,

and the loss score decreases. This training loop is repeated many times to minimize the loss

function. Therefore, a trained network is a network that has minimal loss where the outputs are as

close as they can to the true target.

It is important to mention the complexity of this training because a network can contain tens

of millions of weights. At the same time, if we modify the value of one weight, this change will

affect the behavior of all others, making it complicated for a person to predict the output of the

algorithm.
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2.4.2 ANNs Generalization

To develop an ANN model, it is necessary to understand two concepts: optimization and

generalization. Optimization refers to the process of adjusting a model, finding the model

parameters (weights), to get the best performance possible on the training data, whereas

generalization refers to how well the trained model performs on data it has never seen before.

So, in an ANN model, it is necessary to split the available data into three sets: training, validation,

and testing. Then, the algorithm trains the model on the training data and evaluates the model on

the validation data. At the beginning of training, optimization and generalization are correlated,

as shown in Figure 2.14. The lower the loss in training data, the lower the loss in validation data.

While this is happening, the model is said to be underfit: There is still progress to be made; the

network has not yet modeled all relevant patterns in the training data. But after a certain number

of iterations on the training data, generalization stops improving and then begins to degrade: the

model is starting to overfit. That is, it is beginning to learn patterns that are specific to the training

data, but that are misleading or irrelevant when it comes to new data.

Figure 2.14. Example of the training behavior of a ANN algorithm adapted from [4].

The models tend to overfit in the training process, because the visual data is very complex,

so it is necessary to design a complex model; this results in a high-dimensional model with a lot of
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parameters to fit, and if we do not have enough training data, this overfitting is very common.

To avoid the overfitting problem, there are regularization techniques. Regularization consists

in constraining the model to simplify it and reduce the risk of overfitting. The most popular

regularization techniques are:

• Dropout: this technique consists of randomly setting some neurons during training to

0, forcing the network not to rely on one path, changing weights and making different

connections [63].

• Early stopping: this technique consist in detecting the point right after the validation loss

starts to increase and the training loss still decreases, and using the weights at this point [64],

as shown in Figure 2.14.

2.4.3 ANN Model Evaluation

Once the model is trained correctly, it is necessary to evaluate whether the model performs a good

generalization on the new data. Therefore, here is where the algorithm uses a metric and the test

data. A metric is a function that is used to judge the performance of the model. So, metric functions

are similar to loss functions except that the results of evaluating a metric are not used when training

the model. The metrics used in this thesis are defined below.

Confusion Matrix

The confusion matrix gives a comparison between the actual (test data) and the predicted values,

and it is used to measure the performance of a classification model. It shows how many samples

were correctly or incorrectly classified by the algorithm in each class as shown in Figure 2.3. The

matrix has a size of N×N, where N is the number of classes or outputs. In Table 2.3 each row of

the matrix represents the true class while each column represents the predicted class.

The correct classifications are on the diagonal of the matrix and the incorrect classifications

are on the off diagonal of the matrix. Therefore, the total number of correct classifications is still
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the sum of all elements on the diagonal and the total number of incorrect classifications is the sum

of all of the off diagonal elements. For a binary classification problem the framework has two rows

and two columns as shown Figure 2.3.

Table 2.3. Confusion matrix by a binary classification.

Positive (Predicted) Negative (Predicted)

Positive (Actual) True Positive (TP) False Negative (FN)

Negative (Actual) False Positive (FP) True Negative (TN)

In order to understand a confusion matrix for a binary classification, it is necessary to define

four terms:

• True Positive (TP): are the positive cases where the classifier correctly identified them.

• True Negative (TN): are the negative cases where the classifier correctly identified them.

• False Negative (FN): are the positive cases where the classifier incorrectly identified them

as negative.

• False Positive (FP): are the negative cases where the classifier incorrectly identified them as

positive.

From these values that we obtain from the confusion matrix, we can obtain different metrics

that will allow us to evaluate our model. One of the most used metrics are accuracy, precision,

recall, F1-score which are explained below.

Accuracy: is the number of correct predictions divided by the total number of predictions,

and it is defined by Equation 2.3.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

Precision: is the number of positive predictions divided by the total number of positive class

values predicted in test data, and it is defined by Equation 2.4
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Precision =
TP

TP + FP
(2.4)

Recall: is the number of positive predictions divided by the number of positive class values

in the test data, and it is defined by Equation 2.5. Also is called as Sensitivity.

Recall =
TP

TP + FN
(2.5)

F1-score: The F1-score combines precision and recall using their harmonic mean, and it is

defined by Equation 2.6.

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(2.6)

2.5 Chapter Summary

This chapter explains the challenges involved in an image classification task. It then gave a brief

overview of some datasets used for the task, focusing on the two datasets used in this thesis.

MNIST and COVID V7A. The last section explains the basics of Artificial Neural Networks

and their application to the task of image classification, including the training, generalization,

and evaluation stages of an ANN model. Finally, the metrics used in this thesis to measure the

performance of our model were presented.
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Chapter 3
Convolutional Neural Networks and Their

Limitations

The preceding chapter discussed the image classification problem and the difficulties it presents.

Additionally, it provided a review of the current solution approaches. As previously mentioned, the

most effective way to address the image classification problem is through the use of Convolutional

Neural Networks. This chapter will delve into the details of how this approach works and analyze

its advantages and disadvantages.

3.1 CNN Architecture

Convolutional Neural Networks (CNNs) are based on the work of Hubel and Wiesel published

in 1959 [37]. Their work describes the functioning of the cat’s visual cortex and explains how

animals observe things in a hierarchical way. At first, neurons perceive primitive features such

as lines and edges, but as information progresses into the visual cortex, features become more

complex, until specific shapes are formed (like a face or a car) [65]. Following this idea, CNNs are

also composed of hierarchical layers. Each layer represents a series of operations that are applied

to the input values. Then, the output of each layer becomes the new input value of the next layer.
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As mentioned in Chapter 2, the first ANN architectures use only Fully Connected (FC) layers;

this means that all neurons in each layer are connected to all neurons in the next layer, creating a

bipartite graph [66]. A distinctive feature of a CNN is that each neuron in a layer is not connected

to all neurons in the next layer, but uses partially connected layers and weight sharing, helping to

decrease the number of parameters needed [54].

A CNN can be separated into two stages, the feature extraction stage and the classification

stage, as shown in Fig. 3.1. In the feature extraction stage, the network employs convolutional

layers, which use a mathematical operation called convolution. This operation is performed

between the input value of the layer and different filters. It is important to note that the filter

values are the network weights that are obtained automatically during the training phase. In the

classification stage, the FC layer receives as an input a vector (flatten) coming from the feature

stage, and the output are discrete values for the predicted classes, where the highest value is

selected as the correct class. Unlike the feature extraction stage, the classification stage is not

unique to CNNs because it is used in many ANNs architectures.

Figure 3.1. Basic CNN architecture for image classification.
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3.1.1 Feature Extraction Stage

The feature extraction stage consists of several convolutional layers. As can be seen in Fig. 3.1,

the input of the first convolutional layer is the original image, and its output becomes the input

of the second convolutional layer and so on. Each convolutional layer uses three basic operations

that are constantly repeated: convolution, activation function, and pooling. (see Fig. 3.1). For

each operation, it is necessary to define the values of a set of hyperparameters such as: number

of filters, filter size, stride value, pooling window size and padding value. A hyperparameter is a

parameter of the algorithm; it must be set prior to training and remains constant during training.

These concepts are explained below.

Convolution

In mathematics, convolution is an operation of two functions that produces a third one that

expresses how the shape of one is modified by the other [4]. In order to understand the convolution

operation, it is necessary to explain some definitions. The receptive field (Rm,n) is a region of size

m × n, where each cell represents a pixel of the input images, as shown in Fig. 3.2. The filter or

kernel (Wa,b) is an array of numbers of size a × b (also known as weights or parameters) that are

representations of features such as straight edges, simple colors, and curves. In Fig. 3.2, the filter

is represented by the blue square which in this example covers an area of 3× 3 pixels.

Then the convolution operation consists of multiplying each value of the filter with the val-

ues of the receptive field (the input image). Then, these values are summed to obtain one element

of the output (known as activation map or feature map) (Oc,d) as shown in Fig. 3.2. Each filter

represents a different characteristic of the receptive field, so it is desirable to have enough filters to

correctly describe the input image. For example, in Fig. 3.3 the input is a RGB image that employs

two filters generating two feature maps; for example, one could represent horizontal lines and the

other vertical lines. As we go through the network and through the convolutional layers, feature

maps are obtained that represent more and more complex features.
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Figure 3.2. Example of the convolution operation. On the left hand side is the receptive field of

size m× n, the input. In the middle is the filter to be applied. On the right hand side is the feature

map obtained after applying the filter to the input (receptive field). At the bottom is shown how an

element of the feature map is calculated.

Figure 3.3. Example of a convolution operation on a RGB image with two filters generating two

features maps of size 4× 4× 2.
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A simple convolution definition is as follows.

Oc,d =
a−1∑
i=0

b−1∑
j=0

Wi,jRi+sx,j+sy (3.1)

, where: 0 ≤ x < c , 0 ≤ y < d, c = n−b+s
s

, d = m−a+s
s

and s is the stride value. Also, it is

important to note that, for RGB images, the depth of the filter must be the same as the depth of the

input, as shown in Fig. 3.3. There are two more hyperparameters that change the behavior of the

network and the size of the output feature map. These hyperparemeters are stride and padding.

Stride The stride controls how the filter slides around the receptive field. In other words, the

stride is the amount by which the filters shift. Fig. 3.4 shows an example with a receptive field of

size 7 × 7 pixels and a 3 × 3 filter. After applying the first convolution operation and obtaining

the first output pixel located in the upper left corner (pink pixel), Stride 1 allows the same filter to

move one position to the right to apply the subsequent convolution and obtain the next output pixel

(purple pixel). Consequently, the output dimension is reduced to a 5×5 feature map. In the second

case, with a stride of two, the output dimension is further reduced to a 3× 3 feature map. Also, it

is important to note that the stride value is the same for the horizontal and vertical displacements

of the filter. The stride value is selected so that the feature map is an integer value, not a real value.

Figure 3.4. Example of how a different stride size can change the size of the feature map output.
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Padding Sometimes it is desirable to preserve a specific feature map size. Thus, the padding

hyperparameter refers to the number of pixels added to the receptive field to obtain a desired

output size. Fig. 3.5 illustrates an example of padding. At the top, there is a 5 × 5 input with a

3×3 filter, and at the bottom the same input with the same filter size and zero padding. This yields

a 7× 7 input and a 3× 3 output.

Figure 3.5. Example of zero padding hyperparameter, i.e. zeros around the border. Instead of

zeros other values could be used, such as the average of the region.

Pooling

Usually after each convolution layer, the size of the input data is reduced, but the number of

feature maps increases, as shown in Fig. 3.1. The number of feature maps is represented by the

depth of each convolutional layer. This translates into an increase in the number of parameters

and calculations that the network will have to handle. In order to process all this information, the

pooling operation is used. This operation reduces the number of parameters or weights, preserving

their important characteristics. In this operation, there are no estimations of weights. For this

reason, some architectures do not consider pooling as a layer.
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So, the pooling operation consists of choosing a region of the receptive field and

downsampling that region by the selected method. The main methods are max pooling and average

pooling as shown in Fig. 3.6. The output is a value that represents the most important part of the

receptive field in the region. This is done in order to reduce the images to ease their processing

without losing critical features to achieve good accuracy.

Figure 3.6. Pooling operation. Max pooling operation preserves the largest value inside of the

selected size. Average pooling gets the average value inside the chosen size.

Activation Functions

Table 3.1. Examples of nonlinear Activation Functions

Name Function

Sigmoid [67] y = 1
1+e−x

Hyperbolic Tangent [68] y = ex−e−x

ex+e−x

ReLU [69] y = max(0, x)

Leaky ReLU [70] y = max(αx, x)

Exponential LU [71] y = { x,x≥0
α(ex−1),x<0

where α is a small constant (e.g., 0.1)

After the convolutional operation, it is a convention to apply an activation function as shown

in Fig. 3.1. This function, also called nonlinear function, is necessary for the model to be able

to learn nonlinear functions. The first activation functions used were Hyperbolic Tangent and

Sigmoid as shown Table 3.1. Currently the most used function is the Rectified Linear Unit (ReLU)

due to the speed of its processing, which consists of changing all the negative values of the input
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to zero and keeping the positive values. For improved accuracy, different variations of ReLU have

also been proposed as shown Table 3.1.

3.1.2 Classification Stage

The classification stage is found in the last layer of all artificial neural networks. In this stage, the

values of the last convolution layer are transformed into a single vector, then linear combinations

and activation functions transform the input of this vector into another vector, and so on until

another output vector is obtained (as shown in Fig. 3.1). The last vector of the network must have

the same number of elements as the number of classes to be identified; each element represents the

probability that the image belongs to that class. The probabilities are calculated by the last layer

of the block using the softmax operation [4]. This operation ensures that the value of each element

will be between 0 and 1, and the sum of all those elements is 1.

3.2 Main CNN Architectures

A CNN architecture can be defined as a sequence of convolutional layers with a different selection

of hyperparameters in each layer, see Fig 3.1. One network is different from another simply by

selecting a different configuration of one hyperparameter such as: the number of layers, number of

neurons in each layer, number of filters and their size, stride value, padding value or the size of the

pooling window [72]. It is important to emphasize that a slight change in the values completely

changes the performance of the CNN. These networks handle millions of weights, thus it is not

easy to predict the behavior of the network given a change. Also, each experiment demands a

large computational time even with the use of Graphics Processing Units (GPUs). Therefore, the

configuration of a CNN is still an active area of research because there is no formula that guarantees

the correct selection of hyperparameters

Despite all these problems, several CNN architectures have been developed successfully,

the most popular are the winners of the image classification task in the ImageNet Challenge (see
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Table 3.2. Main CNNs architectures hyperparameters.

Hypeparameters LeNet [54] AlexNet [14] ZFNet [5] VGG-16 [67] GoogLeNet v1 [16] ResNet 50 [17]

Input size 28× 28 227× 227 224× 224 224× 224 224× 224 224× 224

# Conv layers 3 5 5 13 57 53

Filter sizes 5 3,5,11 3,5,7 3 1,3,5,7 1,3,7

# Filters 20, 50 96 - 384 96 - 384 64 - 512 16-384 64 - 2048

Stride 1 1,4 2 1 1,2 1,2

# FC layers 2 3 3 3 1 1

# Weights 60 k 61 M 62 M 138 M 7 M 25.5 M

ImageNet error - 0.16 0.12 0.07 0.06 0.035

Section 2.3). A notable CNN architecture, named LeNet and created in 1989 by Yan LeCun [54],

laid the foundations for the following networks and introduced new hyperparameters. This network

was designed for the task of recognizing images on a grayscale of dimensions 28×28 pixels, and it

was trained with the MNIST dataset [38]. Different configurations were designed, the most known

version was LeNet-5. This configuration contains only three convolutional layers and two fully

connected layers. In total, LeNet is made up of 60,000 weights, which makes it a not very complex

network, compared to other architectures as shown on Table 3.2.

An example of the CNN complexity is the AlexNet architecture [14] compared to the ZFNet

architecture [5], where just by changing the size of the convolution window filter in the input layer

from 11 × 11 (as defined in AlexNet) to 7 × 7, the Top-5 error decreased from 16% (AlexNet) to

12% (ZFNet) as show in Table 3.2. Also, the Inception network by GoogLeNet was very innovative

by proposing the option of not choosing just one filter size, but passing the image through different

filter sizes. Then it combines all the output filter sizes in a single one, called DepthConcat [16].

At the same time, the VGG team designed a simple and elegant architecture [67], by using a filter

of small size several times it intends to replace large filter sizes. For example, instead of a single

5 × 5 filter size it uses two filters of 3 × 3 size, obtaining satisfactory results, see Table 3.2. Due

to its simplicity it is one of the most popular networks. Table 3.2 presents a summary of the most

representative CNN architectures. The table shows the configuration of the hyperparameters used

in each architecture. The last row of the table presents the approximate number of weights of each

network, to show the complexity of these architectures [72].
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Table 3.3. Most popular CNNs and their main contributions.

Network Contribution

LeNet [54] Designed for digit classification, average pooling operation, tanh as

activation function.
AlexNet [14] ReLU as activation function, max-pooling operation, parallel training,

new regularization techniques: dropout and data augmentation.
ZFNet [5] Changed the size of the filters in the convolutional input layer.

VGG Net [67] Increased the depth of the network, use of smaller convolution filters.

GoogLeNet [16] Use of inception modules, the network design occurs in parallel, nesting

networks concept.
ResNet [17] Residual blocks.

As can be seen in Table 3.2, the depth of the network and the number of layers is proportional

to the classification error, where the more layers, the greater the accuracy. On the other hand,

Table 3.3 summarizes the contributions of the most popular CNN architectures.

3.3 Literature Review on CNNs Limitations

Despite the application of CNNs in several computer vision tasks with outstanding results thanks to

hardware technology such as GPUs, recent articles are beginning to report their limitations. When

CNNs cannot achieve an acceptable classification result, we say that the CNNs have a limited

performance. Several papers have identified some CNNs limitations, but most of them report only

one type of limitation at most. One of the contribution of this thesis is to provide a description

and analysis of all current CNNs limitations, and we propose to group them into the following

categories:

• Labeled data: CNNs follow a supervised learning approach, which in turn requires a large

amount of labeled data. As explained in Section 2.3, this is difficult to obtain in most real-

world applications.
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• Translation invariance: If the network was never trained with several rotations and

translations of training images (i.e., to achieve translation and rotation invariance), then

the network is likely to have a poor performance in the testing stage.

• Adversarial examples: Recent research works have shown that CNNs are vulnerable to

misclassification errors if there is even a simple alteration in the input data. An altered

image is known as adversarial example, and this alteration can be applied in different ways,

from the perturbation (denoted as epsilon) of one pixel to the entire image.

• Spatial relationship: This limitation has to do with the way the network passes information

from one layer to another. Since neurons do not consider the properties of features such as

the spatial relationships, orientation or size, then CNNs do not respect the proportion of the

objects found in the images.

Figure 3.7 illustrates the general idea about the categories of these limitations described

above. In labeled data, we show the example of a retriever dog where it is necessary to label

the elements of the image that we would like to classify. This task can only be performed by

humans. In translation invariance, we show three images with the same dog, but these images have

transformations to the original image, known by the CNNs, such as mirroring, rotation, cropping

and translation. However, once the images are transformed then the CNNs are unable to classify

them properly. In adversarial examples, a perturbation is added to the original image, then the

perturbed image is not classified correctly. In spatial relationship, the elements of the figure are

moved to different positions, for example the nose is at the left eye of the dog, and that eye was

moved at the tongue position. These movements are unrealistic, but for the CNNs they are not.

Therefore, the image will be classified correctly; Table 3.4 shows the results of the literature review,

where each paper refers at least one limitation according to the four categories described above.

This literature review focuses on papers published after the CNN’s boom who started in 2012. Only

old articles are included if they are referents in CNNs such as the first labeled datasets or essential

architectures such as LeNet, created in the late 80s. The search engines used were Google Scholar,

Springer, Scopus, ACM, and arXiv.



3. Convolutional Neural Networks and Their Limitations 40

Figure 3.7. CNNs limitations with examples. It illustrates the four categories defined as CNNs

limitations.

Table 3.4. Literature review on CNN limitations.

Paper Labeled Translation Adversarial Spatial Year

data invariance examples relationship

THIS THESIS ! ! ! ! 2023

Patrick, et al. [73] ! ! 2022

Alam , et al. [74] ! 2022

Khodadadzadeh, et al. [75] ! ! 2021

Wang, et al. [76] ! 2021

Steur, et al. [77] ! 2021

Ma, et al. [78] ! 2021

Luo, et al. [79] ! ! 2021

Fang , et al. [80] ! ! 2021

Hu, et al [81] ! 2021

Ren, et al [82] ! ! 2020

Huang, et al [40] ! ! 2020

Sundaram, et al [41] ! ! 2020

Yang, et al [39] ! ! 2020

Continued on next page.
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Paper Labeled Translation Adversarial Spatial Year

data invariance examples relationship

Brendel, et al [83] ! 2020

Jalal, et al [84] ! 2020

Jia, et al [42] ! 2020

Wang, et al [43] ! 2020

Patrick, et al [85] ! ! ! 2019

Jayasundara, et al [86] ! ! 2019

Rosario, et al [87] ! ! 2019

Kruthika, et al [88] ! ! 2019

Rajasegar, et al [89] ! ! 2019

Hahn, et al [90] ! ! 2019

Su, et al [91] ! ! 2019

Zheng, et al [92] ! 2019

Brown, et al [93] ! 2019

Jayasundara, et al [86] ! 2019

Kosiorek, et al [94] ! 2019

Amer, et al [95] ! 2019

Carlini, et al [96] ! ! 2018

Papernot, et al [97] ! ! 2018

Dong, et al [98] ! ! 2018

Xiao, et al [99] ! 2018

Brown,et al [100] ! ! 2018

Hinton, et al [8] ! ! 2018

Frosst, et al [101] ! ! 2018

Afshar, et al [27] ! ! 2018

LaLonde, et al [102] ! ! 2018

Mukhometzianov, et al [103] ! ! 2018

Phaye, et al [104] ! ! 2018

O’Neill [105] ! ! 2018

Raghunathan, et al [106] ! 2018

Wong, et al [107] ! 2018

Guo, et al [108] ! 2018

Wang, et al [109] ! 2018

Liu, et al [110] ! 2018

Continued on next page.
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Paper Labeled Translation Adversarial Spatial Year

data invariance examples relationship

Lei, et al [111] ! 2018

Eykholt,et al [112] ! 2018

DARPA [34] ! 2018

Siddiqui, et al [113] ! 2018

Jaiswal, et al [114] ! 2018

Xiang,et al [115] ! 2018

Carlini, et al [116] ! ! 2017

Xi, et al [117] ! ! 2017

Papernot, et al [118] ! ! 2017

Sabour, et al [7] ! ! 2017

Kurakin,et al [36] ! 2017

Sinha, et al [119] ! 2017

Chen, et al [120] ! 2017

Papernot, et al [121] ! ! 2016

Goodfellow, et al [122] ! 2016

Papernot,et al [123] ! 2016

Papernot,et al [124] ! 2016

Papernot,et al [125] ! 2016

Mohsen, et al [126] ! 2016

Hinton, et al [127] ! ! ! 2015

Simonyan, et al [67] ! ! 2015

Yosinski, et al [35] ! 2015

Szegedy, et al [128] ! ! 2014

Zeiler, et al [5] ! ! 2014

Goodfellow, et al [129] ! ! 2014

Shorten, et al [130] ! 2014

Goodfellow, et al [122] ! 2014

Zeiler, et al [131] ! 2013

Houben, et al [48] ! 2013

Krause, et al [50] ! 2013

Krizhevsky, et al [14] ! ! 2012

Geiger, et al [132] ! 2012

Hinton, et al [133] ! ! 2011

Continued on next page.
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Paper Labeled Translation Adversarial Spatial Year

data invariance examples relationship

Xiao, et al [49] ! 2010

Everingham, et al [46] ! 2010

Krizhevsky, et al [47] ! 2009

LeCun, et al [134] ! 1998

LeCun, et al [54] ! ! 1989

3.4 Possible Solutions to CNN Limitations

The previous section describes the four limitations that have been reported in different articles

when using CNNs. These four limitations are: labeled data, translation invariance, adversarial

example and spatial relationship. Next, these CNNs limitations are discussed along with possible

solutions in order to overcome them.

3.4.1 Labeled Data

As explained in Section 2.3, one of the main problems to tackle is data availability. The more

complex the computer vision task, the higher the quality and quantity of data needed for correct

learning [12]. Intuitively, collecting a large number of images for training does not seem to be

a problem because nowadays data is being generated everywhere all the time. Web platforms

such as Youtube, Facebook, Google, Flickr, etc., can be used to retrieve data, images in particular.

However, not only are these images required, but they must be labeled. The need for labeled data

is because the CNN architectures make use of supervised learning, where the learning algorithms

require to have data with the correct labels for the training stage [11].

For image classification, labeling consists in determining the class that belongs to the object

within that image. Sometimes an image may contain several objects that belong to several classes

[12, 135]. It is important to emphasize that the labeling task is normally done by humans to

guarantee a correct labeling, and even then there could be some errors. This makes the labeling
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task time-consuming requiring a large number of people focused on this task. For example, the

ImageNet dataset required 49,000 workers from 167 countries and it took three years for labeling

one billion images [12].

So, the first CNN limitation is about the large number of images needed to train these

networks. The main CNN architectures coincide that the larger the number of images used during

training, the better the resulting accuracy. These models require around 109 or 1010 labeled data

to achieve a good performance [34]. Therefore, training a CNN from scratch is a complicated,

expensive and time-consuming job.

As a result of this limitation, there are several free labeled datasets for training, such as

ImageNet, MNIST, Pascal, COCO, among others, as mentioned in Section 2.3. However, when

the CNN application is specialized, customized, or new, the existing datasets could be useless. So,

new strategies are required in order to train CNNs with a limited number of labeled images. This

limitation is reported in several research papers as shown in Table 3.4

One of the most used strategies to overcome this limitation is a process called transfer

learning [13]. The main idea is to use the optimized weights of an existing CNN model (e.g.,

AlexNet [14], GoogLeNet [16], ResNet [17], etc.), to perform classification with different classes

using a smaller number of input images. The changes for implementing this strategy are made in

the classification stage on the last fully connected layer, as shown in Fig. 3.1. The training only

changes the values of the weights on this stage. The number of neurons in the last layer has to

be equal to that of the classes for the new task, this process is called fine tuning. This makes

the training much faster, requires fewer input data and less computational effort. Also, due to its

successful results, it is the most widely used technique in real-world applications. For example,

for classifying fish and other marine species in underwater videos [84, 113], or for the diagnosis

of plant diseases to save crops [19].

On the other hand, there are attempts to do the labelling task automatically. For example,

the Defense Advanced Research Projects Agency (DARPA) aware of this limitation launched the

Learning with Less Labels (LwLL) program in August 2018 [34], and still under development.

The first part of this program was about the developing of algorithms with the goal of reducing
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the amount of labeled data needed to train a model from scratch by at least a factor of 106

and adapt it to new environments with only hundreds of labeled data. Another LwLL goal

is that the algorithms can use all the amount of unlabelled data available and the algorithm

autonomously selects specific examples for labeling, i.e., clustering. Algorithms can create data,

but cannot create labels. To achieve these ambitious goals, advanced methods are expected in

meta-learning, automated transfer learning, reinforcement learning, active learning, unsupervised

or semi-supervised learning, and k-shot learning [11]. The second part of this proposal was to test

the limits of the amount of labeled data necessary to solve different Machine Learning problems.

The behavior of the models will be analyzed before each problem, because DARPA is looking for

mathematical theorems that could explain the relationship between the number of input data and

the correct learning of the model [34].

3.4.2 Translation Invariance

The second CNN limitation is the translation invariance, this refers to the problem where an object

with a slight change of position or orientation is not correctly classified by the network. Therefore,

it requires different points of views of each labeled object.

Zeiler et. al. performed an experiment with the ZFNet, see Fig. 3.8 [5], where five randomly

images from ImageNet were used: Lawn Mower, Shin-Tzu, African Crocodile, African Grey

Parrot, and Entertainment Center. They showed that the network was trained with the original

image, and then just by doing a small image transformations (translation, scaling and rotation) on

the test stage, the accuracy (P true class) of the network can be dramatically affected.

To overcome this limitation, researchers use data augmentation based on image manipula-

tions, that consists of artificially increasing the number of images in the dataset by using different

augmentation techniques, such as geometric transformations (e.g., flipping, rotation, scaling, crop-

ping, translation, Gaussian noise addition) or advanced augmentation techniques based on Deep

Learning (e.g., conditional generative adversarial networks (GAN), neural style transfer, adversar-

ial training) [130]. Data augmentation has been used in the training of the most popular CNNs

architectures (see Section 3.2), since it was successfully introduced in AlexNet [14]. Table 3.5
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Figure 3.8. Example of the translation invariance limitation (adapted from [5]). In the first

column three transformation techniques were applied to five sample images: (a1) vertical

translation, (b1) scaling, and (c1) rotation. In the second column, the probability of the true label

for each image, as the image is transformed, is shown. The more the transformation the lower the

probability of the true class.

mentions the data augmentation techniques used by popular CNNs architectures. Also, many re-

searchers report good results augmenting data for testing images as well [130].

Data augmentation can also help on some problems related to datasets. For example,

alleviating class imbalance, which is a problem where a dataset is primarily composed of examples

from one class. In addition, data augmentation helps to downsample images with high resolution,

such as HD or 4K, making them computationally easier to process [130]. At the same time,

data augmentation generates more labeled data increasing the size of the dataset, which in

turn helps to prevent overfitting because we obtain more training and testing data to achieve
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Table 3.5. CNN data augmentation techniques.

Architecture Data augmentation technique

AlexNet [14] Images generated by translations, horizontal reflections and altering the

intensities of the RGB channels.
ZFNet [5] Images generated by producing multiple different image crops and flips

of each training example to boost the training set size.
VGG [67] Images generated by cropping with random horizontal flipping and

random RGB color shifting, each training image is individually re-

scaled using random sampling.
GoogLeNet [16] Images generated by resizing the original image to 4 scales (256, 288,

320 and 352), and also by generating their mirrored versions.
ResNet [17] The original image is first resized, then it is cropped and flipped.

generalization [130].

Nevertheless, the data augmentation process requires great computational effort given the

amount of data generated. This computational effort translates into additional memory and

computational constraints. There are two options for data augmentation: offline or online

(i.e., before or during training). Offline augmentation transforms data beforehand and stores

it in computer memory, which can be problematic for large datasets. On the contrary, online

augmentation transforms data on the fly during training. This option can save memory, but will

result in slower training. Also, it is important to note that for some problems data augmentation

should not be performed because it may significantly change the content of the information (e.g.,

voice data, disease images, among others).

3.4.3 Adversarial Examples

Researchers have discovered an intriguing phenomenon called adversarial example [128]. This

phenomenon consists of easily cheating CNNs with a test image slightly modified (known as

adversarial example), that forces the architecture to misclassify with high accuracy. A simple

example was shown in Fig. 3.7, where the attacker adds a small perturbation (noise ϵ) that has
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been designed to make the image to be recognized as a rug instead of a dog. When an adversarial

example is applied on a Machine Learning model, it is called an adversarial attack [82].

There are different attack scenarios, and we classify them into four categories, see Table 3.6.

The category p-norm refers to the distance function, known as p-norm. This norm measures the

distance between the original image and the perturbed image with a loss function Lp, where

p = 0, 1, 2,∞ [18, 136, 137, 82]. The images are perturbed by adding noise through the

parameter ϵ. The objective is to maximize the classification error in order to make the CNNs

fail by minimizing the difference between the original image and the perturbed image; being

imperceptible to the human eye [137].

Table 3.6. Classification of adversarial attacks scenarios by category and name.

Category Type Description

p-norm L0, L1, L2, L∞ This norm is used to evaluate the difference between

a perturbed input and the original input.

Data feed Digital The adversary has direct access to the actual data fed

into the model.

Physical The adversary does not have direct access to the

digital representation of the provided model.

Goal Untargeted The goal is to cause the classifier to predict any

incorrect label.

Target The goal is to cause the classifier to predict some

specific label.

Knowledge White box The adversary has full knowledge of the model.

Gray box The adversary does not know very much about the

model but can probe the model.

Black box The adversary has limited or no knowledge about the

model under attack and is not allowed to probe or

query the model.

Concerning the Data Feed category, it is common to assume that attacks are delivered to the
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network digitally. However, there are adversarial attacks that can be brought into the real world.

For example, Kurakin et al. performed an exciting experiment where they took some clean images

from the ImageNet dataset, and they used it to generate adversarial examples [36]. Those images

were printed out, and then they used the TensorFlow Camera Demo app on a standard cellphone,

which is based on the GoogLeNet architecture [16], to classify the printed images. This resulted

in a large number of adversarial examples classified incorrectly even when they are perceived by

the camera. This shows that these attacks are robust because they are capable to fool the system,

despite being printed.

The Goal category contains two types: untargeted and target; where the first one the goal is

that the classifier predict incorrect labels and for the latter the goal is to predict some specific label.

For example, a successfully adversarial attack is the adversarial patch based on the Expectation

Over Transformation (EOT) algorithm [100, 138], which can be used to attack any scene, without

the need of knowing the other items in the scene and causes the classifier to output a targeted

class. They simply place the patch physically in the scene to be attacked. They used the VGG

network, first they select an image with a banana and get a 97% accuracy, then they include

the patch designed to classify as a toaster in the scene and get a 99% accuracy in the toaster

class [100]. Another example of target attack and physical data feed is the one that mimics graffiti

stains on traffic signs. The goal is to misclassify a stop sign into a speed limit 45 sign [112].

They managed to get a classification system to fail against a proven real-time architecture, namely

You Only Look Once (YOLO) [139]. The disturbance was included in the form of a black and

white sticker, the attack was made to a real stop sign causing a failure in the classification of

100% in a controlled environment. The same experiment with a stop signal was performed, but

now the images were captured on video through a moving vehicle, where they obtained a 84.8%

classification error [112].

The Knowledge category, that refers to the model, has three types: white box, gray box

and black box; where the white box has full knowledge about the model and the black box has

limited or no knowledge about the model, and the gray box is something in between. In addition,

this category presents an interesting phenomenon called transferability [124], this means that a

designed adversarial attack for a specific model can attack another architecture without knowing
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the model. That means a white box attack could work as black box attack because not only affects

a CNNs models but also affects different Machine Learning techniques, such as SVMs or decision

trees [136, 82, 98, 137].

Creating adversarial attacks in Machine Learning is a trial-and-error process. Table 3.7

presents a comparison of different adversarial attacks algorithms. The first column contains the

name of the algorithm, the second column is the Goal category described in Table 3.6. The third

column refers to the Knowledge category also described in Table 3.6. The columns Noise and

Geometric correspond to algorithms that use different strategies to create an adversarial example.

Some algorithms change the elements of the image, where it could be adding noise to specific

areas of an image. Others use geometric transformations, e.g., rotations or translations, to induce

misclassifications. Now, the columns p-norm, Image and Universal refer to algorithms designed to

fool the networks by perturbing an image. The perturbation p-norm adds noise and measures the

difference between the perturbed image and the original one. The perturbation by Image means

perturbing only one specific image. In contrast, Universal perturbation means adding some noise to

any image instead on focusing on a single one [140]. Finally, the last column indicates the methods

used to generate the adversarial attacks, i.e., one-step gradient, iterative, and optimization.

Table 3.7. Comparison among different adversarial attacks algorithms.

Algorithm Goal Knowledge Noise Geometric p-norm Image Universal Method

FGSM [129] Both White box ! L∞ ! one-step

L-BFGS [128] Both White box ! L2,L∞ ! one-step

BIM [36] Untarget White box ! L∞ ! iterative

Momentum [98] Untarget White box ! L∞ ! iterative

C&W[116] Both White box ! L0,L2,L∞ ! iterative

JSMA [123] Both White box ! L0 ! iterative

DeepFool [126] Both White box ! L0,L1,L∞ ! iterative

Universal [140] Untarget White box ! L2,L∞ ! iterative

One-pixel [91] Untarget Black box ! L0 ! iterative

UPSET [141] Target Black box ! L∞ ! iterative

ManiFool[142] Both White box ! own ! optimization

EOT [138] Target White box ! own ! optimization

So far, it does not exist a reliable technique that guarantees a complete defense against an
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adversarial attack. There are several novel adversarial defensive techniques, but these techniques

only work for specific attacks [131, 121, 97, 118]. The defense techniques can be classified into

three approaches (see Table 3.8): Guardians, Design and External. The first refers to techniques

that do not interact with the model, but the defense is performed by modifying the training or the

input images in the testing [143, 144, 145, 146, 147, 148, 144, 149]. The second, and most popular

technique, consists of changing the network architecture and the training data or loss function

[150, 129, 151, 152, 153, 154, 127, 125, 155, 156]. The third approach uses external models to its

architecture when classifying unseen examples [157, 158, 159, 160].

Adversarial training is one of the algorithms that offer the best results of all defense

techniques [129]. The basic idea is to generate a lot of adversarial examples and training the model

so that it does not fail if it is attacked. However, adversarial training brings a high computational

cost. Another algorithm with good results is defensive distillation, which proposes a technique

that can use any artificial neural network and increases its robustness by reducing the rate of attack

success [125, 127]. The idea is to use multiple classifiers instead of just one and have them vote

the prediction (ensemble), but it requires more computational resources in order to obtain a proper

defense against attackers.

Table 3.8. Examples of adversarial defensive algorithms.

Approach Algorithms

Guardians Data compression [143, 144], Foveation [145], Data Randomization

[146], PixelDefend [147], SafetyNet [148], Bit-Depth [144], Adaptive

Noise [149]

.

Design Deep Contractive Networks [150], Adversarial Training [129], Gradient

Training [151], Gradient Regularization [152], Robust Training [153] ,

Stochastic Pruning [154], Defensive Distillation [127, 125] , Parseval

Networks [155], DeepCloak[156]
External Defense Against Universal Perturbation [157], GAN-Based [158],

Feature Squeezing [159], MagNet [160]

Each strategy tested so far is defeated because networks are not adaptive, that is, they can

block only one type of attack, but if the attacker knows the defense technique, it is extremely easy to
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improve the attack. For these reasons, designing an adaptive defense technique is an important area

of current research. For now, the adversarial training technique is the most successful. However, it

does not work in all attack scenarios and requires a high computational cost to design it. For these

reasons, the adversarial example is another research area for the scientific community, where some

competitions focus on accelerating investigations and measuring the robustness of current defense

algorithms. Examples of these competitions are: the Adversarial Vision Challenge [83] and the

Adversarial Attacks and Defenses Competition[161], among others.

As mentioned above, CNNs have become popular because of their high accuracy, so these

networks are being incorporated into real-world systems. For instance, in autonomous driving

vision systems where it is important to recognize pedestrians, traffic signals, and vehicles. Thus,

it is expected that these networks will be robust to small input perturbations. However, it appears

that CNNs may fail in some situations. At the moment, the cause of misclassifying these types

of examples is still unknown. Some researchers think that it could be due to the non-linearity of

the models and the overfitting [129, 136]. Other researchers have pointed out that it could be a

consequence of the high geometry of the data and the lack of training data [82].

3.4.4 Spatial Relationship

The fourth limitation is related to the spatial relationship, as shown in Fig. 3.7, where CNN

classifies the two images as a golden retriever. Despite having all the elements of a dog (i.e.

two eyes, two ears, one nose, a tongue), for a human the second image should not make sense.

This is due to common sense that tells us that the nose is below the eyes and that the eyes must

be side by side and not on the tongue. Therefore, the networks must not only detect and classify

objects within an image, they must also learn the spatial relationships among features [40]. Due

to the results presented by CNNs, it can be said that they tend to memorize the data rather than

understand it [39].

Researchers explain that one reason why the image is wrongly classified is due to the

routing [7, 8], that refers to how the network passes information from one layer to another. Because

neurons are activated based on the opportunity to detect specific features, neurons do not consider
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feature properties such as the spatial relationship, orientation, or size of objects. As explained in

Section 3.1, after convolution in most CNN architectures, the size of the input data is reduced,

but the number of features increases; see Fig. 3.1. To process all these features, the pooling

operation is used for routing. Therefore, the pooling operation contributes to the limitation of

spatial relationships. In Section 3.1, it was explained how the pooling layers are successfully

applied within the architecture. However, several researchers argue that the use of this operation

presents some disadvantages such as the following.

• If the object to be detected is very small, after the max pooling operation the size of the pixel

will be further reduced, making it more difficult to detect [41].

• By reducing the number of parameters from one layer to another, important information

about the spatial relationship of the components is lost and the focus will only be on the

presence or absence of features [40].

• Losing the spatial relationship of objects requires more training images and will force the

network to use tools such as data augmentation to improve its performance [104].

• The pooling operation can provide a little translation invariance, but will lose the precise

location information of features [39].

To overcome this limitation, new approaches are required. Hinton proposes the concept of

equivariance [7], where if the input image is rotated, the neural network changes and adapts all the

features of the spatial relationship to the movement of the input image. Hinton argues that the brain

does the opposite to computer rendering programs [133, 7, 8]. He calls it inverse graphics, where

the visual information received by the eyes is deconstructed like a hierarchical representation of the

world around us by the brain, and will try to match it with already learned patterns and relationships

stored in the brain. This is how recognition happens, and the key idea is that the representation of

objects in the brain does not depend on the view angle. Hinton’s idea is based on the hypothesis

that a small child does not need to see thousands of images of an object to recognize it when it is

seen from the back or rotated because the brain internally performs all these operations [162]. The

following chapter describes a new approach capable of addressing this shortcoming.
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3.5 Chapter Summary

As the objective of this thesis is to create a computational model combining two architectures:

CNN and CapsNet. This chapter focuses on CNNs, which are highlighted by detecting features.

First, it explains the internal architecture of these networks and the hyperparameters needed to

configure them. It then explains the main convolutional networks that exist and their advantages.

One of the contributions of this thesis is the identification and grouping of these limitations into

four groups: labeled data, translation invariance, adversarial attacks, and spatial relationship. For

these reasons, the third section presents a deep analysis of their limitations and explains that finding

a solution to these limitations is not easy, because designing a CNN is complicated. It is still a

handmade process, because no formula ensures the correct functioning of one architecture. CNNs

are formed by different hyperparameters (i.e., filter size, nonlinear function, size, and number of

layers) which modify the behavior of these networks. Due to all these limitations, new solutions

are needed. In the next chapter, we will present a new architecture capable of addressing all these

limitations.



55

Chapter 4
Capsule Networks as an Alternative Solution

Due to the limitations of CNNs described in the previous chapter, new approaches have been

proposed. This chapter covers an approach, still under research, as an alternative to overcome such

limitations. Capsule networks (CapsNets) were introduced by Geoffrey Hinton and his students

Sara Sabour and Nicholas Frost in 2017 [7]. They explain that the brain is organized into modules

that can be thought of as capsules. These capsules are adept at handling different types of visual

stimuli such as pose (position, size, orientation), deformation, speed, pitch, texture, etc. They

also mention that the brain must have a mechanism to "route" low-level visual information to the

capsule it deems best suited to handle it. A CapsNet is organized in several layers, much like a

normal neural network. The capsules in the lowest layer are called primary capsules. Each of them

receives as input a small region of the image (receptive field). It tries to detect the presence and

position of a particular pattern, e.g. a rectangle. Then, the capsules located in higher layers, called

routing capsules, detect larger and more complex objects, such as ships or a face. CapsNets are

thus a type of ANN, and their goal is to improve the way that ANNs pass information through their

layers. In addition to that, Hinton’s team also published an algorithm, called dynamic routing, that

allows one to train this new network because now the information is in vector form, instead of

having scalar values.

A capsule is a group of neurons that code the probabilities of feature detection, and they
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output a small vector of highly informative outputs. Each capsule has an array of 8 values, which

is also called a vector. Now these vectors or capsules are the new pixels. Previously, with a normal

pixel, we only have a scalar number (0-255), whereas a capsule can store 8 values per pixel, which

means that capsule can store more information. The stored information is all the data necessary

to describe an image, such as shape, position, rotation, color, or size. In Sabour’s paper these

descriptors are called instantiation parameters [7]. With more complex images the instantiation

parameters can include pose (position, size, orientation), deformation, velocity, albedo, hue,

texture, etc. In addition, each capsule has two components: magnitude and orientation. The

magnitude represents the probability that the entity exists, while the orientation represents the

instantiating parameters or properties of the entity.

As mentioned in the previous section, CNNs are the state of the art in image classification;

however, they also have several limitations. One of the most important limitations is related to the

spatial relationship between the characteristics of an image. The max-pooling operation in CNNs

generates the problem of data invariance. This refers to the fact that small changes in orientation

or position in the input features will not produce a change in the output because CNNs focus only

on the absence or presence of features. Whereas CapsNets look for equivariance where changes in

the input image generate changes in the model output. CapsNets encode the detection probability

of a feature as the magnitude of its output vector. The state of the detected feature is encoded as

the direction to which that vector points ("instantiation parameters"). Therefore, when the detected

feature moves across the image or its state changes in some way, the probability remains the same

(the length of the vector does not change), but its orientation changes.

For example, Figure 3.7, where CNN classifies the two images as a golden retriever because

they detected its two eyes, two ears, one nose and a tongue; but the spatial distribution of these

elements and their relationship between them are not really considered by CNN; because the

network extracts certain features of the image such as eyes, ears, nose, etc. The higher-level

layers will then combine those features and check if all of those features were found in the

picture, regardless of order. On the other hand, CapsNets will detect if the image elements are

slightly modified (for example, translated, rotated, or resized), because the capsules will produce

a vector of similar length, but with different orientation. This order is determined during training
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(dynamic routing), when the network learns not only what features to look for, but also what their

relationships to one another should be. For instance, it might be learned that the nose should be

between the two eyes and the mouth should be below that. Images with these features in specific

order will then be classified as a dog and everything else will be rejected. This means that the

system will only detect a face if the features detected by the capsules are present in the correct

order.

4.1 Computing a Capsule and a Neuron

In this section, the principal differences between computing a neuron and a capsule are presented.

Figure 4.1 shows the connection to compute a neuron.

So, the steps to follow for compute a neuron are:

1. Multiply the input scalars (x1, x2, . . . xn) with the weighted connections (w1, w2, . . . wn)

between the neurons.

2. Compute the weighted sum of the input scalars, i.e.
∑n

i xiwi.

3. Apply an activation function (f ) to the scalar values to get the output, yj = f(
∑n

i xiwi).

Figure 4.1. Computing the output of an artificial neuron, yj = f(
∑n

i xiwi).

Meanwhile, Figure 4.2 shows the connection to compute a capsule and the steps to follow

are:
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1. Multiply the input vectors (u1,u2, . . .un) by the weight matrices (W1j,W2j, . . .Wnj), which

encode spatial relationships between low-level features and high-level features (matrix

multiplication).

2. Multiply the result (ûj|i = Wijui) by the coupling coefficients (c1, c2, . . . cn) .

3. Compute the weighted sum of the input vectors, i.e. sj =
∑

i cijûj|i.

4. Apply an activation function (squash) to vector values (sj) to get the output vj .

Figure 4.2. Computing the output of a capsule, vj .

Finally, Table 4.1 summarizes the differences between how an artificial neuron is computed

and a capsule. In this table, the complexity of the internal operation behind the computed capsule

can be appreciated.

Table 4.1. Important differences between capsules and neurons adapted from [9].

Differences between capsules and neurons

Capsule Artificial Neuron

Input from low-level capsule/neuron vector (ui) scalar (xi)

Operation Affine Transform ûj|i = Wijui -

Weighting Sum sj =
∑

i cijûj|i zj =
∑

i wixi + b

Nonlinear Activation vj =
∥sj∥2

1+∥sj∥2
sj

∥sj∥ yj = f(zj)

Output vector(vj) scalar (yj)
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4.2 Dynamic Routing by Agreement Algorithm

Figure 4.2 shows the connections and parameters needed to compute a capsule in general terms.

Next, this section describes how to obtain all the necessary elements to carry out the procedure of

the routing by agreement algorithm to obtain the output vectors of a Capsule network.

In the dynamic routing algorithm, the output obtained from the previous step is multiplied

by the weights of the network. In a usual ANN, the weights are adjusted based on the error rate,

followed by backpropagation [62]. However, this mechanism is not applied in a Capsule Network.

Dynamic routing is what determines the modification of weights in a network. A Capsule Network

adjusts weights so that a low-level capsule is strongly associated with high-level capsules that are

in its proximity.

The capsule predictions are made by multiplying each capsule by a weight matrix Wij where

i is the number of the capsule and j is the number of the total classes that the algorithm is trying

to predict (i.e. the MNIST dataset has ten classes). The matrix Wij is very important because

it captures the spatial relationships between the lower level features and the higher level features

performing the affine transformation. Each weight is actually a matrix 8×16, so each prediction is

a matrix multiplication between the capsule vector and this weight matrix, as can be seen in Figure

4.3. Therefore, each prediction is a 16-degree vector. It is important to note that the 16 dimension

is an arbitrary choice, just as 8 is the size of the capsules.

As mentioned above, each entry of an output vector in a capsule represents the probability

that the associated entity is present in the current input. Therefore, it is necessary to use the

non-linear squashing function because only the length of the vector changes, not the orientation.

Also, the squashing function obtains a vector with values 0 and 1; ensuring that small vectors take

values close to 0 and large vectors get values below 1. Equation 4.1 shows the squashing function

proposed by Sabour el at. [7], where vj is the vector output of the capsule j and sj is its total input.

vj = squash(sj) =
∥sj∥2

1 + ∥sj∥2
sj
∥sj∥

(4.1)
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Figure 4.3. Example of the multiplication between a capsule and the weight matrix Wij[6].

According to Sabour et al. [7], for all but the first layer of capsules, the total input to a

capsule sj is a weighted sum of all prediction vectors ûj|i of the capsules in the layer below by

multiplying the output ui of a capsule in the layer below by a weight matrix Wij , which means

ûj|i = Wijui and sj =
∑

i cijûj|i. This operation uses a weight transform matrix as mentioned

above, which encodes the spatial importance and other relations between the characteristics of

the low-level capsules and the current one. If one of the calculated prediction vectors has a high

value with a possible parent, then there is downward feedback where the values of the coupling

coefficients (cij) are adjusted to select the correct connection path by the iterative dynamic routing

process, as explained in Algorithm 1. This results in a more intelligent selection than just choosing

the most significant number, like in max-pooling.

The coupling coefficients between the capsule i and all the capsules in the layer above sum

up to 1 and are determined by a softmax routing function, whose initial logits bij are the log prior

probabilities that the capsule i should be coupled to the capsule j as shown in Equation 4.2.

cij = softmax(bi) =
exp(bij)∑
k exp(bik)

(4.2)
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We detail the complete dynamic routing by agreement process in Algorithm 1 , where the

parameter r is the selected iteration number and the value l is the number of the current layer. The

main ideas of algorithms lines are Line 1: This line defines the procedure of ROUTING, which

takes affine transformed input ûj|i, the number of routing iterations r, and the layer number l as

inputs. Line 2: bij is a temporary value that is used to initialize ci in the end. Line 3: The for

loop iterates r times. Line 4: The softmax function applied to bi makes sure to output a non-

negative ci, where all the outputs sum to 1. Line 5: For every capsule in the succeeding layer, the

weighted sum is computed. Line 6: For every capsule in the succeeding layer, the weighted sum

is squashed. Line 7: The weights bij are updated here. Where ûj|i denotes the input to the capsule

from low-level capsule i, and vj denotes the output of high-level capsule j.

Algorithm 1 Routing Algorithm, according to Sabour et al. [7]
1: procedure ROUTING (ûj|i, r, l)

2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.

3: for r iterations do

4: for all capsule i in layer l : cij ← softmax(bi) ▷ softmax computes Eq.4.2

5: for all capsule j in layer (l + 1): sj ←
∑

i cijûj|i

6: for all capsule i in layer (l + 1): vj ← squash(sj) ▷ squash computes Eq.4.1

7: for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|i vj

8: return vj

To summarize, the algorithm starts by calculating the mean of all the predictions, and each

prediction starts out with equal importance. Then they measure the distance between every point

from the mean. The further the point is from the mean it is less important and disappears. After

that, the algorithm recalculates the mean, this time taking into account the importance of the point.

In the paper, they do this cycle 3 times. The highest agreeing points end up getting passed on to

the next layer with the highest activation.
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4.2.1 Margin Loss for Digit Existence

The margin loss function, Equation 4.3, was proposed by Sabour in the original CapsNet paper.

According to Sabour, the margin loss represents the probability that a capsule entity exists based

on the length of the instantiation vector [7]. To allow multiple digits, we use a separate margin

loss, Lk for each digit capsule k

Lk = Tkmax(0,m+− ∥ vk ∥)2 + ϵ(1− Tk)max(0, ∥ vk ∥ −m−)2 (4.3)

In Equation 4.3, vk is the vector obtained from DigitCaps layer, Tk is equal to one if a digit

of class k is present and m+= 0.9 and m−= 0.1. We use ϵ = 0.5. So, the first term of the equation

represents the loss for a correct DigitCaps, and the second term represents the loss for an incorrect

DigitCaps. The total margin loss is the sum of the losses of all class capsules.

4.3 CapsNet Original Architecture

The original CapsNets architecture is shown in Fig. 4.4, and this architecture has only three

layers: Convolutional Layer (ConvLayer), PrimaryCaps layer, and DigitCaps layer [7]. Moreover,

CapsNets have a Reconstruction stage formed by three FC layers, as shown in Figure 4.5.

According to Sabourn [7], the dataset used to train this architecture was MNIST, because of that,

the network has ten classes and handles images of size 28 × 28 as we can see in Figure 4.4.

Convolutional Layer (ConvLayer)

It is used to extract the main features of the input image. The original Sabour architecture selects

256 channels, or filters, with a kernel of 9 × 9 parameters, with a stride of 1 and the ReLU

function as shown in Figure 4.4. This layer converts the intensity of pixels into local feature

activity detectors and uses them as input for the PrimaryCaps Layer [7].
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Figure 4.4. A simple CapsNet architecture with 3 layers, adapted from [7].

PrimaryCaps Layer

Given the 256 channels with the size of the featured maps of 20×20 from the ConvLayer, as shown

in Figure 4.4, a kernel of 9× 9 parameters with a depth of 256 filters and a stride of 2 is applied to

form the Primary Caps layer. This layer is made up of 32 Capslayers each of size 6× 6× 8, where

each Capslayer has 36 capsules with eight dimensions (8D). Therefore, this operation generates

1,152 capsules.

DigitCaps Layer

Once the capsules are computed, the network decides which information will be passed to the next

layer. Capsule predictions are made by multiplying each capsule by a weight matrix Wij for each

class that we are trying to predict (the MNIST dataset has ten classes). Each weight is actually a

8 × 16 matrix, so each prediction is a matrix multiplication between the capsule vector and this

weight matrix, as can be seen in Figure 4.3. Therefore, we will end up with 11,520 predictions and

each prediction is a 16-degree vector. It is important to note that the 16 dimension is an arbitrary

choice, just as the 8 is the size of the capsules.

The next step is to find out which of these 11,520 predictions agree the most with each other
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using the dynamic routing algorithm explained in Section 4.2. Finally, the DigitCaps layer ends

with ten 16-dimensional vectors, as shown in Figure 4.4, one vector for each digit. This layer is the

final prediction, and it can produce two outputs. The first output consists of ten vectors produced

by the DigitCaps layer, where each vector corresponds to each class in the network. This output

then uses the norm L2 to calculate the length of each vector. Finally, the vector values are the

confidence in the detection of the associated class. Therefore, the vector with the highest value is

the prediction. The second output is the reconstruction stage, which we will explain in the next

section.

Reconstruction Stage

Finally, there is a reconstruction stage where the model uses only the activity vector of the

correct digit capsule of the DigitCaps Layer as input for recreating the original input image. The

reconstruction stage on the Sabours architecture is formed by two fully connected layers with 512

and 1024 parameters, as shown in Figure 4.5. It is also important to note that, in the reconstruction

stage, specifically, the decoder is part of the network that could generate more parameters due

to its fully connected layers. In the architecture shown in Figure 4.4, the reconstruction stage

generates 1,411,344 parameters. For these reasons, some models prefer to leave this stage out of

their architectures, mainly if they handle complex RGB images.

Figure 4.5. The Reconstruction Stage [7].

Then, the model minimizes the distance between the reconstructed and original images by a

loss function called reconstruction loss. Also, the decoder scales down the reconstruction loss by
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0.0005 so that it does not dominate the margin loss during training. The original architecture uses

the mean square error (mse) as a reconstruction loss. Therefore, the reconstruction loss promotes

the correct reconstructions of the input data. These functions are used to encourage the capsules

to encode the instantiation parameters of the input class; so, this loss acts as a regularizer. In the

following, we present the details of the reconstruction losses used in this thesis.

Reconstruction Losses

mae loss

The mean absolute error (mae) takes the difference between the model prediction and the ground

truth, applies the absolute value to that difference, and then averages it across the entire dataset.

Therefore, all errors will be weighted on the same linear scale.

mae =
1

n

n∑
i=1

|yi − xi| (4.4)

mse loss

The mean squared error (mse) takes the difference between the model prediction and the ground

truth, squares it, and averages it across the whole dataset. This function ensures that the training

model does not have outlier predictions with huge errors.

mse =
1

n

n∑
i=1

(yi − xi)
2 (4.5)

categorical cross-entropy loss

The categorical cross-entropy loss (cc) is a loss function for multi-class classification model which

classifies the data by predicting the probability of whether the data belongs to one class or the
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other class. This function penalizes the model when it estimates a low probability for the model

prediction.

cc = −
n∑

i=1

xi · log(yi) (4.6)

What Happens Inside a CapsNet

The layers described in Section 4.3 are shown graphically in Figure 4.6. In this figure, we can see

how the information of a single input image passes through the network. Figure 4.6(a) shows the

image using the network as input; in this case, is the digit 7. Next, Figure 4.6(b) shows the 256

feature maps obtained in ConvLayer. Figure 4.6(c) shows the same maps, but adds in each map

the non-linear function ReLU. Now, Figure 4.6(d) shows the 32 Capsule Layers generated in the

Primary Capsule Layer. In Figure 4.6(d) the first capsule layer is selected, this layer is made up

of 36 capsules represented as a vector. In this case, the white color represents a high possibility

of presence of an important feature. Next, Figure 4.6(e) shows how the Digit Capsule Layer is

formed. In this layer, each position is a 16-dimensional vector where the magnitude is calculated.

A low magnitude is represented by a black color, while a high value is represented by a white color.

It can be seen that the white color agrees with the position of the number seven. Finally, figure

4.6(f) shows the digit reconstructed from the Digit Caps layer.

4.4 CapsNets Advantages

The CapsNet architecture has several advantages over the use of CNN. First, note that, whereas

a traditional CNN considers only a good performance when the model predicts the correct digit.

CapsNet uses the reconstruction stage to improve the results because it considers not only the

correct digit, but also a correct reconstruction. An example is shown in Figure 4.7.

In addition, the CapsNet Reconstruction Stage allows the network to generate additional real

data by simply adjusting the instantiation parameter values encoded in the Digit Layer. An example

of this idea is shown in Figure 4.8, where all digits are generated by slightly changing the value
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(a) Input (b) Conv

(c) Conv + ReLU (d) PrimaryCaps

(e) DigitCaps (f) Reconstruction

Figure 4.6. Example of the Capsnets internal layers.

of the instantiation parameter of the output vector. This advantage is already used to generate new

labeled data from existing data in a more realistic way than in the data augmentation process [89].

For example, the TextCaps architecture achieves state-of-the-art results on the EMNIST-letter

dataset with only 200 images per class when originally the dataset has 5,600 images per class

[86, 163].
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Figure 4.7. Example of reconstruction stage in CapsNet [6].

Another great advantage of the CapsNet architecture is the Robustness to Affine Transfor-

mations [7]. In the original CapsNet paper, the researchers designed a CNN, called baseline, to

achieve the best performance on MNIST while keeping the computation cost as close to CapsNet

to compare results. For this experiment, they used two MNIST-derived datasets called Expanded

MNIST (for training) and affMNIST 1 (for the test). In the first dataset, each example is an MNIST

digit randomly placed on a black background of 40 × 40 pixels. The second dataset consists of a

small random affine transformation of each digit. The precision results are shown in Table 4.2. It

can be seen that the two architecture presents a similar performance on the training. However, in

the testing CapsNets overcomes the CNN network.

Another great result of CapsNet is the ability to segment highly overlapping digits [7]. For

this experiment, they also developed a new dataset called MultiMNIST where they overlapping one

digit on top of another in a percentage of 80. In this dataset for each digit of the MNIST, a thousand

examples of the MultiMNIST were generated. It is very important to highlight that this network

1https://www.cs.toronto.edu/ tijmen/affNIST/
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(a) The original output (b) Change the first instantiation parameter

(c) Change the third instantiation parameter (d) Change the fifth instantiation parameter

(e) Change the ninth instantiation parameter (f) Change the twelfth instantiation parameter

Figure 4.8. Example of how a CapsNet can generate new real data.

was trained from scratch with 60M of images for training and 10M for testing. The images of the

results of this experiment are shown in Figure 4.9. In the image L: (l1, l2) represents the label of

the two digits in the image and R: (r1, r2) represents the two digits used for the reconstruction.

Another advantage using CapsNets is their adversarial robustness. Hinton compares a
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Table 4.2. Results of affine Transformation.

Architecture Expanded MNIST affMNIST

Baseline 99.22% 66%

CapsNet 99.23% 79%

Figure 4.9. Sample reconstructions of a CapsNet on MultiMNIST test dataset [7].

Capsule model and a traditional CNN on the ability to deal with adversarial attacks [8]. In the

paper, they generated two adversarial attacks using FGSM and BIM methods. They noted that the

accuracy of the capsule model after the untargeted attack using FGSM never drops below chance

(20%), while the precision of the convolutional model is reduced to significantly below chance

with a ϵ as small as 0.2 as shown Figure 4.10. With respect to the BIM method the CapsNet model

is much more robust to attack than the traditional convolutional model as shown Figure 4.10
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Figure 4.10. CNNs vs CapsNet under adversarial attacks [8].

4.5 CapsNets Limitations

Since the publication of Sabour et al.[7], some researchers have promoted the development of

CapsNet. However, CapsNets presents some limitations, and some researchers are studying

these shortcomings at each stage. Table 4.3 shows some limitations reported and the ongoing

improvements suggested for CapsNets at each stage.

The main limitation of CapsNets is that this architecture has only been successfully tested

in simple datasets. These datasets are grayscale images with a low resolution (28 × 28 or 32×32)

such as MNIST, Fashion MNIST [38], EMNIST-letter [86], EMNIST-balanced [52], EMNIST-

digit [163]. So, CapsNets are only tested successfully in some variation of the MNIST dataset, but

they struggle on a more complex image. According to Table 4.3 some reasons for these limitations

are:

• The architecture struggles to understand the entire context of the image

• CapsNet architecture is not suitable for complex background images due to its weak ability

to extract features in the convolutional layer.

• They generate a large number of training parameters which translates into a great

computational effort, especially in the routing by agreement algorithm where the algorithm
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Table 4.3. Some CapsNets limitations reported.

Stage Limitation Improvement

Input Only been tested on basics

datasets. • Adds new layers to adjust the data dimension

[89],[117]

ConvLayer The first convolutional layer per-

forms a poor feature extraction. • Increase or change number of convolution lay-

ers before capsule layer [104].

• Change how primary capsules are created

[115].

PrimaryCaps Layer The shallow depth of architecture

does not allow us to understand

more complex images.

• Stacking more capsule layers [8].

• Increasing the number of primary capsules

[104].

• Change the way in which the capsule layers are

formed [115],[95].

DigitCaps Layer The computational cost of routing

by the agreement algorithm is high

[7],[95].

• Propose a new activation function [87].

• A new way of routing by agreement [102].

• Change DigitCaps Layer [90].

• Allows for parallel processing [8].

Reconstruction The regularization technique works

well only in two dimensional im-

ages.

• Generate new labeled data [89].

• Modify the scale of the reconstruction loss [8].

• Use none of the above categories [86].

• Replaces the FC with a deconvolutional net-

work [86].

has an extra cycle of iterations (is the number of neurons inside the capsule) instead of a

normal iteration to get the output.
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• CapsNet tends to explain everything in the image, which is not suitable for image

classification tasks with complex backgrounds.

For these reasons, some researchers have focused on combining the advantages of CNNs

with the advantages of CapsNets as shown in Table 4.4. For example, Yang et al. propose the

RS-CapsNet network [39], which uses some ideas from the ResNet architecture and the Squeeze

and Excitation block, both of which were ILSVRC winners [39, 12]. The experimental results

show that RS-CapsNet performs better on the CIFAR10, CIFAR100, SVHN, FashionMNIST and

AffNIST datasets. It can also provide better translation equivariance and the number of training

parameters is reduced by 65.11% compared to the CapsNets original architecture. So far, the

preliminary results of the CapsNets approach are optimistic; however, there is still work to be done

in order to achieve state-of-the-art results on complex datasets.

Table 4.4. Examples combining CNN with CapsNets.

Network Dataset Combination

DA-CapsNet [40] MNIST, CIFAR10, FashionMNIST, SVHN, smallNORB and COIL-20 Attention layers + CapsNet

FSSCaps-DetCountNet [41] The aerial elephant and The livestock FSS classifier + CapsNet

DE-CapsNet [42] CIFAR-10, Fashion MNIST SGE + CapsNet + DCNet++

RS-CapsNet [39] CIFAR10, CIFAR100, SVHN, FashionMNIST, and AffNIST Res2Net + SE + CapsNet

ResCapsNet [43] LiDAR ResNet + CapsNet

4.6 CapsNets and CNNs in the Medical Field

Recently, some papers have also used CapsNets combined with CNNs for medical diagnostics.

Mobiny and Van Nguyen [25] used chest CT scans for the diagnosis of lung cancer, using images

of 32 × 32 pixels, and considered two classes: nodule and non-nodule obtaining. Their network

achieves an accuracy of 88.55% with only 226 images and struggles with the reconstruction stage;

for that reason, they add a convolutional decoder. Afshar et al. [26] used CapsNets to diagnose the

type of brain tumor; they trained with 3064 MRI images with a small resolution (64×64 pixels)

and obtained a classification accuracy of 78% with three tumor classes: Meningioma, Pituitary and
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Glioma. Kruthika et al. [28] proposed a CBIR system that uses the 3D capsule network, the 3D

convolutional neural network, and pre-trained 3D autoencoder technology for early detection of

Alzheimer’s. They used MRI images with a size of 64 × 64 pixels for Alzheimer’s diagnosis with

a classification accuracy of 94.06%. Xiang et al. [164] used a combination of CapsNet and ResNet

for automated breast ultrasound tumor diagnosis. Their dataset contains 444 images of 128 × 128

pixels. They managed two classes (malignant or benign), achieving and obtaining an accuracy of

84.9%.

Respiratory diseases can also be detected by analyzing radiological images. Mittal et al.

[165] used convolutions and dynamic capsule routing to diagnose pneumonia on 5,857 chest ra-

diographs with 100 × 100 resolution and obtained an accuracy of 95.9% to classify normal or

pneumonia. Khanna et al. [166] developed the Detail Oriented Capsule Networks (DECAPS)

model for the automatic diagnosis of COVID-19 using 746 chest CT images with a size of 448

× 448 pixels. In addition, they used GANs for data augmentation. Their model achieved 87.6%

accuracy in detecting two classes: Patients with COVID-19 and non-COVID-19. Afshar et al.

[167] achieved a detection accuracy of 95.7% in two classes using their COVID-CAPS model.

They used training images of 224 × 224 pixels and a transfer learning approach tuned with a new

dataset constructed from an external dataset of X-ray images. Toraman et al. [168] proposed a

convolutional CapsNet approach to detect COVID-19 disease from X-ray images using capsule

networks. They used CT images with a size of 128 × 128 to detect three classes: COVID-19, no

findings, and pneumonia. In addition, they used the max-pooling operation and data augmentation.

Their model achieved an accuracy of 84.22%.

4.7 DRCapsNet Models

To design a computational model it is necessary to configure a large number of hyperparameters.

It is important to note that altering a hyperparameter may or may not have a considerable effect on

the model’s performance, and it is impossible to predict the outcome due to the complexity of the

hyperparameters. Consequently, the only way to test the computational model performance it is to
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retrain the model for each configuration, which is a complex task.

In order to design the DRCapsNet computational model, it is necessary to know that there

are two types of hyperparameters, those that correspond to the architecture of the model and those

for training. Figure 4.11 describes the CapsNet model training process. First, the input image is

passed through the model architecture and generates two outputs, as shown in Figure 4.19. The

model then uses a total loss function formed by two different functions: margin loss and recon-

struction loss selected as explained in Section 4.2.1. The first is the function obtained from the

model prediction and the actual target. The model prediction corresponds to the vector with the

highest magnitude in the ClassCap layer. The second loss compares the image reconstruction (de-

coder output) and the original input. Reconstruction loss is multiplied by a λ hyperparameter that

weights the relative contribution of each term. Therefore, it is summed with the margin loss to

obtain the total loss. The λ hyperparameter is used on the original Sabours architecture and is used

to avoid overfitting in the network; this value is very important for the design of the new model

as will be described in the following sections. So, the reconstruction loss and the λ value are the

hyperparameters used for improve the computational model.

Figure 4.11. Training a CapsNet model.
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On the other hand, Figure 4.12 shows at each stage in the CapsNet architecture the possible

hyperparameters configurations to the architecture. As mentioned in Section 4.6, the combination

of CapsNet and CNN could improve the performance of some models. Therefore, another

contributions of this thesis is to propose a computational model based on CapsNets that can handle

complex medical images. In order to achieve this goal, it was decided to focus on the ConvLayer

stage because the original architecture performs a poor feature extraction. One contribution in

the model is adding more convolutional layers at this stage, and instead of using the max pooling

operation to reduce the size of the feature maps, it was decided to use the dilation rate and the

stride hyperapameters in order to handle more complex input images and to control the number of

capsules desired.

Figure 4.12. CapsNet possible hyperparameter configurations.

4.7.1 Dilation Rate

One of the contributions of this thesis work is the use of the hyperparameter dilation rate (DR)

in some layers of the ConvLayer. The use of the dilation rate is particularly popular in real-time

segmentation, where a wide field of view must be covered and multiple convolutions or larger

kernels cannot be allowed [169, 170]. This hyperparameter modifies the convolutional kernel
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by introducing gaps between elements. The number of spaces depends on the selected value and

indicates the spacing between rows and columns of the kernel. Figure 4.13 illustrates what the

dilation rate hyperparameter looks like with the values (2,2), (4,4), and (8,8) in a 3 × 3 kernel. For

example, a dilation rate of (2,2) in a 3×3 kernel will cover the same receptive field as a 5×5 kernel

using only nine parameters, as shown in Figure 4.13. Moreover, the same number of parameters

of a 3×3 kernel can cover the same region of a 9 × 9 kernel or a 17 × 17 kernel with different

dilation rates. Then, the new kernel shape is applied to the entire receptive field to obtain a new

featured map. This procedure is known as a dilated convolution [170].

Figure 4.13. Examples of the space that covers different values of dilation rate.

One reason for using this type of layer is that it can cover the receptive fields with fewer

parameters than with normal convolutional layers while generating the same size feature map at

the output. This allows for the use of better quality images without increasing the complexity of

the network. Figures 4.14 and 4.15 show the same receptive field, but we applied two different

convolution operations. Figure 4.14 uses a 3x3 kernel with a stride equal to one and generates a

3x3 feature map using 9 weights and 81 operations as explained in Section 3.1.1. On the other

hand, Figure 4.15 used a 2x2 kernel with a dilation rate equal to (2,2) and a stride equal to one,

using only four weights and 36 operations. Both configurations generate a feature map with a size

of 3x3 values.

It is important to mention that when using the hyperparameter dilation rate, it is necessary
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Figure 4.14. Convolutional operation with a stride = 1 and a dilated rate = (1,1).

Figure 4.15. Convolutional operation with a stride = 1 and a dilated rate = (2,2).

to use a stride value equals to one. This in order to avoid the loss of information since the pixels

that are omitted at the beginning with the extended kernel, are taken into account when the filter is

displaced by one pixel. So it does not matter that the kernel passes only once through a pixel, the
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capsules take care of giving significant importance to that piece of information. Therefore, some

advantages using the dilation rate hyperparameter are:

• Exists less overlapping among pixels compared with a normal convolutional layer [170].

• The receptive field of units in the network can grow exponentially with the number of

layers/parameters as compared to non-dilated convolutions [170].

• Makes the network training faster by performing fewer number of operations [170].

4.7.2 DRCapsNet Models on MNIST

Because one of the contributions of this thesis work is to see if the dilation rate hyperparameter

can be a factor that improves the accuracy of the computational model; we started replicating the

CapsNet baseline architecture in the MNIST dataset. For a better understanding, the number of

parameters associated with each layers in the CapsNet original model is described at the bottom of

the layers as shown in Figure 4.16.

Figure 4.16. CapsNet original model.

Then, it was decided to probe on the same MNIST dataset, two different models (DRCapsNet

V1 and V2) with different dilation rate values. For the first model (DRCapsNet V1) the smallest

value of DR was selected to observe how this hyperparameter affects the original architecture. So,

the DRCpasNet V1 uses a dilation rate of 2 which is implemented in the first ConvLayer as shown

in Figure 4.17(a). Also, the DRCapsNet V1 maintains the same filter size in the input images, but
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instead of using the stride hyperparameter, it uses a DR of (2,2), leading to a significant reduction

in the number of capsules and the total parameters in the network. This is because the DR filter

size behaves as an input filter of 19 × 19, reducing the size of the feature map to 12 × 12 values

in the ConvLayer, thus causing the capsule reduction as seen in Figure 4.17(a).

(a) DRCapsNet V1 model.

(b) DRCapsNet V2 model.

Figure 4.17. The DRCapsNet models used on the MNIST dataset. For a better understanding, the

number of parameters associated with each layers is shown at the bottom of the layers. The sum

of these parameters can be seen in Table 4.5.

For DRCapsNet V2, it was decided to follow the CNN architecture idea, where the number

of filters is increased in each layer while the feature size is reduced, as seen in Figure 3.1. To do

this, the filter size was reduced from 9 × 9 to 3 × 3 parameters. The 3 × 3 size was selected
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because by combining it with different DR values, the behavior of a larger filter can be achieved

with fewer parameters as explained in Section 4.7.1. Then, two different DR values were added to

simulate the passing of the network through different filter sizes, such as VGG or GoogLeNet. In

Figure 4.17(b), it can be seen that the first two layers at the ConvLayer stage reduce the size of the

feature maps in a small proportion, because these layers do not use the stride value instead it uses

a DR value of (1,1) and (2,2) respectively. However, the last layer uses a DR of (4,4) simulating a

9× 9 kernel, reducing the size of the feature map size to 14 × 14 and generating 288 capsules, as

shown in Table 4.5.

Table 4.5. Summary of models used in MNIST.

Network Filter size DR Stride Capsules Parameters Accuracy

CapsNet 9 x 9 no 2 1,152 8,215,568 98.53%

DRCapsNet V1 9 x 9 (2,2) no 128 6,904,848 99.22 %

DRCapsNet V2 3 x 3 (1,1),(2,2),(4,4) no 288 7,458,320 99.61%

Table 4.5 presents a summary of the different models describes above. The accuracy

achieved in each version is CapsNet = 98.53% , DRCapsNetV1 = 99.22 % and DRCapsV2 =

99.61%. So, DRCapsNet V2 presents the highest accuracy in the MNIST dataset. Therefore,

it can be seen that DRCapsNet V2 outperforms in accuracy the other CapsNet version on the

MNIST dataset. With these models we can observe how the dilation rate hyperparameter reduces

the capsule number and, therefore, the total parameters in a CapsNet architecture. It is important

to note that the size of the featured maps in the last layer at the ConvLayer stage determines the

number of capsules on the PrimaryCaps Layer as shown in Figure 4.17. Also, from Table 4.5 we

can realize that with a small number of capsules the network can achieve a better accuracy.

4.7.3 DRCapsNet Models in COVIDx V7A

In the previous section, it explained how the dilation rate reduces the capsule number and the total

parameters, while the accuracy is increased. So, it was decided to use DRCaspsNet V2 in the

COVIDx V7A dataset. Table 4.6 outlines the results of the implementation of DRCaspsNet V2 on

the COVIDx V7A dataset. The first row in Table 4.6 displays the results obtained on the MNIST
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dataset. The following rows reveals the large number of capsules and parameters generated by

the COVIDx V7A dataset. Because the COVIDx V7A dataset uses images with a depth of 3, the

number of capsules and parameters increases significantly in the reconstruction stage because it has

to construct the same input images with three channels. These increases in the number of capsules

and parameters, as shown in Table 4.6, which generates great computational complexity in the

dynamic routing by agreement algorithm. This results in computer memory saturation and makes

it impossible to complete training. In order to decrease the number of parameters, it was decided

to use a single depth for the input images, as seen in the third row of Table 4.6. Nevertheless, this

only decreased the number of parameters in the decoder, while the number of capsules stayed the

same, leading to the same memory error being thrown by the algorithm.

Table 4.6. DRCapsNet models results.

Version Dataset Input size Depth Capsules Decoder Parameters Accuracy

DRCaspsNet V2 MNIST 28 × 28 1 288 1 411 344 7 458 320 99.61%

DRCaspsNet V2 COVIDx V7A 256 × 256 3 438,048 202 073 600 375 963 520 -

DRCaspsNet V2 COVIDx V7A 256 × 256 1 438,048 67 724 800 241 613 568 -

CapsNet V1 COVIDx V7A 256 × 256 3 512 25 390 400 28 612 288 80 %

To achieve the objective of improving the DRCaps model it is necessary to reduce the number

of capsules and parameters in order to train the model successfully. After an analysis of the number

of parameters used per layer (see Figure 4.17(b)), it was noted that the two sections that handle the

greatest number of parameters are the ConvLayer and the Reconstruction. To reduce the number

of parameters in the ConvLayer it was decided to remove the DR hyperparameter for the moment,

because if only this hyperparameter is used, then the size of the feature map is reduced very little

as can be seen in Figure 4.17(b) where the size of the feature maps only changes from 28 to 26 and

from 26 to 22. On the other hand, if only the stride hyperparameter is used, the size of the feature

maps is reduced from 22 to 14. For these reasons it was decided to only use convolutional layers

with stride equal to two. Also, the number of feature maps generated in each layer maintains the

CNNs structure of going from small to large values, and as the objective is to reduce the number of

parameters we only use 2 sizes: 64 and 128 as shown in Figure 4.18. Regarding the Reconstruction

stage, to reduce the number of parameters it was decided to change the size of the Fully Connected
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layers of the original architecture to 3 layers of size 64, 128 and 128 respectively. Significantly

reducing the number of parameters as seen in Table 4.6.

The new CapsNet model (called CapsNet V1) has four convolutional layers with a stride

equal to 2 in each layer. Figure 4.18 shows in detail the changes made to the new architecture and

how it was adapted to the COVIDx V7A dataset. For example, Figure 4.18 has the input images

with a depth of 3, and the ClassCap Layer has 3 rows instead of the 10 classes used by the MNIST

dataset. The first results of this architecture show an accuracy of 80%.

Figure 4.18. CapsNet V1 model.

So, in order to improve the accuracy it was decided to change only one hyperparameter at a

time in the CapsNet V1 model to appreciate the cause of the change. It is important to highlight

that there are no formula or equation that guarantees a successfully trained network while there

are a lot of hyperparameters (model and training) which can change the model behavior, as shown

Figure 4.12.

Before proposing different architectures to improve the performance of the CaspNet V1

computational model. Two experiments were done with two training hyperparameters: the

reconstruction loss and the λ value as shown Figure 4.11. So, the first training hyperparameter
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we decide to probe is the reconstruction loss at the Reconstruction Stage. It was decided to try

three different reconstruction loss functions: mse (default), categorical cross-entropy (cc), and

mean absolute error (mae) (see Section 4.3). As can be seen in Table 4.7, the reconstruction loss

function that offers the best accuracy result is mae. So, hereafter the reconstruction loss used for

the next experiments is the mae loss function.

Table 4.7. Different reconstruction loss in the CapsNet V1 model.

cc mse mae

capsules 512 512 512

training accuracy 1 1 1

validation accuracy 0.7949 0.7832 0.7733

testing accuracy 0.7875 0.80 0.825

Despite the small improvement in accuracy, Table 4.7 shows that the model overfits because

the training accuracy reaches 1 while testing and validation are lower. For these reasons, it was

decided to change the training hyperparameter λ which works as a regularizator in order to avoid

overfitting. The original CapsNet paper uses MNIST images with a resolution of 28 × 28, so they

multiplied this resolution by 0.0005 and obtained a value of λ equal to 0.392. This value was used

in the first experiments, but the COVIDx V7A used images with a higher resolution. Therefore,

it was performed the same operation and obtained a value of λ equal to 32.768. This change

increases the model accuracy and it reduces the overfitting in the network as shown Table 4.8.

Table 4.8. Different configuration of the CapsNets V1 model.

CapsNet V1 CapsNet V1

weights 28,612,288 28,612,288

depth 3 3

λ 0.392 32.768

training acc 1 0.991

validation acc 0.7733 0.8025

testing acc 0.825 0.85
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Next, it was decided to change the depth of the input image to 1 to reduce the number of

parameters and try to improve accuracy. This modification correspond to the CapsNet V2 as shown

in Table 4.9. It can be seen that the number of parameters decreases to 11, 702, 848 whereas the

model with a depth equal to three the parameters are 28,612,288. In addition, Table 4.9 shows how

the value of λ increases the accuracy of the model regardless of the depth of the input images. In

addition, the value of λ only affects the accuracy of the model and no other hyperparameter such

as the number of capsules or parameters.

Table 4.9. Accuracy (acc) results at different hyperparameters configurations.

Network Depth DR Stride Capsules λ parameters acc

CapsNet V1 3 no 2 512 0.392 28,612,288 80.0

CapsNet V1 3 no 2 512 32.768 28,612,288 85.0

CapsNet V2 1 no 2 512 0.392 11,702,848 78.0

CapsNet V2 1 no 2 512 32.768 11,702,848 86.2

Now, we have a computational model with a sufficient number of parameters to be able to be

trained with the COVIDx V7A dataset, it was decided to probe different model configurations in

the ConvLayer Stage using CapsNet V1 as a backbone and start including the DR hyperparameter.

Table 4.10 explains how each DRCapsNet models are formed. For the design of the models it is

necessary to point out that if we use the DR value equal to (8,8), (4,4) and (2,2), these will behave

like a filter of size 17 × 17, 9 × 9 and 5 × 5 respectively if we use a kernel size of 3 × 3.

The DRCaps V3 model reintroduces the DR hyperparameter with a value of (8,8) in the first

convolutional layer. The idea in this experiment is to go through the input image (256 × 256)

with a large filter (17 × 17) with as few parameters as possible. In addition, it was decided to use

the max-pooling hyperparameter to test if it is really a necessary factor to reduce the size of the

featured maps and increase the accuracy of the model. This model uses 11, 616, 832 parameters,

in turn generates 288 capsules and obtains an accuracy of 81.22 % as shown in the third column of

Table 4.10.
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Table 4.10. Different architectures proposed for CapsNetV5. The parameter order indicates the

number of filters, kernel size, stride and the dilation rate.

CapsNet V2 DRCapsNet V3 DRCapsNet V4 DRCapsNet V5 DRCapsNet V6 DRCapsNet V7

conv1 64,3,2,(1,1) 64,3,1,(8,8) 64,3,1,(4,4) 16,3,1,(4,4) 128,3,1,(8,8) 128,3,1,(8,8)

conv2 128,3,2,(1,1) 128,3,1,(4,4) 64,3,2,(1,1) 16,3,2,(1,1) 128,3,1,(4,4) 64,3,2,(1,1)

maxpool yes

conv3 128,3,2,(1,1) 128,3,1,(2,2) 128,3,1,(4,4) 32,3,1,(4,4) 64,3,1,(2,2) 128,3,1,(4,4)

maxpool yes

conv4 128,3,2,(1,1) 128,3,2,(1,1) 128,3,2,(1,1) 32,3,2,(1,1) 64,3,2,(1,1) 64,3,2,(1,1)

maxpool yes

conv5 256,3,1,(4,4) 64,3,1,(4,4) 64,3,2,(1,1) 64,3,1,(2,2)

conv6 256,3,2,(1,1) 64,3,2,(1,1) 64,3,2,(1,1) 64,3,2,(1,1)

conv7 256,3,2,(1,1) 128,3,2,(1,1) 64,3,2,(1,1) 64,3,2,(1,1)

weights 11,702,848 11,616,832 15,574,272 11,331,376 11,371,712 10,192,128

capsules 512 288 128 128 3200 128

accuracy 86.25 81.22 82.14 82.58 77.00 88.00

DRCapsNet models V4 and V5 generate 128 capsules and obtain an accuracy almost similar

to 82%. These models use the DR hyperparameter value equal to 4 in the first convolutional layer

(conv1), to simulate a kernel of size 9 × 9 used in the original CapsNets architecture. The next

layer of the models (conv 2) uses a stride equal to 2 and a DR equal to (1,1) to only reduce the size

of the featured maps. This process is repeated two more times, and at the end another layer with a

stride equal to 2 is added to reduce the size of the last featured maps and consequently the number

of generated capsules. The only difference between the V4 and V5 models is the number of filters

generated in each convolutional layer. The idea was to observe whether the model maintained its

good performance with a smaller number of filters in each convolutional layer.

The principal idea in the DRCapsNet V6 model is that at first only the dilated layer is used

and then the conv layers are used with a stride value equal to 2. Because, at first, the model

only uses dilated layers, the featured size is reduced in a small proportion, which generates a

large number of capsules (3200). One thing that caught our attention was that as we increased

the number of capsules, the training time per period increased, while the accuracy decreased. For

example, this model generates 3200 capsules and used a training time of 2 and a half minutes
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per epoch, achieving an accuracy of 77%, while other configuration with only 288 capsules

(DRCapsNet V3) achieved an accuracy of 81% as shown in Table 4.10.

Finally, the DRCapsNet v7 model shows the best accuracy and handles less weight than the

other models. This model uses a combination of one dilated layer followed by a conv layer three

times. Each time, the DR value decreases as the feature map size. In the end, another convolutional

layer is added to reduce the number of capsules. To keep the model as simple as possible, only two

filter sizes were used: 64 and 128. This model generates only 128 capsules and handles 10,192,128

parameters, achieving an accuracy of 88%, as shown in Table 4.10. Therefore, DRCapsNet V7A

was selected as the final DRCapsNet model.

Finally, it was decided to conduct four more experiments with the λ hyperparameter in the

new DRCapsNet model to improve network accuracy; Table 4.11 shows the results. The first ex-

periment kept the parameters mentioned later. In the second experiment, we used λ = 40. In the

third experiment (V3), we increase λ = 80, and the last experiment uses λ = 0.328. As shown

in Table 4.11, the second experiment is the configuration that offers the best result. Therefore, we

can observe that there is a relation between the input image size and the λ value.

Table 4.11. Accuracy (acc) results at different λ hyperparameter values.

Version Depth DR Stride Capsules λ parameters Acc.

DRCapsNet 1 (8,8), (4,4), (2,2) 1,2 128 32.768 10,192,128 88.0

DRCapsNet 1 (8,8), (4,4), (2,2) 1,2 128 40 10,192,128 90.0

DRCapsNet 1 (8,8), (4,4), (2,2) 1,2 128 80 10,192,128 85.0

DRCapsNet 1 (8,8), (4,4), (2,2) 1,2 128 0.392 10,192,128 10.0

4.7.4 DRCaps Final Model

The DRCaps model is the main contribution of this thesis. Our model, unlike the original CapsNet

model, increases the number of layers in ConvLayer to improve the extraction of features from the
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input images. It also removes the max-poolig hyperparameter, instead of using dilated layers that

reduce the number of parameters in the model. It also uses the stride hyperparameter to reduce the

size of the feature maps and consequently the number of capsules of the original architecture. The

number of classes in the ClassCaps layer is also modified to only 3 due to the selected COVIDx

V7A data set. Finally, it reduces the size of the layers in the Reconstruction Stage to reduce the

number of parameters when reconstructing the input image. The final architecture is shown in

Figure 4.19. Note that the DRCaps model is sectioned into three stages, described below.

• Convolutional Stage: Aims to extract basic features from complex images using the

dilation rate hyperparameter. The DR along with the stride allows the omission of a max-

pooling operation and improves the spatial relationship problem.

• Capsule Stage: The Capsule Stage includes the Primary Caps and Class Caps because they

are the only two layers that handle capsules. Primary Caps produces combinations based on

the basic features detected by the Convolutional stage. The ClassCaps layer is the highest-

level capsule layer that contains all the instantiation parameters. At this stage, the routing by

agreement algorithm is implemented.

• Reconstruction Stage: Decodes the 16-dimensional vector from ClassCap into an image.

It recreates the output image without the loss of pixels. They force capsules to learn the

features that are useful for reconstructing the image. Additionally, this stage works as a

regularization parameter in training. In the end, the model combines the ClassCaps output

and the Reconstruction Stage for the optimization weights.
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Convolutional Stage

The Convolutional Stage (CS) converts the intensity of the pixels into activity detectors of local

features and uses them as input for the next stage. CS is made up of seven convolutional layers,

as shown in Figure 4.20. Layers conv1, conv3, and conv5 use the dilation rate hyperparameter. In

the DRCaps model, the conv1 layer applies 128 filters to an input image of 256×256 pixels, using

kernels of 3 × 3 with stride equal to 1 and with a dilation rate equal to 8, 8. This configuration

generates an output size of 240 × 240 values. As the original goal was to reduce the size of the

feature maps, the next convolutional layer (conv2) uses a bigger stride value and only 64 filters.

This reduces the size of the feature maps to 119× 119 values. So, the next layers change between

a convolutional layer with stride equal to 2, and a dilation rate value to reduce the feature maps

size and the number of parameters. Finally, the last layer in the CS has 64 filters with a size of

12 × 12. Additionally, all convolutional layers use the ReLU activation function [69]. Table 4.12

summarizes the selection of hyperparameters on each convolutional layer.

Figure 4.20. Convolutional Stage on the DRCaps model.

Capsule Stage

The Capsule Stage (CaS) consists of two layers: PrimaryCaps Layer and ClassCaps Layer.

The PrimaryCaps layer is the lowest level of multidimensional entities from an inverse graph
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Table 4.12. Hyperparameter selection on each convolutional layers at the CS.

Layer filters kernel value stride DR output value parameters

conv1 128 3× 3 1 (8,8) 240 × 240 1,280

conv2 64 3× 3 2 (1,1) 119 × 119 73,792

conv3 128 3× 3 1 (4,4) 111 × 111 73,856

conv4 64 3× 3 2 (1,1) 55 × 55 73,792

conv5 64 3× 3 1 (2,2) 51 × 51 36,928

conv6 64 3× 3 2 (1,1) 25 × 25 36,928

conv7 64 3× 3 2 (1,1) 12 × 12 36,928

perspective. This corresponds to a reverse rendering process. Given the 64 filters with the featured

map size of 12 × 12 of the last convolutional layer, a kernel size of 9 × 9 with a depth of 64

parameters and a stride equal to 2 is applied to the layer, producing 32 PrimaryCaps layers each of

size 2 × 2 × 8, where each PrimaryCap layer has 4 capsules of eight dimensions (8D), as shown

in Figure 4.21. These operations generate 128 capsules. As explained in Section 4, a capsule is a

group of neurons that code the probabilities of feature detection in an output vector. This output

vector has two components: magnitude and orientation. The magnitude represents the probability

that the entity exists, while the orientation represents the instantiating parameters such as pose

(position, size, orientation), deformation, and texture, among others.

Figure 4.21. The Capsule Stage in the DRCaps model.

Once the capsules are computed, the network decides which information will be passed on to
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the next layer. The capsule predictions are made by multiplying each capsule by a weight matrix

Wij for each class we are trying to predict (the COVIDx V7A dataset has three classes). Each

weight is actually a matrix with a size of 8 × 16, so each prediction is a matrix multiplication

between the capsule vector and this weight matrix, as can be seen in Figure 4.3. Therefore, we will

end up with 384 predictions and each prediction is a 16-degree vector. It is important to note that

the 16 dimension is an arbitrary choice, just as 8 is the size of the capsules.

The ClassCaps layer follows the PrimaryCaps layer. The process of changing 384 predictions

into three vectors of 16 elements each is performed using the affine transformation matrix (Wij)

and the dynamic routing by agreement algorithm explained in Section 4.2. This step is the most

important in the architecture because it is the way of how the information is passed to the other

layer instead of using max pooling. Furthermore, the ClassCap layer produces two outputs, as

shown in Figure 4.19. The first output consists of three vectors produced by the ClassCap layer,

where each vector corresponds to each class in the network. Then, this output uses the norm L2

to calculate the length of each vector. Finally, the vector values are the confidence to detect the

associated class, i.e., the prediction. The second output is the reconstruction stage, which we will

explain in the next section.

Reconstruction Stage

Finally, the Reconstruction Stage (RS) uses the output of the ClassCap Layer as input to recreate

the original input image shown in Figure 4.22. Then the model minimizes the distance (loss)

between the reconstructed and original images. Note that, while a traditional CNN cares only

about whether the model predicts the correct classification, CapsNets use the reconstruction stage

as a regularization method to improve the results with the reconstruction loss. In our architecture,

this stage is formed by three fully connected layers of 64, 128, and 128, as shown in Figure 4.22.

It is also important to note that, in the reconstruction stage, specifically, the decoder is part of the

network that could generate more parameters due to their fully connected layers. In the DRCaps

model, this stage generates 8,482,112 parameters.
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Figure 4.22. Decoder structure of the DRCaps model.

4.8 Chapter Summary

The DRCaps model is based on two architectures: CNNs and CapsNets. This chapter explains in

detail the CapsNets architecture and mentions the main CapsNets advantages such as the method

of routing information in which the information that is most closely related to the next layer is

passed on. This new architecture is highlights in identifying overlapping digits in the MNIST

dataset; also offers robustness against adversarial attacks and has the capability that these networks

can be trained with less data than CNN-based architectures. However, despite the advantages

they offer and the way they work, these networks use a large number of parameters that make

the networks impossible to train with complex or large images. This chapter describes how the

DRCaps computational model is formed based on the combination of CNNs and CapsNets. The

chapter describes the operation of the dilation rate hyperparameter, which is key to the network’s

ability to handle complex images. Then it describes how this hyperparameter was applied in the

original CapNets architecture. Finally, this section describes in detail the DRCaps model.
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Chapter 5
Experiments and Results

This chapter begins by introducing the tools used to implement the computational model and to

manage the COVIDx V7A dataset, as well as the hardware used for the experiments. Subsequently,

the results of the experiments conducted on the DRCaps model are presented. The chapter then

discusses the results of the reconstruction stage in the COVIDx V7A dataset before concluding

with a discussion of the findings.

5.1 Computational Model Implementation

To create a computational model based on CapsNets that can manage complex images, it is

essential to program the original architecture. To do this, the software to be used to program the

model must be determined. This step is necessary because, since CapsNets is a new architecture,

there are no libraries or high-level Application Programming Interfaces (API) available, such as

those for CNN models like AlexNet or VGG.
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5.1.1 Machine Learning Software

As the field of machine learning grows, many companies began to create their own libraries

to train their models, as illustrated in Figure 5.1. Examples of these libraries include

Google’s TensorFlow1, Theano from the Montreal Institute for Learning Algorithms (MILA), and

Facebook’s PyTorch2, among others. These libraries are tedious, slow, and inefficient [4].

Figure 5.1. Keras backends.

TensorFlow, a library created by Google and released to the public in 2015, is one of the

most popular libraries for network training. It is based on Python and is designed to run on CPUs,

GPUs, and Tensor Processing Units (TPUs). Additionally, programs written in TensorFlow can

be exported to other runtimes, such as C++, JavaScript, or for applications running on mobile

devices. However, TensorFlow is complex to program. Then Keras 3 arrives in 2017. Keras is

a Python high-level API created by Francois Chollet [4]. Keras stands out for prioritizing the

developer experience, which means that it is an API for humans, not machines. Because Keras

has a large and diverse user base, it does not force the user to follow a unique way of building and

training models. Rather, it enables a wide range of different workflows corresponding to different

user profiles.

To work with Keras, it is necessary to select a backend. In simpler terms, a backend is like

a database, and Keras is the language that can access that database. Generally, each technology

company has its own backend. Therefore, Keras was designed to work with different backends,

1https://www.tensorflow.org/
2https://pytorch.org/
3https://keras.io/
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as shown in Figure 5.1. At the beginning, Theano was the official backend for Keras until version

1.1.0. After that, TensorFlow (TF) became the default backend, but both frameworks had to be

installed separately, as their versions were constantly changing. In 2019, the latest version of Keras

(2.3.0) was released, which supports multiple backends. All subsequent versions work only with

TF. At the same time, TF changed to its 2.0 version, which designated Keras as its official high-

level API. This caused several changes, such as: the two versions being installed together, some

functions being absorbed by other functions or marked as deprecated, and the libraries needing to

be called differently. It is important to be aware of these updates as it is necessary to know which

versions of Keras or TensorFlow the programs were created for in order to simulate them or make

the necessary updates in the programs so that they run in the desired version.

Because the Keras API is built on top of TensorFlow, any type of Deep Learning model

can be defined and trained. For example, the DRCapsNet model is formed in different stages.

Each stage must be programmed differently depending on the needs of the architecture. The

reconstruction stage is the easiest part of the model to program because it uses already defined

layers, such as Fully Connected ones. On the other hand, the Capsule Stage requires one to

create new libraries to implement the PrimaryCaps layers and the new loss function (margin loss),

because there are not exist in the actual Keras and TensorFlow libraries.

Therefore, to build the DRCapsNet model, it was necessary to analyze the three options

offered by Keras to build a model: Sequencial Model, Functional API, and Model Subclassing.

The three options are explained next.

• Sequencial Model: This option is appropriate for a plain stack of layers where each layer

has exactly one input and one output. But a sequential model is not suitable when: the model

has multiple inputs or multiple outputs, or any of the layers has multiple inputs or multiple

outputs, or it is necessary to do layer sharing. This option was used in the decoder stage to

reconstruct the predicted image.

• Functional API: This option is a way to create models that are more flexible than the

Sequential Model, this API can handle models with shares layers or multiple inputs or

outputs. This means that you can create a model by specifying its inputs and outputs in the
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layer graph. Also, with the Functional API when the model has two outputs, it is possible

to assign different losses to each output, and it is possible to assign different weights to

each loss to modulate their contribution to the total training loss. This is the configuration

used to build the CapsNet model because we have two output models: a training model and

an evaluation model, as shown in Figure 4.11. In our model, we use the margin loss and

the mae loss (see Equation 4.4). Also, something useful in this configuration is that as the

outputs have different names, it is possible to specify the losses and loss weights with the

corresponding layer names. In addition, this configuration was used because it includes a

wide range of built-in layers, for example, convolutional layers, pooling layers, and useful

tools such as batch normalization, dropout, etc.

• Model subclassing: This option helps to build new layers, where it was necessary to

implement two methods: i) the call method that specifies the computation done by the layer

and ii) the build method, which created the weights of the layer; also it is possible to create

the weights in the initial method as well. In our model, it was necessary to create our own

three layers: i) the capsule layer is similar to the dense layer, but in this layer the dynamic

routing was performed by agreement procedure. ii) the length layer; here it computes the

length of the output vectors to compare the predicted output with ytrue for the margin loss.

iii) also the mask layer was created; here the layer masks a tensor either by the capsule

with maximum length or by an additional input mask in the case of training. Except for the

max-length capsule, all vectors are masked to zeros. Then flatten the masked tensor for the

decoder model.

Keras does not limit users to one type of model; instead the functional API, the Model

subclassing, and the Sequential models can all be used together. This thesis will use all three of

these options to create the DRCaps computational model. The programming codes used in this

work are presented in Appendix A.
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5.1.2 Computational Model Flow Chart

The flow chart in Figure 5.2 illustrates the process of the experiments carried out in each version

of the computational model. It begins by loading the input arguments and the training dataset

into memory according to the batch size specified in the input arguments. Then, the model is

constructed, specifying the number of layers and the hyperparameters associated with it. After

that, the compilation parameters are set. Once the model is configured, training can begin. After

the training is complete, the model shows the training loss graphics and the weights are saved.

Subsequently, the testing dataset is loaded and the model is tested to obtain the final accuracy and

the reconstruction graphics. The code for this process is provided in Appendix A.

5.2 Experimental Platform

5.2.1 Hardware

Most of the experiments were carried out on a server at Centro de Investigacion en Matematicas 4

(CIMAT), called Tinieblas. The connection was made through public JupyterHub, where we

signed in, and then we worked in a Jupyter Lab session. The Tinieblas server has three GPU cards:

two GeForce RTX 2080 Ti with 11 GB VRAM and a GeForce RTX 2080 with 8 GB VRAM,

which has a Compute capability (CC) equal to 7.5. The CC identifies the features supported by the

GPU hardware and is used to determine which hardware features and/or instructions are available

on the present GPU 5. The Deep Learning framework used was Keras 2.5.0 with TensorFlow 2.5.0

as a backend, as shown in Table 5.1.

Table 5.1. Experimental platform.

Server OS TensorFlow Keras GPU CC

Tinieblas Linux 2.5.0 2.5.0 RTX 2080 Ti 7.5

4https://www.cimat.mx/
5https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities



5. Experiments and Results 100

Figure 5.2. CapsNet Model flow chart.

5.2.2 Dataset Adjustments

The COVIDx V7A dataset, which contains real images with high resolution, poses a challenge for a

CapsNet model during the training stage due to its high memory requirements. In comparison, the

MNIST dataset [38] requires minimal memory usage, since it consists of 60,000 training images,

each with a dimension of 28 × 28 pixels, which is a total of 47 MB (Megabytes). However,

the COVIDx V7A dataset, despite having only 15,000 training images, has a resolution of 1024

× 1024 pixels, which requires a space of a little more than 1 MB per image, making it very

difficult to load the entire dataset into memory. Therefore, we decided to use an image size of
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256 × 256 using the bilinear method for the input images. Additionally, to address this issue, we

initially attempted to divide the training process into smaller blocks. To do this, we used the Keras

ImageDataGenerator class, which allows us to create these small blocks and, at the same time,

perform data augmentation in real-time. However, as Keras is on top of Tensorflow, programs with

the Keras API are more straightforward than other APIs but, at the same time, are more limited

when customizing an algorithm and can be slower. For these reasons, TensorFlow 2.0 offers an API

that can help with this task, the tf.data API [171]. This API allows us to handle large amounts of

data, read from different data formats, and perform complex transformations in a fast and scalable

way. The main component that it uses is tf.data.Dataset which can be used for the following tasks:

i) Creating a dataset object from input data, ii) Applying dataset transformations for preprocessing,

iii) Iterating the dataset in a streaming fashion and processing the elements. Thus, the reason for

choosing tf.data over ImageDataGenerator is that generating training and validation batches with

tf.data is much faster than ImageDataGenerator. Several experiments report that tf.data is about 34

times faster than ImageDataGenerator [171].

To use the tf.data API in our model, the COVIDx V7A dataset must be restructured to

have three subfolders, each with the name of a class and the corresponding images, as shown

in Figure 5.3. The original COVIDx V7A dataset had only two image folders, labeled ’train’ and

’test’, where all the images were without being separated by their class. Furthermore, the dataset

contained two text files, where each line provided the following information per image: patient ID,

filename, class, and data source for each image.

Figure 5.3. COVIDx V7A dataset organization for tf.data API.
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5.3 Results of the DRCapsNet Model Versions in MNIST

Dataset

Table 5.2 lists the hyperparameters used in the experiments to train the DRCaps models with the

MNIST dataset. It should be noted that a hyperparameter is a parameter of the training algorithm

(not of the network), meaning that its value is not altered by the training. It must be established

prior to training and kept constant during the training process.

Table 5.2. Hyperparameters used for the MNIST dataset .

Arguments Compilation Training

epochs = 50 optimizer = Adam train images = 60,000

learning rate=0.001 learning rate= 0.001 validation images= 10,000

img width=28 prediction loss= margin loss batch size=100

img height=28 reconstruction loss= mse test images= 10,000

lr decay=0.9 metrics= accuracy

routings=3

λ recon= 0.392

Table 5.3 presents a summary of the experimental results of the different DRCapsNet mod-

els depicted in Figure 4.17. It can be seen that DRCapsNet V2 overcomes in accuracy the other

models on the MNIST dataset. Despite the fact that the accuracy seems to be almost the same in

all three versions. This soft variation has an important impact on the reconstruction stage, as can

be seen in Figure 5.4.

The first column of Figure 5.4 shows the original CapsNet model which was obtained in the

first training of the model, which yielded an accuracy of 89% due to the random initial parameters.

When the same version was retrained, it gave an accuracy of 98%, which is reported in Table

4.11. We include this version because it is very interesting to see how the network struggles to

reconstruct the original input even when the accuracy is not a bad result. Also, it can be seen that,
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Table 5.3. Accuracy (acc) results at different dilation rate values.

Network DR acc (%)

CapsNet no 98.5

DRCapsNet V1 (2,2) 99.2

DRCapsNet V2 (1,1),(2,2),(4,4) 99.6

as the accuracy improves, the reconstructed digits do the same. This can be seen in the digits in

orientation or sharpness. Finally, Figure 5.5 shows the training results for each version. We trained

up to 50 epochs because those were the epochs used reported in other articles [89, 172]. However,

it is observed that only 20 or 15 epochs are enough to obtain a final result. This was taken into

consideration for the following experiments.

Figure 5.4. The first five lines of each figures are the input images to the architecture, and the last

five lines show how the network reconstructed them.

Now, Figure 5.6 shows the confusion matrix of the DRCapsNet V2 model. Like MNIST is a

benchmark dataset, all its classes are balanced. It can be observed in the matrix that the digit that

has more missclassifieds is number 9, and the easiest to classify is number 0. Perhaps to improve

missclassification, a solution could be to create more number 3 digits, but instead of using data, the

instantiation parameters learned by the network could be increased, as shown in Figure 4.8. The

results of these experiments suggest that the dilation rate hyperparameter can be used in capsule

networks in ConvLayer to reduce the number of parameters and capsules, potentially leading to an

improvement in the accuracy of the network.
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Figure 5.5. MNIST training results.

Figure 5.6. MNIST dataset confusion matrix.
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Table 5.4 shows the metrics calculated for each class of the MNIST dataset. As you can see,

the metrics are almost ideal because this dataset is balanced and the input images are very easy to

classify.

Table 5.4. DRCapsNet V2 metrics results on MNIST dataset.

precision recall F1-score images

0 1.00 1.00 1.00 980

1 1.00 1.00 1.00 1135

2 1.00 1.00 1.00 1032

3 0.99 1.00 0.99 1010

4 0.99 1.00 1.00 982

5 1.00 0.99 0.99 892

6 1.00 0.99 0.99 958

7 0.99 1.00 0.99 1028

8 1.00 1.00 1.00 974

9 1.00 0.99 0.99 1009

accuracy 99.60 %

5.4 Results of the DRCapsNet Model Versions in COVIDx V7A

Dataset

Table 5.5 lists the hyperparameters used in the experiments to train the DRCapsNet models with

the COVIDx V7A dataset. Next, Figure 5.7 shows the training loss functions of the DRCaps model

up to 50 epochs. However, we can observe that only 20 are enough to obtain a good performance.

The red line is the reconstruction loss (mae), the green line allows the loss of CapsNet (margin

loss), and the blue line shows the total loss function, which is formed by adding the loss of CapsNet

and the loss of the decoder increased by the reconstruction value of λ.

Figure 5.9 shows some examples of the output of the reconstruction stage in DRCapsNet.
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Table 5.5. Hyperparameters used for the COVIDx V7A dataset.

Arguments Compilation Training

epochs = 50 optimizer = Adam train images = 12,089

learning rate=0.001 learning rate= 0.001 validation images= 3022

img width=256 prediction loss= margin loss batch size=32

img height=256 reconstruction loss= mae steps per epoch= 378

lr decay=0.9 metrics= accuracy test images= 1,579

routings=3

λ recon= 40

Figure 5.7. Reconstruction loss of the DRCapsModel.

These results correspond to λ = 40, which produced an accuracy of 90%. The first four rows of

Figure 5.9 are random examples of the images entered into the model, and the last four rows show

how the network attempts to reconstruct them. As can be seen, the network focuses on the chest

section and attempts to recover the size, position, and shape of the lungs. On the other hand, Figure

5.8 shows the output of DRCapsNet model. These results correspond to λ = 0.392, which produced
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an accuracy of 10%. In this case, the regularization parameter λ is small and does not enforce a

correct reconstruction of the input images.

Figure 5.8. Reconstructed COVIDx V7A images from RS in the DRCaps model with λ = 0.392.

Figure 5.10 shows the confusion matrix of the DRCapsNet model in the COVIDx V7A

dataset. The DRCapsNet model achieves an accuracy of 90%. The confusion matrix shows us that

the class that the model classifies most accurately is healthy and the class that classifies worst is

covid. This makes sense because in both the training and test data, the healthy class has a greater

number of images, and the covid class has the smallest number. Unlike the MNIST dataset the

COVIDx V7A have unbalanced classes in their training and testing data, as shown in Table 2.2.

For this reason, it is necessary to consider another metric in addition to accuracy.

Table 5.6 shows the metrics results for each class from the confusion matrix shown in Figure

5.10. As can be seen in Table 5.6, the covid class is the one that offers the worst results. The

precision metric tells us of all diseases classified as covid, which truly belonged to this class. On

the other hand, the recall metric tells us of all the images that really belong to the covid class, which

ones were correctly classified. Finally, the F1 score metric combines the values of the two previous

metrics, giving them the same importance, and is widely used when we have an unbalanced dataset
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Figure 5.9. Reconstructed COVIDx V7A images from RS in the DRCaps model with λ = 40.

as is our case. Here, it is observed that the healthy and pneumonia classes have good performance

while the covid class does not, despite obtaining good accuracy in the model. One of the reasons

for this imbalance of results is due to the small number of images available from the covid class

both for training and testing the model. For this reason, it was decided to conduct an experiment

with a balanced dataset to see the behavior of the model. The balanced dataset used is a reduction

of the COVIDx V7A dataset. What was done was to leave the same number of training and test

images for each class. As mentioned previously, the covid class is the one with the fewest images,

so the number of images per class of the new dataset was adjusted to the same as shown in Table

5.7.

Table 5.7. COVIDx V7A balanced dataset classes.

Data Pneumonia Healthy COVID Total

train balanced 1670 1670 1670 5,010

test balanced 100 100 100 300
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Figure 5.10. DRCapsNet model confusion matrix in the COVIDx V7A dataset.

Table 5.6. DRCapsNet V metrics results.

precision recall F1-score images

covid 0.73 0.55 0.62 99

healthy 0.91 0.95 0.93 879

pneumonia 0.89 0.87 0.88 590

accuracy 90.05 %

The results of this experiment are shown in Figure 5.11 and Table 5.8. The accuracy of

the model is 72. 56 %. It can be seen from the confusion matrix (Figure 5.11) that the model

continues to struggle to correctly classify the covid class with the pneumonia class. However, if

you look at the results of the F1 score metric, you can see that the difference in the results by class

is no longer as significant as in Table 5.6. It should be noted that the DRCapsNet model in the

COVIDx V7A dataset, the F1 score value of 0.93 for the healthy class and 0.88 for the pneumonia

class, was achieved with 7,966 and 5,474 training images, respectively. However, a value of 0.62
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was obtained with 1,670 training images. Now if we compare the results of the model F1 score

metric in the COVIDx balanced dataset, the values of the healthy and penumonia classes decrease

considerably while the value of the covid class almost remains the same. This shows us that

the number of 1,670 images per class for training the model is not enough to achieve acceptable

performance for the DRCapsNet model. However, if we increased the number of images of the

covid class to the number of images of the pneumonia or healthy class of the COVIDx dataset

unbalanced, the model would considerably increase the value of the F1-score of the covid class

and, therefore, the accuracy of the model. Unfortunately, new data are not always available to add

to the dataset, especially in recently created datasets such as our case.

Table 5.8. DRCapsNet V metrics results in the COVIDx V7A balanced dataset.

precision recall F1-score images

covid 0.82 0.55 0.66 98

healthy 0.75 0.82 0.78 93

pneumonia 0.66 0.81 0.73 97

accuracy 72.56 %

DRCaps Discussion

One of the main problems with CapsNets is that they struggle when handling complex images

because the network wants to understand everything about the input image. Thus, the region of

interest is a small fraction of the input image in order to produce a correct classification. This

results in very time-consuming training and a decrease in accuracy.

For these reasons, CNNs continue to be used as the first stage of the model for feature

extraction, as they have demonstrated their efficient performance in image classification. The

selection of parameters in each convolutional layer is essential because the information obtained

is the one that will form the capsules in the next stage. For example, if we do not reduce the size

of the feature maps resulting from the CS, when entering the CaS, the number of capsules will be

very large. Some articles that work with large images use the max-pooling operation to do this



111 5. Experiments and Results

Figure 5.11. DRCapsNet model confusion matrix in the COVIDx V7A balanced dataset.

size reduction, even though it causes a loss of information. In our model, instead of using this

operation, we decided to use dilation convolution (controlled by the dilation rate hyperparameter)

to cover a broad field of the image at a lower computational cost, in addition to using the stride

parameter to reduce the size of the feature maps.

At the beginning of our experiments, we only used the dilation rate parameter, which

generated large feature maps in the last convolutional layer; this caused the network to have many

capsules, which caused slow training and low accuracy. The reason may be that the capsules tried

to codify and reconstruct all the details of the image, but much of that information is irrelevant

to our task. According to the experiments, there is a relationship between the number of capsules

and the complexity of the images to analyze. For example, for the original CapsNet architecture,

which uses an image size of 28×28, its model can handle 1,152 capsules with reasonable accuracy.

However, when we tried to use an excessive number of capsules, such as 2,000 capsules, 18,432

capsules, and 67,712 capsules, the accuracy decreased to 60%, 71%, and 10%, respectively. For

these reasons, we reduced the number of capsules by manipulating the convolutional kernel stride
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to improve accuracy. Figure 4.20 and Table 4.12 show how the dilation rate and stride reduce the

size of the filters in the CS. This results in creating a smaller number of capsules and a smaller

number of total parameters in the network.

In CaS, we maintain the same arbitrary parameters as in the original paper, such as the

dimension of the capsules equal to eight, the size of the ClassCap layer as a 16 D capsule per

class, and three dynamic routing iterations. We tried to adjust this parameter manually, but had no

significant results.

Finally, we observed that RS requires a larger number of parameters (weights) in the network,

and some implementations (reported works) prefer to omit this stage. However, this stage is

essential to train the network because it enforced the model to improve their feature extractor

to codify all the information in the original image.

Our observation is consistent with reported works that modified RS to improve accuracy [89,

86, 7, 87, 102]. We note that the weight λ of the reconstruction loss significantly affects the result

of our model and prevents overfitting. Furthermore, the experiments show a correlation between

the input image size and the value λ: we set it equal to the proposed value of 0.0005 (original

paper) multiplied by the size of the images used. Once you have this reference value, you can play

with the values up or down, observing the behavior of the network. From Table 4.11, we can see

that in our case, the reference value with which we started was λ = 32, 768. Then, we tried to

increase the value to λ = 40 which resulted in an increase in accuracy, so we decided to double

the value to λ = 80 and produced a decrease in the accuracy obtained. We trained our model with

a modest number of examples because CapsNets are capable of generalizing using much less data

in contrast to other CNNs that require a large amount of reference data for the training phase [89].

Table 5.9 shows the advantages obtained with the DRCapsNet model and compares the

model with similar input data architectures. The data used in the models in Table 5.9 are from

X-rays, Compute Tomography (CT), Magnetic Resonance Imaging (MRI), and Automated Breast

Ultrasound (ABU). Also, the architectures in Table 5.9 are ordered with greater accuracy. Although

our model did not reach the first place in Table 5.9, we can say that it offers a more robust

architecture. For example, the first place in the table uses images smaller than ours and only
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has two classes, simplifying the task’s complexity. The second place at the table handles similar

image sizes, but they use only two classes and do not include a reconstruction stage because they

use color images. Also, they still use the max pooling operation on the CS. Although the Kruthika

et al. model achieves an accuracy of 94.06% using three classes, their input images have smaller

sizes and can have a larger number of capsules than ours. That is a limitation for implementing a

detector of other diseases where the features would present high spatial frequency characteristics

or more classes need to be detected. Also, some articles say that with their computing resources,

it is impossible to use CaspsNets for high-quality images. For the same reason, other papers avoid

the reconstruction stage to design a lighter model. Furthermore, few publications use CapsNet

with image sizes greater than 128 × 128 pixels.

5.5 Chapter Summary

In this final chapter, we describe the implementation of the DRCapsNet computational model. It

explains the reasons for the selection of software and hardware. Also, explains the modification

of the dataset needed for the COVIDx V7A dataset in order for the network to use it for training.

Then, it presents the results of the validation of the CapsNet original architecture in the MNIST

dataset with the dilation rate hyperparameter. The results from this experiment outperform the

state-of-the-art results, see Table 4.5.

Finally, it presents the results of the validation of DRCaps on a complex medical dataset

(COVIDx V7A). The results show interesting results associated with some model hyperparameters.

For example, it highlights the relationship between the number of capsules and the complexity

of the images to analyze and the correlation between the size of the input image and the

hyperparameter λ. The experimental results show that our model obtains an accuracy of

90%, which is an acceptable performance compared to other deep learning architectures. The

contributions and future research opportunities for the DRCaps model are explained in detail in

the next chapter.
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Chapter 6
Conclusions and Future Work

In this thesis, we have described the process of building a computational model based on Capsule

Networks for the image classification task, specifically for a medical dataset with high resolution

images. The proposed model was built by combining the advantages of Convolutional Neural

Networks (feature extraction) with the advantages of Capsule Networks (routing information). As

a result of this network combination, different aspects of the computational model were formally

analyzed, leading to the following contributions:

• The proposal to grouping into four categories the CNN limitations reported across the

literature in many real-world applications.

• The combination of the dilation rate and stride hyperparameters to replace the max-pooling

operation allowing the network to handle more complex images.

• The relationship between the number of capsules and the complexity of the images to

analyze.

• The correlation between the size of the input image and the value λ.

• Implementing a computational model based on CapsNets capable of being trained with a

complex dataset.
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In this chapter, we discuss the main findings obtained as a result of this thesis and provide

directions for future research opportunities.

6.1 Main Findings

This thesis has presented the development of a novel computational model based on CapsNets.

This model is able to handle datasets with more complex images than those previously used in

other CapsNet-based computational models.

To construct the model, it was essential to have a deep understanding of the CapsNet

approach to address all the issues associated with the implementation of the computational

algorithm outlined in Section 5.1.1. Additionally, it was necessary to overcome the issue of

memory saturation when dealing with high-resolution images, both in the loading of the images

to the algorithm and in the flow of the images in the computational model. Furthermore, different

experiments were conducted to enhance the performance of the network. This involved an analysis

of some modifiable hyperparameters of the model (DR, Conv Stage, depth, kernel size, featured

maps) and training (loss function, λ). This section will discuss the main discoveries made during

the model building process.

The experiments have demonstrated that a small number of capsules must be managed for

the model to be trainable. To do this, the size of the featured maps in the last layer of the CS

must be regulated, as the number of capsules to be formed in the next stage is determined by these

values. To control the size of these layers, different sizes of DR and stride hyperparameters can be

employed.

It is essential to analyze the decoder architecture in the reconstruction stage when

constructing a computational model based on CapsNets. This stage produces a large number of

parameters that can overwhelm the memory. The architecture should be configured with the least

amount of parameters needed to reconstruct an image with the same quality as the input image in

a satisfactory manner.
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Another main finding is that selecting the value of the λ hyperparameter is a key feature of

our model. This single value can improve the accuracy of the network and prevent overfitting.

Experiments have shown that the best approach is to begin with the product of 0.0005 and the size

of the input image. After that, it is possible to adjust the value slightly, an excessive increase can

lead to a decrease in accuracy, as demonstrated in Table 4.11.

Also, it should be noted that the DRCaps model is a robust architecture, because it requires

minimal preprocessing of the input images, does not use data augmentation or weight vectors, and

still achieves satisfactory accuracy compared to other architectures, as demonstrated in Table 5.9.

6.2 Main Challenges

Creating a computational model from scratch is a complex task, as it requires taking into account a

variety of variables at both the software and the hardware levels. One of the most important things

is having a NVIDIA GPU for the training of the model, as it can significantly reduce the training

time. To ensure the correct installation of the drivers, it is necessary to first check the Compute

Capacity (CC) of the graphics card. From these values, the library (CUDA SDK) supported by the

card must be selected and matched with the TF version used. After that, the GPU drivers, CUDA

toolkit and CUDNN library must be installed.

An additional challenge was to carefully evaluate the needs of the computational model in

order to select the most appropriate library for its implementation. For example, DRCaps had three

distinct requirements: i) it had one input but generated two outputs, ii) it is necessary to develop

the CapsLayer, DigitCaps, and the dynamic routing by agreement algorithm from scratch, and iii)

the decoder part had to be included. As a result, the Keras framework was chosen because it allows

the implementation of a computational model in multiple ways, all of which can be incorporated

into the same program.

Another challenge presented in this thesis was handling a real data set. Unlike the simple

datasets used as benchmarks, such as MNIST or CIFAR-10, which are usually preloaded into

machine learning libraries, a new dataset requires analysis of how to call it to the algorithm,
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optimizing the computational resources, and adapting it to the requirements of the library used, as

explained in Section 5.1. Furthermore, it is necessary to analyze how information can be divided

or preprocessed according to the needs of the algorithm.

6.3 Future Work

Once the CapsNet-based computational model is implemented and a tool for dealing with complex

images is established, numerous research possibilities can be identified to expand upon this project.

Subsequently, some of these research opportunities will be summarized.

In this thesis, we tested the effectiveness of the dilation rate hyperparameter as a tool for

a CapsNet to process complex images, which is one of the main limitations of these networks.

We used the DRCaps model with input images of 256 x 256 pixels, although the original size of

the dataset was 1024 x 1024 pixels. We could conduct an experiment to gradually increase the

image size and adjust the dilation rate parameter to determine how far the network can handle

high-resolution images.

The CapsNet architecture has the benefit of being able to generalize results, meaning that it

can achieve the same outcome as a CNN using only a fraction of the data. To further explore this,

an experiment could be conducted to determine the minimum number of input images needed to

obtain an acceptable accuracy when using both a convolutional network and a capsule network.

Other research opportunitie is that the COVIDx V7A dataset has a major downside in that its

classes are unbalanced. This is a common issue in real and novel datasets. A potential solution to

this problem could be to use the instantiation parameters obtained through training in the ClassCap

layer to balance the dataset, instead of relying on traditional methods such as data augmentation or

weighting.

In the medical field, the overlapping digit recognition capabilities discussed in Section 4.4

can be used to create a system that not only looks for a single disease, but also identifies potential

overlap diseases that other models may overlook. This improvement could help the radiologist
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make a more comprehensive diagnosis in a shorter period of time. In addition, the algorithm

would suggest other diagnoses that would not normally be the cause of a consultation.

It is evident that CapsNets are a more advantageous approach than the current architectures,

yet further research is needed before they can be implemented in advanced fields. The fact

that basic capsules can provide satisfactory results with minimal preprocessing is a sign that the

CapsNet architecture is worth exploring in greater detail.
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Appendix A
Programming Codes

A.1 MNIST Program

1

2#se cargan las librerias necesarias, Tensorflow ya esta con keras

3import numpy as np

4import capslayersTF2

5import csv

6import os

7os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"

8os.environ["CUDA_VISIBLE_DEVICES"]="1"

9import argparse

10import tensorflow as tf

11from tensorflow.keras import layers, models, optimizers, callbacks

12import tensorflow.keras.backend as K

13from tensorflow.keras.utils import to_categorical

14from tensorflow.keras.preprocessing.image import ImageDataGenerator

15from utils import combine_images

16from PIL import Image

17from capslayersTF2 import CapsuleLayer, PrimaryCaps, Length, Mask

18from matplotlib import pyplot as plt

19import pandas as pd
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20import seaborn as sn

21from matplotlib import pyplot as plt

22from sklearn.metrics import confusion_matrix

23from pretty_confusion_matrix import pp_matrix

24

25K.set_image_data_format(’channels_last’) #me aseguro que se utilice el

vector de forma [width height channels]

26

27

28# Armo la arquitectura de CapsNet

29

30def CapsNet(input_shape, n_class , routings, batch_size):

31 """

32 A Capsule Network on MNIST.

33 :param input_shape: data shape, 3d, [width, height, channels]

34 :param n_class: number of classes

35 :param routings: number of routing iterations

36 :param batch_size: size of batch

37 :return: Two Keras Models, the first one used for training, and the

second one for evaluation.

38 ‘eval_model‘ can also be used for training.

39 """

40

41 x = tf.keras.Input(shape=input_shape, batch_size=batch_size)

42

43 # Layer 1: Just a conventional Conv2D layer

44 #conv1 = tf.keras.layers.Conv2D(256, 9, strides=(1, 1), padding=’valid

’,dilation_rate=(2, 2), activation=’relu’, name=’conv1’)(x)

45

46 #version 3 de capsnets

47 conv1 = tf.keras.layers.Conv2D(64, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(1, 1), activation=’relu’, name=’conv1’)(x)

48 conv2 = tf.keras.layers.Conv2D(128, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(2, 2), activation=’relu’, name=’conv2’)(conv1)

49 conv3 = tf.keras.layers.Conv2D(256, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(4, 4), activation=’relu’, name=’conv3’)(conv2)
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50

51 # Layer 2: Conv2D layer with ‘squash‘ activation, then reshape to [None

, num_capsule, dim_capsule]

52 primarycaps = PrimaryCaps(conv3, dim_capsule=8, n_channels=32,

kernel_size=9, strides=2, padding=’valid’)

53

54 # Layer 3: Capsule layer. Routing algorithm works here.

55 digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=

routings, name=’digitcaps’)(primarycaps)

56

57 # Layer 4: This is an auxiliary layer to replace each capsule with its

length. Just to match the true label’s shape.

58 # If using tensorflow, this will not be necessary. :)

59 out_caps = Length(name=’capsnet’)(digitcaps)

60

61 # Decoder network.

62 y = tf.keras.Input(shape=(n_class,))

63 masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask

the output of capsule layer. For training

64 masked = Mask()(digitcaps) # Mask using the capsule with maximal

length. For prediction

65

66 #Construimos un modelo llamado decoder para entrenar y la predecir

67 decoder=tf.keras.Sequential(name=’decoder’)

68 decoder.add(tf.keras.layers.Dense(512, activation=’relu’, input_dim=16*

n_class))

69 decoder.add(tf.keras.layers.Dense(1024,activation=’relu’))

70 decoder.add(tf.keras.layers.Dense(np.prod(input_shape), activation=’

sigmoid’))

71 decoder.add(tf.keras.layers.Reshape(target_shape=input_shape, name=’

out_recon’))

72

73 #Modelo para entrenar y evaluar (hacer las predicciones)

74

75 train_model = tf.keras.Model([x,y], [out_caps, decoder(masked_by_y)])

76 eval_model = tf.keras.Model(x, [out_caps, decoder(masked)])
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77

78 #manipular el modelo

79 #noise = tf.keras.Input(shape=(n_class,16))

80 #noised_digitcaps = tf.keras.layers.Add()([digitcaps, noise])

81 #masked_noised_y = Mask()([noised_digitcaps,y])

82 #manipulate_model = tf.keras.Model([x, y, noise], decoder(

masked_noised_y))

83

84 noise = layers.Input(shape=(n_class, 16))

85 noised_digitcaps = layers.Add()([digitcaps, noise])

86 masked_noised_y = Mask()([noised_digitcaps, y])

87 manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y)

)

88

89

90 return train_model, eval_model, manipulate_model

91

92

93def margin_loss(y_true, y_pred):

94 """

95 Margin loss for Eq.(4). When y_true[i, :] contains not just one ‘1‘,

this loss should work too. Not test it.

96 :param y_true: [None, n_classes]

97 :param y_pred: [None, num_capsule]

98 :return: a scalar loss value.

99 """

100 # return tf.reduce_mean(tf.square(y_pred))

101

102 L = y_true * tf.square(tf.maximum(0., 0.9 - y_pred)) + \

103 0.5 * (1 - y_true) * tf.square(tf.maximum(0., y_pred - 0.1))

104

105 return tf.math.reduce_mean(tf.math.reduce_sum(L, 1))

106

107

108def train(model, # type: models.Model

109 data, args):
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110 """

111 Training a CapsuleNet

112 :param model: the CapsuleNet model

113 :param data: a tuple containing training and testing data, like ‘((

x_train, y_train), (x_test, y_test))‘

114 :param args: arguments

115 :return: The trained model

116 """

117 # unpacking the data

118 (x_train, y_train), (x_test, y_test) = data

119

120 log = tf.keras.callbacks.CSVLogger(args.save_dir + ’/log.csv’) #

Callback that streams epoch results to a CSV file.

121 checkpoint = tf.keras.callbacks.ModelCheckpoint(args.save_dir + ’/

weights-{epoch:02d}.h5’, monitor=’val_capsnet_acc’,

122 save_best_only=True,

save_weights_only=True,

verbose=1)

123 lr_decay = tf.keras.callbacks.LearningRateScheduler(schedule=lambda

epoch: args.lr * (args.lr_decay ** epoch))

124

125 # compile the model

126 model.compile(optimizer=optimizers.Adam(lr=args.lr),

127 loss=[margin_loss, ’mse’],

128 loss_weights=[1., args.lam_recon],

129 metrics={’capsnet’: ’accuracy’})

130

131 # Begin: Training with data augmentation

---------------------------------------------------------------------#

132 def train_generator(x, y, batch_size, shift_fraction=0.1):

133 train_datagen = ImageDataGenerator(width_shift_range=shift_fraction

,

134 height_shift_range=

shift_fraction) # shift up

to 2 pixel for MNIST
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135 generator = train_datagen.flow(x, y, batch_size=batch_size)

136 while 1:

137 x_batch, y_batch = generator.next()

138 yield (x_batch, y_batch), (y_batch, x_batch)

139

140 # Training with data augmentation. If shift_fraction=0., no

augmentation.

141 model.fit(train_generator(x_train, y_train, args.batch_size, args.

shift_fraction),

142 steps_per_epoch=int(y_train.shape[0] / args.batch_size),

143 epochs=args.epochs,

144 validation_data=((x_test, y_test), (y_test, x_test)),

batch_size=args.batch_size,

145 callbacks=[log, checkpoint, lr_decay])

146 # End: Training with data augmentation

-----------------------------------------------------------------------#

147

148 model.save_weights(args.save_dir + ’/trained_model.h5’)

149 print(’Trained model saved to \’%s/trained_model.h5\’’ % args.save_dir)

150

151 from utils import plot_log

152 plot_log(args.save_dir + ’/log.csv’, show=True)

153

154 return model

155

156

157def test(model, data, args):

158 x_test, y_test = data

159 y_pred, x_recon = model.predict(x_test, batch_size=100)

160

161 cm= confusion_matrix((np.argmax(y_pred, axis=1)),(np.argmax(y_test,

axis=1)) )

162 print(cm)

163

164 print(’-’ * 30 + ’Begin: test’ + ’-’ * 30)
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165 print(’Test acc:’, np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))

/ y_test.shape[0])

166

167 img = combine_images(np.concatenate([x_test[:50], x_recon[:50]]))

168 image = img * 255

169 Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/

real_and_recon.png")

170 print()

171 print(’Reconstructed images are saved to %s/real_and_recon.png’ % args.

save_dir)

172 print(’-’ * 30 + ’End: test’ + ’-’ * 30)

173 plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))

174 plt.show()

175

176

177def manipulate_latent(model, data, args):

178 print(’-’ * 30 + ’Begin: manipulate’ + ’-’ * 30)

179 x_test, y_test = data

180 index = np.argmax(y_test, 1) == args.digit

181 number = np.random.randint(low=0, high=sum(index) - 1)

182 x, y = x_test[index][number], y_test[index][number]

183 x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)

184 noise = np.zeros([1, 10, 16])

185 x_recons = []

186 for dim in range(16):

187 for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2,

0.25]:

188 tmp = np.copy(noise)

189 tmp[:, :, dim] = r

190 x_recon = model.predict([x, y, tmp])

191 x_recons.append(x_recon)

192

193 x_recons = np.concatenate(x_recons)

194

195 img = combine_images(x_recons, height=16)

196 image = img * 255
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197 Image.fromarray(image.astype(np.uint8)).save(args.save_dir + ’/

manipulate-%d.png’ % args.digit)

198 print(’manipulated result saved to %s/manipulate-%d.png’ % (args.

save_dir, args.digit))

199 print(’-’ * 30 + ’End: manipulate’ + ’-’ * 30)

200

201

202def load_mnist():

203 # the data, shuffled and split between train and test sets

204 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.

load_data()

205

206 #para juntarlos xy_train=tf.keras.dataset.zip((x_train,y_train))

207

208 print(x_train.shape) #(60000,28,28)

209 print(y_train.shape) #(60000,)

210

211 print(x_test.shape) #(10000,28,28)

212 print(y_test.shape) #(10000,)

213

214 x_train = x_train.reshape(-1, 28, 28, 1).astype(’float32’) / 255.

215 x_test = x_test.reshape(-1, 28, 28, 1).astype(’float32’) / 255.

216 y_train = to_categorical(y_train.astype(’float32’))

217 y_test = to_categorical(y_test.astype(’float32’))

218

219 print(type(x_train)) #(60000,28,28,1)

220 print(x_test.shape) #(10000,28,28,1)

221

222 print(y_train.shape) #(60000,10)

223 print(y_test.shape) #(10000,10)

224 return (x_train, y_train), (x_test, y_test)

225

226if __name__ == "__main__":

227

228 # setting the hyper parameters

229 parser = argparse.ArgumentParser(description="Capsule Network on MNIST.
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")

230 parser.add_argument(’--epochs’, default=5, type=int)

231 parser.add_argument(’--batch_size’, default=100, type=int)

232 parser.add_argument(’--lr’, default=0.001, type=float,

233 help="Initial learning rate")

234 parser.add_argument(’--lr_decay’, default=0.9, type=float,

235 help="The value multiplied by lr at each epoch. Set

a larger value for larger epochs")

236 parser.add_argument(’--lam_recon’, default=0.392, type=float,

237 help="The coefficient for the loss of decoder")

238 parser.add_argument(’-r’, ’--routings’, default=3, type=int,

239 help="Number of iterations used in routing

algorithm. should > 0")

240 parser.add_argument(’--shift_fraction’, default=0.1, type=float,

241 help="Fraction of pixels to shift at most in each

direction.")

242 parser.add_argument(’--debug’, action=’store_true’,

243 help="Save weights by TensorBoard")

244 parser.add_argument(’--save_dir’, default=’./result’)

245 parser.add_argument(’-t’, ’--testing’, action=’store_true’,

246 help="Test the trained model on testing dataset")

247 parser.add_argument(’--digit’, default=5, type=int,

248 help="Digit to manipulate")

249 parser.add_argument(’-w’, ’--weights’, default=None,

250 help="The path of the saved weights. Should be

specified when testing")

251 args = parser.parse_args()

252 print(args)

253

254 if not os.path.exists(args.save_dir):

255 os.makedirs(args.save_dir)

256

257 ###### ESTE ES EL PROGRAMA PRINCIPAL ######

258 # load data

259 (x_train, y_train), (x_test, y_test) = load_mnist()

260
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261 # define model

262 model, eval_model, manipulate_model = CapsNet(input_shape=x_train.shape

[1:],

263 n_class=len(np.unique(np.

argmax(y_train, 1))),

264 routings=args.routings,

265 batch_size=args.

batch_size)

266 print(x_train.shape[1:]) #(28,28,1)

267 print(len(np.unique(np.argmax(y_train, 1)))) #(10)

268 print(args.routings) #3

269 print(args.batch_size) #100

270

271

272 model.summary()

273

274 #train(model=model, data=((x_train, y_train), (x_test, y_test)), args=

args)

275 #model.load_weights(args.weights)

276 #manipulate_latent(manipulate_model, (x_test, y_test), args)

277 #test(model=eval_model, data=(x_test, y_test), args=args)

278

279 # train or test

280 if args.weights is not None: # init the model weights with provided

one

281 model.load_weights(args.weights)

282 if not args.testing:

283 train(model=model, data=((x_train, y_train), (x_test, y_test)),

args=args)

284 else: # as long as weights are given, will run testing

285 if args.weights is None:

286 print(’No weights are provided. Will test using random

initialized weights.’)

287 print("HOLA!!!")

288 #manipulate_latent(manipulate_model, (x_test, y_test), args)

289 print("HOLA ENFERMERA!!!")
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290 test(model=eval_model, data=(x_test, y_test), args=args)

A.2 COVIDx Program

1import numpy as np

2import pandas as pd

3import seaborn as sn

4import capslayersTF2

5import csv

6import os

7os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"

8os.environ["CUDA_VISIBLE_DEVICES"]="1"

9import argparse

10import tensorflow as tf

11import tensorflow_datasets as tfds

12from tensorflow.keras import layers, models, optimizers, callbacks

13import tensorflow.keras.backend as K

14from tensorflow.keras.utils import to_categorical

15from tensorflow.keras.preprocessing.image import ImageDataGenerator

16from utils import combine_images

17from PIL import Image

18from capslayersTF2 import CapsuleLayer, PrimaryCaps, Length, Mask

19from matplotlib import pyplot as plt

20from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

21from sklearn.metrics import classification_report

22from pretty_confusion_matrix import pp_matrix

23K.set_image_data_format(’channels_last’) #me aseguro que se utilice el

vector de forma [width height channels]

24

25

26def CapsNet(input_shape, n_class , routings, batch_size):

27 """

28 A Capsule Network on MNIST.

29 :param input_shape: data shape, 3d, [width, height, channels]

30 :param n_class: number of classes
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31 :param routings: number of routing iterations

32 :param batch_size: size of batch

33 :return: Two Keras Models, the first one used for training, and the

second one for evaluation.

34 ‘eval_model‘ can also be used for training.

35 """

36 x = tf.keras.Input(shape=input_shape, batch_size=batch_size, name=’

entrada’)

37

38 conv1 = tf.keras.layers.Conv2D(128, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(8, 8), activation=’relu’, name=’conv1’)(x)

39 conv2 = tf.keras.layers.Conv2D(64, 3, strides=(2, 2), padding=’valid’,

dilation_rate=(1, 1), activation=’relu’, name=’conv2’)(conv1)

40 conv3 = tf.keras.layers.Conv2D(128, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(4, 4), activation=’relu’, name=’conv3’)(conv2)

41 conv4 = tf.keras.layers.Conv2D(64, 3, strides=(2, 2), padding=’valid’,

dilation_rate=(1, 1), activation=’relu’, name=’conv4’)(conv3)

42 conv5 = tf.keras.layers.Conv2D(64, 3, strides=(1, 1), padding=’valid’,

dilation_rate=(2, 2), activation=’relu’, name=’conv5’)(conv4)

43 conv6 = tf.keras.layers.Conv2D(64, 3, strides=(2, 2), padding=’valid’,

dilation_rate=(1, 1), activation=’relu’, name=’conv6’)(conv5)

44 conv7 = tf.keras.layers.Conv2D(64, 3, strides=(2, 2), padding=’valid’,

dilation_rate=(1, 1), activation=’relu’, name=’conv7’)(conv6)

45

46 primarycaps = PrimaryCaps(conv7,dim_capsule=8, n_channels=32,

kernel_size=9, strides=2, padding=’valid’)

47 digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=

routings, name=’digitcaps’)(primarycaps)

48 out_caps = Length(name=’capsnet’)(digitcaps)

49

50 # Decoder network.

51 y = tf.keras.Input(shape=(n_class,))

52

53 masked_by_y = Mask()([digitcaps, y])

54 masked = Mask()(digitcaps) # Mask using the capsule with maximal

length. For prediction
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55

56 #Construimos un modelo llamado decoder para entrenar y la predecir

57 decoder=tf.keras.Sequential(name=’decoder’)

58 decoder.add(tf.keras.layers.Dense(64, activation=’relu’, input_dim=16*

n_class)) #aqui cambiar el dim capsule

59 decoder.add(tf.keras.layers.Dense(128,activation=’relu’))

60 decoder.add(tf.keras.layers.Dense(128,activation=’relu’)) #probar

cambiar aqui a 256

61 decoder.add(tf.keras.layers.Dense(np.prod(input_shape), activation=’

sigmoid’))

62 decoder.add(tf.keras.layers.Reshape(target_shape=input_shape, name=’

out_recon’))

63

64 #Modelo para entrenar y evaluar (hacer las predicciones)

65 print(’##########estructura del modelo#######’)

66 train_model = tf.keras.Model([x,y], [out_caps, decoder(masked_by_y)])

67 eval_model = tf.keras.Model(x, [out_caps, decoder(masked)])

68 return train_model, eval_model

69

70def margin_loss(y_true, y_pred):

71 """

72 Margin loss for Eq.(4). When y_true[i, :] contains not just one ‘1‘,

this loss should work too. Not test it.

73 :param y_true: [None, n_classes]

74 :param y_pred: [None, num_capsule]

75 :return: a scalar loss value.

76 """

77 L = y_true * tf.square(tf.maximum(0., 0.9 - y_pred)) + \

78 0.5 * (1 - y_true) * tf.square(tf.maximum(0., y_pred - 0.1))

79

80 return tf.math.reduce_mean(tf.math.reduce_sum(L, 1))

81

82

83def preprocess_train(image,label):

84 grayscaled = tf.image.rgb_to_grayscale(image)

85 grayscaled = grayscaled / 255.
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86 return (grayscaled, label), (label,grayscaled) # > - aqui es ta el

punto, lo ponemos como funcion de prepocesamiento!

87

88def preprocess_test(image,label):

89 grayscaled = tf.image.rgb_to_grayscale(image)

90 grayscaled = grayscaled / 255.

91 return (grayscaled, label)#,(label,grayscaled) #cehacr esta parte para

la prediccion

92

93def get_testing_dataset():

94 batch_size=32

95 root_dir = os.path.abspath(’.’)

96 data_dir = os.path.join(root_dir,’COVID dataset’)

97 testing_data_dir = os.path.join(data_dir,’test’)

98

99 test_ds = tf.keras.preprocessing.image_dataset_from_directory(

100 testing_data_dir,

101 labels=’inferred’,

102 seed=123,

103 #shuffle=False, # False las pasa alfanumericamente, True es

default revuelve las imagenes checar resultados por que varian

las imagenes recosntruidas

104 image_size=(args.img_width, args.img_height),

105 #color_mode = ’grayscale’,

106 batch_size=batch_size,

107 label_mode=’categorical’)

108

109 AUTOTUNE = tf.data.AUTOTUNE

110 #test_dataset = test_ds.map(preprocess_test, num_parallel_calls=

AUTOTUNE

111 # ).shuffle(1000).take(batch_size).cache()

112 test_dataset = test_ds.map(preprocess_test)

113 return test_dataset

114

115

116def get__training_dataset(batch_size=32):
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117

118 root_dir = os.path.abspath(’.’)

119 data_dir = os.path.join(root_dir,’COVID dataset’)

120 train_data_dir = os.path.join(data_dir,’train’)

121

122 train_ds = tf.keras.preprocessing.image_dataset_from_directory(

123 train_data_dir,

124 validation_split=0.2,

125 subset="training",

126 seed=123,

127 labels=’inferred’,

128 image_size=(args.img_width,args.img_height),

129 #color_mode = ’grayscale’,

130 batch_size=batch_size,

131 label_mode=’categorical’)

132

133 for xy,y in train_ds.take(1):

134 print(’hola enfermera’)

135 print(xy.shape)

136 print(y.shape)

137 break # para mostrar solo las dimensiones de un lote

138

139 val_ds = tf.keras.preprocessing.image_dataset_from_directory(

140 train_data_dir,

141 validation_split=0.2,

142 subset="validation",

143 seed=123,

144 labels=’inferred’,

145 image_size=(args.img_width,args.img_height),

146 #color_mode = ’grayscale’,

147 batch_size=batch_size,

148 label_mode=’categorical’)

149

150 for xy,y in val_ds.take(1):

151 print(’hola enfermera2’)

152 print(xy.shape)
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153 print(y.shape)

154 break # para mostrar solo las dimensiones de un lote

155

156 class_names = train_ds.class_names

157 print(class_names)

158

159 AUTOTUNE = tf.data.AUTOTUNE

160 train_dataset = train_ds.map(preprocess_train, num_parallel_calls=

AUTOTUNE

161 ).shuffle(1000).take(batch_size).cache()

.repeat()

162

163 val_dataset = val_ds.map(preprocess_train, num_parallel_calls=AUTOTUNE

164 ).shuffle(1000).take(batch_size).cache()

.repeat()

165

166 return train_dataset, val_dataset

167

168def graficar_resultados(history):

169 history_dict = history.history

170

171 accuracy_values=history_dict["capsnet_accuracy"]

172 val_accuracy_values=history_dict["val_capsnet_accuracy"]

173 epochs = range(1, len(accuracy_values)+1)

174 plt.plot(epochs,accuracy_values,"r", label="capsnet_accuracy")

175 plt.plot(epochs,val_accuracy_values,"b", label=’

validation_capsnet_accuracy’)

176 plt.title("Training and validation accuracy")

177 plt.xlabel("epochs")

178 plt.ylabel("accuracy")

179 plt.legend()

180 plt.savefig(args.save_dir + ’/capsnet_accuracy.png’)

181

182 plt.clf()

183 loss_values=history_dict["loss"]

184 val_loss_values=history_dict["val_loss"]
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185 epochs = range(1, len(loss_values)+1)

186 plt.plot(epochs,loss_values,"r", label="training loss")

187 plt.plot(epochs,val_loss_values,"b", label="validation loss")

188 plt.title("Training and validation loss")

189 plt.xlabel("epochs")

190 plt.ylabel("loss")

191 plt.legend()

192 plt.savefig(args.save_dir + ’/lossvsval_loss.png’)

193

194 plt.clf()

195 capsnet_loss_values=history_dict["capsnet_loss"]

196 val_capsnet_loss_values=history_dict["val_capsnet_loss"]

197 epochs = range(1, len(capsnet_loss_values)+1)

198 plt.plot(epochs,capsnet_loss_values,"r", label="training_capsnet_loss")

199 plt.plot(epochs,val_capsnet_loss_values,"b", label="val_capsnet_loss")

200 plt.title("Training and validation capsnet loss")

201 plt.xlabel("epochs")

202 plt.ylabel("loss")

203 plt.legend()

204 plt.savefig(args.save_dir + ’/capslossvscapsval_loss.png’)

205

206 plt.clf()

207 decoder_loss_values=history_dict["decoder_loss"]

208 val_decoder_loss_values=history_dict["val_decoder_loss"]

209 epochs = range(1, len(decoder_loss_values)+1)

210 plt.plot(epochs,decoder_loss_values,"r", label="training decoder loss")

211 plt.plot(epochs,val_decoder_loss_values,"b", label="validation decoder

loss")

212 plt.title("Training and validation decoder loss")

213 plt.xlabel("epochs")

214 plt.ylabel("loss")

215 plt.legend()

216 plt.savefig(args.save_dir + ’/decoderlossvsdecoderval_loss.png’)

217

218 plt.clf()

219 plt.plot(epochs,decoder_loss_values,"r", label="training_decoder_loss")
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220 plt.plot(epochs,loss_values,"b", label="training loss")

221 plt.plot(epochs,capsnet_loss_values,"g", label="training_capsnet_loss")

222 plt.title("Training loss")

223 plt.xlabel("epochs")

224 plt.ylabel("loss")

225 plt.legend()

226 plt.savefig(args.save_dir + ’/training_loss.png’)

227

228

229

230

231def train(model,

232 data,# type: models.Model

233 args):

234 """

235 Training a CapsuleNet

236 :param model: the CapsuleNet model

237 :param data: a tuple containing training and testing data, like ‘((

x_train, y_train), (x_test, y_test))‘

238 :param args: arguments

239 :return: The trained model

240 """

241

242 log = tf.keras.callbacks.CSVLogger(args.save_dir + ’/log.csv’)

243 checkpoint = tf.keras.callbacks.ModelCheckpoint(args.save_dir + ’/

weights-{epoch:02d}.h5’, monitor=’val_capsnet_acc’,

244 save_best_only=True,

save_weights_only=True,

verbose=1)

245 lr_decay = tf.keras.callbacks.LearningRateScheduler(schedule=lambda

epoch: args.lr * (args.lr_decay ** epoch))

246

247 # compile the model

248 model.compile(optimizer=optimizers.Adam(learning_rate=args.lr),

249 loss=[margin_loss, ’mae’],

250 loss_weights=[1., args.lam_recon],
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251 metrics={’capsnet’: ’accuracy’})

252

253 train_ds, val_ds = data

254 steps_per_epoch=np.ceil(12089 / args.batch_size)

255 print(steps_per_epoch)

256

257 history = model.fit(train_ds,

258 steps_per_epoch=steps_per_epoch,

259 epochs=args.epochs,

260 validation_data=val_ds,

261 validation_steps=(3022 // args.batch_size),

262 callbacks=[log, checkpoint, lr_decay])

263

264 graficar_resultados(history)

265 model.save_weights(args.save_dir + ’/trained_model.h5’)

266 print(’Trained model saved to \’%s/trained_model.h5\’’ % args.save_dir)

267

268 from utils import plot_log

269 plot_log(args.save_dir + ’/log.csv’, show=True)

270

271 return model

272

273

274def test(model, args): #antes (model, data ,args)

275 print(’datos1’)

276 test_ds = get_testing_dataset()

277

278 x_test, y_test = next(iter(test_ds))

279

280 for x,y in test_ds.as_numpy_iterator():

281 x_test = np.concatenate((x_test, x),axis=0)

282 y_test = np.concatenate((y_test, y),axis=0)

283

284 x_test = x_test[32:1600] #antes 32

285 y_test = y_test[32:1600]

286 print(’datos3’)
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287 y_pred, x_recon = model.predict(

288 #test_ds,

289 x_test,

290 batch_size=32,

291 verbose="1",

292 steps=49)

293

294 print(’datos4’)

295

296 print(x_recon.shape)

297 print(y_pred.shape)

298 print(x_test.shape)

299 print(y_test.shape)

300

301 print(’NUEVO!!!’)

302 classes = [’covid’,’healthy’,’pneumonia’]

303 print(f’Reporte de clasificaci n:’)

304 print(classification_report(np.argmax(y_test, axis=1),

305 np.argmax(y_pred, axis=1),

306 target_names=classes))

307

308 print(’datos5’)

309 cm= confusion_matrix((np.argmax(y_test, axis=1)),(np.argmax(y_pred,

axis=1)) )

310 #print(np.argmax(y_test, axis=1))

311 #print(np.argmax(y_pred, axis=1))

312 #print(cm)

313 cm_display = ConfusionMatrixDisplay(cm,display_labels=classes).plot()

314 print(cm_display)

315 plt.savefig(args.save_dir + ’/confusion matrix1’)

316

317 df_cm = pd.DataFrame(cm, index=classes, columns= classes)

318 print(’confusion matrix’)

319 print(df_cm)

320

321 print(’-’ * 30 + ’Begin: test’ + ’-’ * 30)
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322 print(’Test acc:’, np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))

/ y_test.shape[0])

323

324 img = combine_images(np.concatenate([x_test[:50], x_recon[:50]]))

325 #img = combine_images(np.concatenate([x_recon[:50], x_recon[:50]]))

326 image = img * 255

327 Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/

real_and_recon.png")

328 print()

329 print(’Reconstructed images are saved to %s/real_and_recon.png’ % args.

save_dir)

330 print(’-’ * 30 + ’End: test’ + ’-’ * 30)

331 plt.clf()

332 plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))

333 plt.show()

334

335

336if __name__ == "__main__":

337

338 # setting the hyper parameters

339 parser = argparse.ArgumentParser(description="Capsule Network on COVID

dataset.")

340 parser.add_argument(’--epochs’, default=30, type=int)

341 parser.add_argument(’--batch_size’, default=32, type=int)

342 parser.add_argument(’--img_width’, default=256, type=int)

343 parser.add_argument(’--img_height’, default=256, type=int)

344 parser.add_argument(’--lr’, default=0.001, type=float,

345 help="Initial learning rate")

346 parser.add_argument(’--lr_decay’, default=0.9, type=float,

347 help="The value multiplied by lr at each epoch. Set

a larger value for larger epochs")

348 parser.add_argument(’--lam_recon’, default=32.768, type=float, #gaby 5

32.768,

349 help="The coefficient for the loss of decoder")

350 parser.add_argument(’-r’, ’--routings’, default=3, type=int,

351 help="Number of iterations used in routing
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algorithm. should > 0")

352 parser.add_argument(’--shift_fraction’, default=0.1, type=float,

353 help="Fraction of pixels to shift at most in each

direction.")

354 parser.add_argument(’--debug’, action=’store_true’,

355 help="Save weights by TensorBoard")

356 parser.add_argument(’--save_dir’, default=’./gaby3’)

357 parser.add_argument(’-t’, ’--testing’, action=’store_true’,

358 help="Test the trained model on testing dataset")

359 parser.add_argument(’--digit’, default=5, type=int,

360 help="Digit to manipulate")

361 parser.add_argument(’-w’, ’--weights’, default=None,

362 help="The path of the saved weights. Should be

specified when testing")

363 args = parser.parse_args()

364 print(args)

365

366 if not os.path.exists(args.save_dir):

367 os.makedirs(args.save_dir)

368

369 ###### ESTE ES EL PROGRAMA PRINCIPAL ######

370 # load data

371 train_ds, val_ds =get__training_dataset()

372

373 print("Experimento")

374 x, y = next(iter(train_ds))

375 print(x[0].shape[1:]) #con este uno le quito el primer elemento al

vector

376

377 # define model

378 model, eval_model = CapsNet(input_shape=x[0].shape[1:], #channels,

grayscale or rgb

379 n_class=3, #3 y_train[1]

380 routings=args.routings,

#3

381 batch_size=args.
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batch_size) #32

382

383 model.summary()

384

385 if args.weights is not None: # init the model weights with provided

one

386 model.load_weights(args.weights)

387 if not args.testing:

388 print("COMENTARIO!!!")

389 train(model=model, data=(train_ds, val_ds), args=args)

390 else: # as long as weights are given, will run testing

391 if args.weights is None:

392 print(’No weights are provided. Will test using random

initialized weights.’)

393 print("HOLA!!!")

394 #test_ds = get_testing_dataset()

395 test(model=eval_model, args=args)

A.3 CapsNet Functions

1

2#importo las librerias necesarias

3import tensorflow as tf

4import os

5import tensorflow.keras.backend as K

6from tensorflow.keras import layers,initializers

7

8

9def squash(vectors, axis=-1):

10 """

11 The non-linear activation used in Capsule. It drives the length of a

large vector to near 1 and small vector to 0

12 :param vectors: some vectors to be squashed, N-dim tensor

13 :param axis: the axis to squash

14 :return: a Tensor with same shape as input vectors
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15"""

16 s_squared_norm = tf.math.reduce_sum(tf.square(vectors), axis, keepdims=

True)

17 scale = s_squared_norm / (1 + s_squared_norm) / tf.sqrt(s_squared_norm + K

.epsilon())

18 return scale * vectors

19

20

21#bloque que declara Primary Caps

22

23def PrimaryCaps(inputs, dim_capsule, n_channels, kernel_size, strides,

padding):

24 """

25 Aplica una convolucion de la profundidad del numero de canales y

concatenamos todas las capsulas

26 inputs es un 4D tensor, shape=[None, width, height, channels]

27 dim_capsules: la dimension del vector de salida de las capsulas 8

28 n_channels: el numero de tipos de capsula 32

29 return: output tensor, shape = [None, num_capsule, dim_capsule] o [None

, 1152,8]

30 """

31 output = tf.keras.layers.Conv2D(dim_capsule*n_channels, kernel_size,

strides=strides, padding=padding,name=’primarycap’ )(inputs)

32 #filters=dim_capsule*n_channels(8*32=256), la salida es (none, 6,6,256)

33 outputs = tf.keras.layers.Reshape((-1, dim_capsule), name=’

primarycaps_reshape’)(output)

34 #puede haber error en elprimer parametro, puede ser [] en lugar de ()

35 return tf.keras.layers.Lambda(squash, name=’primarycap_squash’)(outputs

)

36

37

38#bloque Capsule Layer, donde se realiza el dynamic routing

39

40class CapsuleLayer(tf.keras.layers.Layer):

41 """

42 The capsule layer. It is similar to Dense layer. Dense layer has ‘
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in_num‘ inputs, each is a scalar, the output of the

43 neuron from the former layer, and it has ‘out_num‘ output neurons.

CapsuleLayer just expand the output of the neuron

44 from scalar to vector. So its input shape = [None, input_num_capsule,

input_dim_capsule] and output shape = \

45 [None, num_capsule, dim_capsule]. For Dense Layer, input_dim_capsule =

dim_capsule = 1.

46 :param num_capsule: number of capsules in this layer

47 :param dim_capsule: dimension of the output vectors of the capsules in

this layer

48 :param routings: number of iterations for the routing algorithm

49 """

50

51 def __init__(self, num_capsule, dim_capsule, routings=3,

kernel_initializer=’glorot_uniform’,**kwargs):

52 super(CapsuleLayer, self).__init__(**kwargs)

53 self.num_capsule = num_capsule #3 clases de covid

54 self.dim_capsule = dim_capsule #16

55 self.routings = routings

56 self.kernel_initializer = tf.keras.initializers.get(

kernel_initializer) #puede haber error

57

58 def build(self, input_shape):

59 assert len(input_shape) >= 3, "The input Tensor should have shape=[

None, input_num_capsule, input_dim_capsule]"

60 self.input_num_capsule = input_shape[1]

61 self.input_dim_capsule = input_shape[2]

62

63 # Transform matrix, from each input capsule to each output capsule,

there’s a unique weight as in Dense layer.

64 self.W = self.add_weight(shape=[self.num_capsule, self.

input_num_capsule,

65 self.dim_capsule, self.

input_dim_capsule],

66 initializer=self.kernel_initializer,

67 name=’W’)
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68

69 self.built = True

70

71 def call(self, inputs, training=None):

72 # inputs.shape=[None, input_num_capsule, input_dim_capsule]

73 # inputs_expand.shape=[None, 1, input_num_capsule,

input_dim_capsule, 1]

74 inputs_expand = tf.expand_dims(tf.expand_dims(inputs, 1), -1)

75

76 # Replicate num_capsule dimension to prepare being multiplied by W

77 # inputs_tiled.shape=[None, num_capsule, input_num_capsule,

input_dim_capsule, 1]

78 inputs_tiled = tf.tile(inputs_expand, [1, self.num_capsule, 1, 1,

1])

79

80 # Compute ‘inputs * W‘ by scanning inputs_tiled on dimension 0.

81 # W.shape=[num_capsule, input_num_capsule, dim_capsule,

input_dim_capsule]

82 # x.shape=[num_capsule, input_num_capsule, input_dim_capsule, 1]

83 # Regard the first two dimensions as ‘batch‘ dimension, then

84 # matmul(W, x): [..., dim_capsule, input_dim_capsule] x [...,

input_dim_capsule, 1] -> [..., dim_capsule, 1].

85 # inputs_hat.shape = [None, num_capsule, input_num_capsule,

dim_capsule]

86 inputs_hat = tf.squeeze(tf.map_fn(lambda x: tf.matmul(self.W, x),

elems=inputs_tiled))

87

88 # Begin: Routing algorithm

---------------------------------------------------------------------#

89 # The prior for coupling coefficient, initialized as zeros.

90 # b.shape = [None, self.num_capsule, 1, self.input_num_capsule].

91 b = tf.zeros(shape=[inputs.shape[0], self.num_capsule, 1, self.

input_num_capsule])

92

93 assert self.routings > 0, ’The routings should be > 0.’
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94 for i in range(self.routings):

95 # c.shape=[batch_size, num_capsule, 1, input_num_capsule]

96 c = tf.nn.softmax(b, axis=1)

97

98 # c.shape = [batch_size, num_capsule, 1, input_num_capsule]

99 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

100 # The first two dimensions as ‘batch‘ dimension,

101 # then matmal: [..., 1, input_num_capsule] x [...,

input_num_capsule, dim_capsule] -> [..., 1, dim_capsule].

102 # outputs.shape=[None, num_capsule, 1, dim_capsule]

103 outputs = squash(tf.matmul(c, inputs_hat)) # [None, 10, 1, 16]

104

105 if i < self.routings - 1:

106 # outputs.shape = [None, num_capsule, 1, dim_capsule]

107 # inputs_hat.shape=[None, num_capsule, input_num_capsule,

dim_capsule]

108 # The first two dimensions as ‘batch‘ dimension, then

109 # matmal:[..., 1, dim_capsule] x [..., input_num_capsule,

dim_capsule]^T -> [..., 1, input_num_capsule].

110 # b.shape=[batch_size, num_capsule, 1, input_num_capsule]

111 b += tf.matmul(outputs, inputs_hat, transpose_b=True)

112 # End: Routing algorithm

-----------------------------------------------------------------------#

113

114 return tf.squeeze(outputs) #quita los vectores con dimension 1

115

116 def compute_output_shape(self, input_shape):

117 return tuple([None, self.num_capsule, self.dim_capsule])

118

119 def get_config(self):

120 config = {

121 ’num_capsule’: self.num_capsule,

122 ’dim_capsule’: self.dim_capsule,

123 ’routings’: self.routings
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124 }

125 base_config = super(CapsuleLayer, self).get_config()

126 return dict(list(base_config.items()) + list(config.items()))

127

128

129class Length(tf.keras.layers.Layer):

130 """

131 Compute the length of vectors. This is used to compute a Tensor that

has the same shape with y_true in margin_loss.

132 Using this layer as model’s output can directly predict labels by using

‘y_pred = np.argmax(model.predict(x), 1)‘

133 inputs: shape=[None, num_vectors, dim_vector]

134 output: shape=[None, num_vectors]

135 """

136 def call(self, inputs, **kwargs):

137 return tf.sqrt(tf.reduce_sum(tf.square(inputs), -1) + K.epsilon())

138

139 def compute_output_shape(self, input_shape):

140 return input_shape[:-1]

141

142 def get_config(self):

143 config = super(Length, self).get_config()

144 return config

145

146class Mask(tf.keras.layers.Layer):

147 """

148 Mask a Tensor with shape=[None, num_capsule, dim_vector] either by the

capsule with max length or by an additional

149 input mask. Except the max-length capsule (or specified capsule), all

vectors are masked to zeros. Then flatten the

150 masked Tensor.

151 For example:

152 ‘‘‘

153 x = keras.layers.Input(shape=[8, 3, 2]) # batch_size=8, each

sample contains 3 capsules with dim_vector=2

154 y = keras.layers.Input(shape=[8, 3]) # True labels. 8 samples, 3
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classes, one-hot coding.

155 out = Mask()(x) # out.shape=[8, 6]

156 # or

157 out2 = Mask()([x, y]) # out2.shape=[8,6]. Masked with true labels

y. Of course y can also be manipulated.

158 ‘‘‘

159 """

160 def call(self, inputs, **kwargs):

161 if type(inputs) is list: # true label is provided with shape = [

None, n_classes], i.e. one-hot code.

162 assert len(inputs) == 2

163 inputs, mask = inputs

164 else: # if no true label, mask by the max length of capsules.

Mainly used for prediction

165 # compute lengths of capsules

166 x = tf.sqrt(tf.reduce_sum(tf.square(inputs), -1))

167 # generate the mask which is a one-hot code.

168 # mask.shape=[None, n_classes]=[None, num_capsule]

169 mask = tf.one_hot(indices=tf.argmax(x, 1), depth=x.shape[1])

170

171 # inputs.shape=[None, num_capsule, dim_capsule]

172 # mask.shape=[None, num_capsule]

173 # masked.shape=[None, num_capsule * dim_capsule]

174 masked = K.batch_flatten(inputs * tf.expand_dims(mask, -1))

175 return masked

176

177 def compute_output_shape(self, input_shape):

178 if type(input_shape[0]) is tuple: # true label provided

179 return tuple([None, input_shape[0][1] * input_shape[0][2]])

180 else: # no true label provided

181 return tuple([None, input_shape[1] * input_shape[2]])

182

183 def get_config(self):

184 config = super(Mask, self).get_config()

185 return config
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A.4 Utils code

1import numpy as np

2from matplotlib import pyplot as plt

3import csv

4import math

5import pandas

6

7def plot_log(filename, show=True):

8

9 data = pandas.read_csv(filename)

10

11 fig = plt.figure(figsize=(4,6))

12 fig.subplots_adjust(top=0.95, bottom=0.05, right=0.95)

13 fig.add_subplot(211)

14 for key in data.keys():

15 if key.find(’loss’) >= 0 and not key.find(’val’) >= 0: # training

loss

16 plt.plot(data[’epoch’].values, data[key].values, label=key)

17 plt.legend()

18 plt.title(’Training loss’)

19

20 fig.add_subplot(212)

21 for key in data.keys():

22 if key.find(’acc’) >= 0: # acc

23 plt.plot(data[’epoch’].values, data[key].values, label=key)

24 plt.legend()

25 plt.title(’Training and validation accuracy’)

26

27 # fig.savefig(’result/log.png’)

28 if show:

29 plt.show()

30

31

32def combine_images(generated_images, height=None, width=None):
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33 num = generated_images.shape[0]

34 if width is None and height is None:

35 width = int(math.sqrt(num))

36 height = int(math.ceil(float(num)/width))

37 elif width is not None and height is None: # height not given

38 height = int(math.ceil(float(num)/width))

39 elif height is not None and width is None: # width not given

40 width = int(math.ceil(float(num)/height))

41

42 shape = generated_images.shape[1:3]

43 image = np.zeros((height*shape[0], width*shape[1]),

44 dtype=generated_images.dtype)

45 for index, img in enumerate(generated_images):

46 i = int(index/width)

47 j = index % width

48 image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1]] = \

49 img[:, :, 0]

50 return image

51

52if __name__=="__main__":

53 plot_log(’result/log.csv’)
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