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Abstract

Despite the attention given to vortex induced-vibrations (VIV) in the last years, es-
pecially due to energy harvesting, many related subjects are still no well-known. This
work aims to reveal how the behavior of the maximum amplitude is affected by differ-
ent parameters, from geometric characteristics to parameters proposed in the literature
as the mass-damping coefficient. To achieve this, meticulous experimental research,
with a broad variety of cantilevered uniform flexible circular cylinder in a steady cur-
rent along the entire lock-in region, is proposed. The length, diameter, and density
(materials) were varied in the experimental campaign. A total of 36 cylinders were
proposed, from which only 31 could be studied due to operating ranges restrictions of
the water tunnel.

For the dynamic response, the tip of the cylinder was recorded using a high-speed
video camera. This allows to determine the path followed by the cylinder using circle
recognition functions in a Matlab ® code. For the hydrodynamic response downstream
the cylinder, the PIV technique with hydrogen bubbles as tracers was used.

Results obtained in this work reveal atypical behavior (compared with reported in
the literature) in maxima amplitudes. Cylinders are classified into four groups, each
one separated in different branches. Results also offer a comparison among different
parameters to classify the cylinders.

For the hydrodynamic response, experimental results are presented and compared with
the Williamson-Roshko map, revealing discordance. Trajectories and vortex shedding
modes are illustrated for one cylinder of each group along with the entire synchroniza-
tion regime. The jumps in these modes are aligned with most of the different branches
in each group.
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r0 cylindre radius

Re Reynolds number

ρ fluid density

ζ total damping

ζf fluid damping

ζs structural damping
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St Strouhal number

T period of the vibration

t time

τ0 wall shear stress

Ub body velocity in the in-line direction

Um maximum value of oscillatory-flow velocity

U main flow velocity

ν kinematic viscosity

Vr reduced velocity

v speed

ω angular oscillation frequency

ωd damped natural angular frequency

ωdv angular frequency of damped free vibrations

ωn undamped natural angular frequency

ωv angular frequency of undamped free vibrations

x, y x- and y-displacements of structure
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Introduction

Mechanical vibrations are one of the most important topics in mechanical engineering.
Depending on the situation, vibrations can be desired or not. For example, in a
vehicle suspension vibrations are necessary in order to allow wheels to remain always
in contact to the ground and to not lose stability, as well as to dissipate energy and
bring a comfortable trip. In energy harvesting, the piezoelectric effect (the ability of
certain materials to generate an electric charge as a response to mechanical vibrations)
is being used to produce environmentally friendly energy. On the other hand, undesired
vibrations must be avoided and considered in the design of mechanical devices. For
example, vibrations in machines, such as an unbalanced helicopter motor, may lead
to failure and therefore to catastrophic events. Vibrations caused by earthquakes may
also cause catastrophic events, but due to structural failure (creeping or stress peak).

A specific type of mechanical vibrations is the one caused by fluid-structural coupling.
The most famous example of this kind of vibrations is the Tacoma Narrows Bridge.
The bridge collapsed (Nov. 8, 1940) at 64 km/h, a much lower wind speed for which
this structure was designed. The cause of failure is related to vortex-induced vibrations.
Without speaking strictly, vortex-induced vibrations (VIV) occur when the structure
becomes coupled in an unstable oscillation driven by a fluid (air in the case of the
Tacoma Bridge). The oscillations increase their amplitude in each cycle because the
structure is unable to dissipate energy at the same rate at which the fluid inserts
energy into it. Finally, the oscillations are so large that cause failure due to excessive
deflection and stress.

Motivation and justification

The Tacoma bridge event marked the necessity to consider VIV effects in civil and
structural engineering. Since then, several fundamental studies were carried out by
different researches, many of them discussed in the reviews of Sarpkaya (1979), Griffin
& Ramberg (1982), Bearman (1984), Parkinson (1989) and Williamson & Govardhan
(2004). These among other studies help to develop new bridge designs capable of sup-
pressing VIV. An example is the second Jindo Bridge built in 2005 with a main span
of 344 m, see Fig. 1a. In this bridge, vortex-induced vibration was observed in the
windward bridge deck. To mitigate the amplitude of vibration 4 sets of 3.5 ton TMDs
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(Tuned Mass Damper), see Fig. 1b, which is a vibration control device installed inside
the structures to reduce wind-induced vibrations, designed by TESolution (an engi-
neering company specializing in wind engineering and vibration control) were installed
inside the bridge deck to reduce the vertical amplitude of 30cm to 3cm.

a) b)

Figure 1: 2nd Jindo Bridge: a) Actual photography and b) Vertical TMD
(Tuned Mass Dampers) for the 2nd Jindo Bridge. Obtained from
http://www.tesolution.com/2nd-jindo-bridge-tuned-mass-dampers.html.

Despite the mentioned and several works on VIV, many fundamental questions still
exist. Some of these interrogations are directly related to the behavior of the structure
in the lock-in region. This thesis is an effort to explore how the variation on the struc-
tural parameters (material, diameter and length) affects the behavior of the amplitude
response in the synchronization regime.

Objectives

The general objective is:

Determine the maximum oscillation and hydrodynamic response of flexible circular
cylinders subject to vortex induced-vibrations.

Specific objectives are:

1. Deepen the state of the art on VIV for flexible circular cylinders.

2. Design an experimental campaign considering relevant parameters on maximum
oscillation.

3. Build the experimental apparatus.

4. Develop a mathematical code to determine the dynamic response of the cylinder
using the PTV technique.
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Organization of this work

The following 5 chapters will be a broader development of this brief introduction. In
Chapter 1, the history and the fundamentals of vibrations are explained. Here the
importance and the elements of vibrations are presented. In Chapter 2, the theory
of vortex induced vibrations is settled down. Basic concepts and simple explanations
based on the state of art are developed here. Chapter 3, treats the dynamic and hydro-
dynamic analysis setup. This is a broad explanation in how to obtain the parameters
and the techniques to acquire both dynamic and hydrodynamic responses. In Chapter
4 the experimental results are presented. Some of the main results are the dynamic re-
sponse of the tip of the cylinder. Different behaviors are distinguished and classified in
four different groups. Finally, in chapter 5 the vortex shedding pattern is analyzed and
compared with the Williamson Roshko map along the lock-in region for each group.

At the end of this thesis, the main conclusions along with contributions and future
work are given.
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1 History and fundamentals of

vibrations

This chapter briefly explains the general notions of mechanical vibrations. First, a short
historical review of the study of vibration from its origins to the twentieth century is
given. Then, the importance of vibration analysis is discussed. Afterward, the three
main elements of vibrating systems are given. Finally, the chapter is focused on Vortex
Induced Vibrations (VIV) from its basic concepts to the different types of apparatus
used to study this phenomenon. The main equations to analyze VIV and the different
dynamic and hydrodynamic responses reported in the literature are established.

1.1 A brief historical review on vibrations

It is very probable that people became interested in vibration with the creation of the
first musical instruments. These people, long ago as 4000 B.C., started to define some
rules based on experience and the notions of what they considered sounded better.
Nevertheless, their knowledge never reached the level of a science.

It was until Greek civilization reached its high point that mathematicians as Pythago-
ras (582-507 B.C.) started to research sounds on a scientific basis. He used an ap-
paratus called “monochord” to investigate the sound of a string (see Fig. 1.1). This
device consisted of a piece of wood with three bridges, two fixed at the ends and one
mobile in the middle. A cord was placed on top of the bridges, one side was fixed to
the main piece of wood and the other end was held at constant tension due to weight.
Pythagoras noticed that two strings with different lengths, one half of the other, but
the same tension emits the same note, but the shorter one emits it an octave above.
This is a raw definition of pitch (the degree of highness or lowness of a tone).
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1 History and fundamentals of vibrations

Figure 1.1: Monochord scheme.

Besides of Pythagoras, there are only a few other greek works on the subject of music.
In 320 B.C., Aristoxenus wrote a work entitled “Elements of Harmony” and in 300
B.C., Euclid wrote about music without any reference to the physical nature of sound.
Moreover, it seems that no further advances in the theories of sound and vibration
were made for nearly 16 centuries in Western civilization.

On the eastern side of the world, in a.d. 132, Zhang Heng invented the first seismograph
(see Fig. 1.2). It consisted of a bronze jar with a special mechanism. It had eight
dragon faces with a ball in its mouth, each pointing to a specific direction. When an
earthquake started the pendulum would tilt in that direction, causing one dragon to
drop the ball. The ball produced a tinkling sound, alerting direction and time of the
earthquake.

Figure 1.2: First seismograph.

Back to Europe, in the seventeenth century, Galileo Galilei study the behavior of a
simple pendulum, this idea first became from observing the movement of a lamp in
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1.1 A brief historical review on vibrations

a church in Pisa. From his experiments, he found that the time period (the time the
pendulum takes from one side to the other and back) was independent of the amplitude
of swings. Also he described the relation among the time period and the length of the
pendulum and with resonance (increase in amplitude of oscillation due to synchronous
vibration).

Almost at the same time that Galileo, in France the mathematician Marin Mersenne
measured the frequency of vibration of a long string and with that information pre-
dicted the frequency of a shorter one with same tension and density. Later, in London,
Robert Hooke conducted experiments to find the relation between pitch and frequency
of a string. Also, Joseph Sauveur in France and John Wallis in England observed,
in a separate way, that a vibrating string has no motion at particular points (nodes)
while all the other points form specific shapes (loops). They also found that the higher
frequencies were integral multiples of the frequency with just one loop in the same
string. This “one loop shape” corresponds with the fundamental frequency, and higher
frequencies are called harmonics. Example of these terms are shown in Fig. 1.3.

Figure 1.3: Illustrative scheme of loops, nodes, fundamental and harmonic frequen-
cies.

Shortly after, Isaac Newton published its second law of motion, which is now used to
derive the equations of motion of a vibrating body. Moreover, Brook Taylor found
the theoretical solution of the problem of the vibrating string. The natural frequency
obtained by Taylor agreed with the experimental values of Galileo and Mersenne.
The procedure followed by Taylor would be perfected later by Daniel Bernoulli, Jean
D’Alembert and Leonard Euler with the introduction of partial derivatives in the
equations of motion.

From the work of these scientists, the principle of superposition was developed. This
is the most valuable development of theory of vibrations. All started with the problem
presented by the possibility of a string vibrating with several harmonics at the same
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1 History and fundamentals of vibrations

time. This would lead to the fact that the displacement of any particle of the string
at any instant would be equal to the algebraic sum of displacement for each harmonic.
Namely, absolutely any function (shape of the string) can be represented as an infinite
sum of series of sines and cosines, see Fig. 1.4. It was Fourier in 1822 who finally proved
the validity of this principle.

Figure 1.4: Superposition principle example.

The analytical solution of the vibrating string was presented by Joseph Lagrante in
1759. He assumed that the string was made up of small equally spaced mass particles,
and that for each particle would have a independent frequency. If the number of masses
increases til infinite, the resulting frequencies would be the harmonic frequencies of the
original string.

Around that time, the studies on different bodies other than strings became important.
Euler and Bernoulli focused their work on the vibration of thin beams supported
and clamped. Their approaches are now known as the Euler-Bernoulli beam theory.
Coulomb conducted experiments and also did theoretical work on torsional oscillations
of a metal cylinder suspended by a wire. He found that the period of oscillation is
independent of the angle of twist. The vibrations of plates was studied by Sophie
Germain and later her work were corrected by G. R. Kirchhoff. Meanwhile Poisson
solved the problem of vibration of a rectangular flexible membrane. To finish the
nineteenth century, Baron Rayleigh published a book on theory of sound. He published
a method to find the fundamental frequency on a conservative system by using the
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1.2 Importance of vibration analysis

principle of conservation of energy. Nowadays, an extension of this method is used to
find multiple natural frequencies, the Rayleigh-Ritz method.

In the twentieth century, Aurel Stodola contributed to the study of plates, membranes,
and beams, this last is also applicable to turbines; P. De Laval proposed a solution
for unbalanced rotating disk; and Stephen Timoshenko improved the theory of beams
by considering the effects of rotary inertia and shear deformations. Besides these
breakthroughs, the recent studies are mainly focused on using numerical evaluation
(finite element method, among others) to treat complex systems.

1.2 Importance of vibration analysis

Vibrations are part of our daily life. As we walk we produce a periodic motion. We can
hear because of vibration. The light we see can be described by waves that undergo
vibration. We need vibrations in our vocal chords to communicate.

As seen earlier, back in history, our ancients wanted to understand the phenomena
in natural events. However, in recent times, the studies are driven by engineering
applications (design of machines or structures). For some cases vibration can lead to
negative effects such as noise, wear of bearings or other machine parts, poor quality in
the surface finishing, failure due to fatigue, and so on. In the specific case of structural
vibration, it can cause discomfort and even fear in their occupants. Key concepts to
take care when designing a civil structure is the natural frequency and the resonance.
For example, the American Association of State Highway and Transportation Officials
(AASHTO) in the United States of America specifies the minimum frequency for a
pedestrian bridge to be 3 Hz, and for office buildings the natural frequency of floor
structures need to be kept within 4 Hz.

There are three general ways to reduce vibration. The first is to suppress the source
of excitation. This method is called isolation. However, in some applications like
earthquakes there is nothing that the designer can do about the source. The second
way consists in redesign the system until the vibration levels become acceptable. For
example, adding mass to the system so the natural frequency is changed and no reso-
nance occurs. This method is called design modification. The third way is to control
the vibration of the system. This is the control method and it needs to absorb or
dissipate vibrations through sensing and controlling. An example of this method is a
magnetic damper, it changes its damping depending on the electric current received.
This current is send by a controller that measures the displacement and takes action
according to it.

In other cases, vibrations are really useful. In musical instruments, shakers, and pace-
makers. Other examples in engineering applications are compactors, vibratory convey-
ors, and motors. Vibrations can even help to produce energy through the piezoelectric
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1 History and fundamentals of vibrations

effect. To both avoid and produce controlled vibrations we must understand how they
are produced and how can we modify them.

1.3 Elements of vibration

Vibration is a term normally used to describe oscillations in a mechanical system.
Each vibration has its own magnitude, frequency and phase angle. Magnitude refers
to the maximum variation of the displacement, namely is the distance between the
equilibrium point and the farthest point in the oscillation. The equilibrium point is a
certain point in the space where if the system is released, with zero velocity and no
forces are applied, the system would remain at rest. Frequency means the number of
cycles per time unit. The phase angle is helpful because it can be used to know the
offset between two waves or oscillations.

It is important to note that strictly speaking, vibration and oscillation are not the
same. Both last in time converting energy from one type to another. For example,
a pendulum converts kinetic energy into potential energy, it oscillates but it does not
vibrate. To declare that vibrations are occurring, a special type of energy, namely
deformation or elastic potential energy, must appear. However, several authors have
proposed different definitions and not always the elastic potential energy is involved.
For purposes of this research, the classical definition given at the beginning is sufficient.

There are three main elements for a vibratory system to exist. An element to storage
and release potential energy, usually an spring or some other item with elasticity. An
element to storage and release kinetic energy, could be any mass or inertia element. A
way to dissipate or loses energy, it can be a physical damper or due to the viscosity of
the surrounding fluid.

1.3.1 Springs

It can be defined as a mechanical link. This element is normally considered to have
no mass or damping. Although the most famous type of spring is a coil spring, there
are many different types. In fact, any elastic body can be considered as a spring. For
example a curved aluminum foil is deformed and, because of its elasticity, it will tend
to recover its original position.

The spring element is frequently represented as shown in Fig. 1.5. The spring constant

or spring stiffness is represented by k. In the part a) the spring is at its equilibrium
position, which means that the force acting on the spring is zero. In this case l
represents the free length of the spring. In part b) a force F is applied to the free end
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1.3 Elements of vibration

and this causes an elongation of the spring (denoted by x). This F force represents
the force required to elongate the spring a x length and can be calculated using

F = kx (1.1)

by integrating force along the displacement, the work (or potential energy) can be
obtained through

U =
1

2
kx2 (1.2)

Figure 1.5: Spring element.

An important attribute of a spring is the type of deflection obtained by a constant
force applied at the free end. For example, some springs have nonlinearities. This
could be achieved by arrangements of simple coil springs, by having a special spring
or due to the nature of the object considered as spring. In any case, the important
feature here is how the spring force and the displacement are related. Depending if the
spring is hard, soft or linear, the force will approach the behavior plotted in Fig. 1.6.
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1 History and fundamentals of vibrations

Figure 1.6: Linear and nonlinear springs.

It is important to mention that depending on the material from which the spring is
made of, it will have a force displacement curve. If the force applied reach the yield
force, the spring would enter at its plastic deformation zone and it will no longer be
entirely recovered when the force is eliminated. The spring would, ideally, work only
in the elastic deformation zone.

1.3.2 Mass or inertia elements

It normally is a rigid body and it can storage or lose kinetic energy with changes
in velocity. Following Newton’s second law and its simplification for systems with
constant mass:

F =
d(mv)

dt
= mẍ (1.3)

where m is the mass of the system, v is the velocity and ẍ means the second derivative
with respect to time of the displacement.

Depending on the vibratory system, different parts can be modeled with various
masses, see Fig. 1.7. However, in other cases different parts can be replaced by a
single equivalent mass. This can be achieved through several mathematical methods.
The location of the equivalent mass is assumed and from it, using geometrical lengths,
different masses can be clustered in one. The same applies to the inertia elements.
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1.3 Elements of vibration

Figure 1.7: Building equivalent system.

1.3.3 Dampers

A vibrating structure has the ability to dissipate energy into heat or other type of
energy. This ability is known as damping and its role is to limit the vibrations. There
are three types of damping: the structural damping, the matter (or material) damping
and the fluid damping. Structural damping is generated by friction. Matter damping
is generated by the dissipation of internal energy inside the material. Fluid damping
is generated by the dissipation of energy due to the fluid that moves along with the
vibrating structure. Usually the most important types of energy dissipation are the
structural and the fluid damping.

The viscous or resisting force can be expressed as:

F = cv = cẋ (1.4)

where c is the damping constant and ẋ is the derivative with respect to time of the
displacement. The viscous damping is always related to the shear or resisting force
and depending on the situation it can be described differently, see Fig. 1.8. In parallel
plates separated by viscous fluid it can be expressed as τ = µdv/dy, the damping
constant would be calculated from F = τA = µAdv/dy = cv, where A is the area of the
plate. In the case of a rotary shaft with lubricated clearance in a bearing, τ = µdv/dr
and instead of force the torque is used. This means the equation is T = (τA)R, where
A = 2πRL is the surface area of the shaft exposed to lubricant and R is the radio of
the shaft and the damping constant is c = T/ω.
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1 History and fundamentals of vibrations

Figure 1.8: Different viscous damping situations.

In some systems exist multiple dampers, and they can be replaced by a single equivalent
damper. For constant translational dampers, the equivalent constant can be calculated
by ceq = c1 + c2 if they are parallel placed and by 1/ceq = 1/c1 + 1/c2 if they are placed
in series.

1.4 Classification of vibrating systems

Depending on the point of view, there are several ways to classify vibratory systems.
These different classifications are explained briefly in the next subsections. First,
two distinctive classifications for systems are detailed. Then several classification for
vibrations are given.

1.4.1 Number of degrees of freedom

In the vibrating systems, the number of degrees of freedom (DOF) stands for the
minimum independent coordinates required to determine completely the positions of
all parts of the system at any time. In the first image, in Fig. 1.9, the Cartesian
coordinate x is the only one needed to describe the position of mass at any instant of
time. In the second image, the angular coordinate θ can be used to describe motion,
one for each inertia element. In the last image, the angular coordinates specifies the
positions of the masses.
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1.4 Classification of vibrating systems

Figure 1.9: Different degrees of freedom in vibratory systems.

In general, the necessary coordinates to describe a system form a set of generalized
coordinates. They can be Cartesian or non-Cartesian or both and are usually denoted
by q1, q2, q3, . . .

1.4.2 Discrete and continuous systems

Discrete systems are those that have finite numbers of DOF. All systems in Fig. 1.9
are examples of discrete systems and they are also called lumped parameter systems.

In some cases the number of DOF can be really high. For example in numerical
evaluation such as finite element method. When the number of DOF become infinite,
the system pass from discrete to continuous. This last case is also known as distributed

system.

The same system, depending on the situation, can be analyzed as a continuous or as
a discrete model. For example the beam described in Fig. 1.10 might be taken as a
continuous system with an analytical solution. Also, the same beam can be simplified
and taken as a discrete system with numerical solution.

Figure 1.10: Discrete and continuous system.
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1 History and fundamentals of vibrations

The following classification categories are based not in the system itself but in the type
of vibration that undergoes the system.

1.4.3 Free and forced vibration

In general terms, there are two kinds of mechanical vibrations: free vibrations and
forced vibrations. Free vibrations occurs when the body is kept in movement by
restoring gravitational or elastic forces. Forced vibrations, on the other hand, are
provided by an external periodic or intermittent force. In Fig. 1.11 an example of each
type of vibration is shown. Free vibrations can be appreciated in a bow cord. On the
other hand, forced vibrations are represented by a swing in which in every oscillation
the person add energy by swinging his legs up and down.

Figure 1.11: Free and forced vibration examples.

1.4.4 Damped and undamped vibration

Both types of vibrations can be damped or undamped. The damped vibrations de-
crease with time until the system reaches the equilibrium position again. Opposite
to that, the undamped vibrations may continue infinitely if the frictional effects are
neglected. This is only possible mathematically, being that friction is always present
and it acts as a damping force. The response of displacement vs time for both types
of vibrations are depicted in Fig. 1.12 for a one degree of freedom system.
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1.4 Classification of vibrating systems

Figure 1.12: Undamped and damped vibrations.

1.4.5 Linear and nonlinear vibration

For a linear vibration system to exist, all the basic components (mass, spring and
damper) need to behave linearly. If any of the three elements have a nonlinear behavior,
the resulting vibration will be nonlinear. If the vibration is linear, the superposition
principle holds. For the nonlinear vibration, the superposition principle is not valid
and the problem needs a different approach. Usually, most of the vibratory systems
behave (or can be approximated) linearly for small vibrations. However, in many
real systems the nonlinearity cannot be avoid. Graphical examples of both linear and
nonlinear vibrations are shown in Fig. 1.13.

Figure 1.13: Linear and nonlinear vibrations.
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1 History and fundamentals of vibrations

1.4.6 Deterministic and random vibration

If the excitation magnitude, force or motion, applied to a vibratory system is known at
any instant in time the excitation is called deterministic and, therefore, the vibration
will be also deterministic. On the other hand if the excitation cannot be predicted it is
called random or non-deterministic. One of the most common examples of a random
vibration is an earthquake, see Fig. 1.14. When a random vibration occurs, a simple
approach could be to estimate an average magnitude.

Figure 1.14: Deterministic and random vibrations.

1.5 Vortex-Induced Vibration

From the different types of vibrations studied, one of particular interest is the so-
called vortex-induced vibration (VIV). These are self-excited vibrations due to vortex
shedding normally in long slender bodies. This type of vibrations occur in a specific
region known as ‘lock-in’. The classical definition of lock-in is: the regime where the
body oscillation frequency (f) and the vortex shedding frequency (fv) are close to the
natural frequency of the structure (fn), that is f ≈ fv ≈ fn (see Blevins 1990 and
Sumer & Fredse 1997). However, on more recent studies a lock-in regime was found at
several times the natural frequency (see Moe & Wu 1990, and Khalak & Williamson
1997). One of the most accepted definitions, and the one used as a reference in this
thesis, is the one proposed by Sarpkaya (1995). Synchronization, or lock-in, might
be defined as the regime where the fluid force frequency must match the shedding
frequency. Or as proposed by Khalak & Williamson (1999), synchronization is the
matching of the frequency of the periodic wake vortex mode with the body oscillation
frequency.

In order to study the lock-in region, and therefore the VIV phenomenon, there are
different configurations of experimental apparatus used in the literature. These differ-
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1.5 Vortex-Induced Vibration

ent configurations have unique features that allow different responses and behaviors.
Despite the configuration, some data are almost identical and can be used in a broader
way. However, that does not always happen and the chosen configuration will affect
the equations and assumptions made, and therefore the results.

1.5.1 Types of experimental apparatus

1.5.1.1 Rigid and flexible cylinders

There are two different types of cylinders: the rigid cylinder and the flexible cylinder
(see Fig. 1.15). A rigid cylinder has the characteristic of not being deformed by the
effect of external forces. In other words, if an axis is plotted along the cylinder,
the relative position of any particle to this axis will not change despite the external
forces applied to the cylinder. Although a real body is never totally rigid, this kind
of cylinders are useful to describe movement (usually considering a continuous mass
distribution). Moreover, in a flexible cylinder, the external forces cause deformation.
This deformation appears as an opposition to the external force and therefore, when
the force is removed the cylinder returns to its original state. What a flexible body
experiences is what actually happens, hence, is a more accurate model but also a more
complex one. Due to its proximity to the reality, the chosen cylinder for this research
was a flexible one.

Figure 1.15: Rigid and flexible cylinders.

1.5.1.2 Elastic, pivoted and cantilevered cylinders

In the literature, there are different systems or apparatus to study VIV. Three of those
systems are: elastic base system, pivoted rod or pendulum system and cantilevered

15



1 History and fundamentals of vibrations

bar system (see Fig. 1.16). Each has a different mathematical treatment.

The elastic base system consists of a rigid cylinder mounted on an elastic base. Nor-
mally this base allows the cylinder to move only in one degree-of-freedom. And because
of the configuration, it is always a two-dimensional phenomenon. Important research
concerning this system are those of Jauvtis & Williamson (2004), Stappenbelt & Lalji
(2008) and Blevins & Coughran (2009).

The pivoted pendulum system consists of a rigid cylinder mounted in a pivoted pen-
dulum base. It can have one or two degrees-of-freedom, namely, oscillations in the
cross-flow and in the in-line directions. This configuration allows the base to have the
same natural frequency in both directions. Also the base allows the model to rotate
around the Cardan-joint axis at the top of the rigid bar. Some interesting research
using this system were carried out by Freire & Meneghini (2010) and Gonçalves et al.
(2011).

The cantilevered bar system consists of a flexible cylinder attached to a rigid base.
This configuration can have two degrees-of-freedom. Normally, this system has a very
low structural damping coefficient and its stiffness depends directly on the length of
the cylinder. Usually for this kind of system, the amplitude of the in-line oscillations
are less than 10% of the amplitude of the cross-flow oscillations. Some researchers that
used this system are: Pesce & Fujarra (2000) and Fujarra et al. (1998). This kind of
system is the one used in the present work due to its resemblance to reality.

Figure 1.16: Different systems to study VIV.
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1.5 Vortex-Induced Vibration

1.5.1.3 Tapered and uniform

In the literature, different types of cylinders are used (see Fig. 1.17). Tapered cylinders
are used to study three-dimensional vortex patterns and/or the span-wise variation of
the amplitude of the oscillations. According to Techet et al. (1998) tapered cylinders
may produce different hydrodynamic responses along the cylinder. On the other hand,
uniform cylinders are most commonly used. They are easier to construct and to model
mathematically. Because of this, a uniform cylinder is used in this work.

Figure 1.17: Tapered and uniform cylinders.

Once the entire configuration of the experimental apparatus is stated, in this case a

cantilevered uniform flexible circular cylinder, the mathematical model of the system
can be established. Next section indicates some important points about passing from
actual problem to differential equations capable of describing the main variables.

1.5.2 Mathematical model

In engineering problems is not always possible to obtain mathematical solutions. Only
in a few simple cases an analytic solution is found. When the problem exceeds the
complexity of the equations or the methods to solve these equations, simplifications
must be made. In spite of the simplifications, results must be capable of achieving
certain goals.

The key to pass from a real problem to a mathematical solution is to obtain a mathe-
matical model and, if it is possible, a discretized model. A discretized model includes
a symbolic representation of the idealized system and all the simplifications and as-
sumptions made.
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Figure 1.18: Converting a real problem to a mathematical model.

When the structure approaches to a model in which real mass (the one that a weight
scale would measure) is replaced by an equivalent mass, the new system is called
discretized model. An equivalent mass is a punctual mass connected by springs and
dampers with no mass. If the real mass is represented in a distributed form (distributed
in physical space), it is said that the system is now a model with distributed parameters.

In this work, the experimental apparatus is a cantilevered uniform flexible circular
cylinder under VIV. The mathematical model is a discretized model, and the equation
of motion generally used to represent the displacement in the cross-flow direction under
this configuration is (Govardhan & Williamson, 2000 and Javitus & Williamson, 2004):

mÿ (t) + cẏ (t) + ky (t) = F (t) (1.5)

where m is the total mass of the system, c is the structural damping, k is the spring
constant, and F is the fluid force in the transverse direction. When the body oscillation
frequency is synchronized with the periodic wake mode, F (t) can be approximated to:

F (t) = F sin (ωt+ φ) (1.6)

where

y(t) = A sin (ωt) (1.7)

in which ω = 2πf , and f is the oscillation frequency. The phase angle φ represents
the offset between the fluid force and the body displacement. Sarpkaya (1979) and
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1.5 Vortex-Induced Vibration

Bearman (1984) pointed out that this phase angle is related to the energy transfer
from the fluid to the body, and therefore it influences the amplitude of oscillation.

1.5.2.1 Parameters

As it can be seen from the last section, there are three main parameters in the equation
of motion: mass, spring constant, and structural damping coefficient. Each parameter
has different features. Here the three elements are ideal, which implies the following
facts:

Ideal mass:

• The ideal mass is totally rigid.

• The motion of an ideal mass is not affected by any damping force or friction.

Ideal spring:

• The ideal spring has no mass or internal damping.

• A positive value of y produces a negative restoring force, the spring force repre-
sents an opposition to original movement.

Ideal damper (mechanical resistance):

• The ideal damper has no mass and it does not causes a restoring force.

• Force due to viscosity is typically approximated as being proportional to velocity.

1.5.2.2 Forces

As an important part of the mathematical model, forces must be stated and decom-
posed to deeply understand some concepts, like the vortex formation. Lighthill (1986)
shows that the total fluid force, Ftotal, expressed in Eq. 1.8 can be decomposed into a
‘potential force’, Fpotential, and a ‘vortex force’, Fvortex. He also stated that the vortex
force is caused by the dynamics of the ‘additional vorticity’, where additional vortic-
ity is the entire vorticity in the flow field minus “part of the distribution of vorticity
attached to the boundary in the form of a vortex sheet allowing exactly the tangen-
tial velocity associated with the potential flow” (Lighthill, 1986). The vortex force is
directly related to vortex dynamics, and any change in the vortex force would lead to
a change in the vortex formation mode.

Ftotal = Fvortex − Fpotential (1.8)
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1 History and fundamentals of vibrations

where the potential force is due to the added-mass (see sec. 2.4.3.1 for detailed infor-
mation about added also known as hydrodynamic mass):

Fpotential(t) = m′ÿ (t) (1.9)

The equation of motion using the vortex force is given by

(m+m′)ÿ (t) + cẏ (t) + ky (t) = Fv sin (ωt+ φvortex) (1.10)

and the equation of motion using the total force is given by

mÿ (t) + cẏ (t) + ky (t) = Ft sin (ωt+ φtotal) (1.11)

Once the configuration and equations used to study VIV were stated, in the next
sections the different dynamic and hydrodynamic responses found in literature will be
briefly explained.

1.5.3 Types of dynamic response in vortex-induced vibrations

According to Khalak & Williamson (1999), two different types of responses exist for
an elastically mounted system depending on the mass-damping parameter (m∗ζ), see
Fig. 1.19. Where m∗ = 4m/ (ρπD2)is the mass ratio and ζ is the damping ratio.
In the mass ratio m is the mass per unit length. For a high m∗ζ, experiments like
the ones conducted by Feng (1968) and Brika & Laneville (1993) show two different
branches of amplitude response with hysteresis in the transition between them. Khalak
& Williamson described them as the ‘initial’ branch, which corresponds to the highest
amplitudes reached, and the ‘lower’ branch. For a low m∗ζ, experiments conducted by
Khalak & Williamson (1996, 1997, 1999) show the existence of an additional branch.
They find the so-called ‘upper’ branch and an hysteretic transition from initial to upper
branch. On the other hand, transition from upper to lower branch turn out to be an
intermittent switching of modes.

Despite the fact that this classification was intended for elastically mounted cylinders,
the classification seems to fit with the flexible mounted cylinders as well. For such
reason, this classification is used in this thesis. According to the classification and in
order to get more information on the lock-in regime, in this research, it was decided
to study the low m∗ζ case.
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1.5 Vortex-Induced Vibration

Figure 1.19: Sketches of the two different types of dynamic response. H means an
hysteretic transition and I means an intermittent switching of modes. Based on
Govardhan & Williamson (2000).

1.5.4 Types of hydrodynamic response in vortex-induced
vibrations

A number of researches have reported different patterns of vortex formation as Re and
A∗ vary along the lock-in regime (see Fig. 1.20). Griffin & Ramberg (1974) were the
first showing, in forced-vibrations experiments, that an asymmetric mode occurs where
three vortices per cycle are formed. Also, in forced-vibration studies, Williamson &
Roshko (1988), showed different vortex formation modes. These modes were defined as
‘2S’, ‘2P’ and ‘P+S’. ‘2S’ indicates two single vortices formed per cycle, ‘2P’ indicates
two pair of vortices formed per cycle and ‘P+S’ indicates a pair of vortices and a single
vortex per cycle.

It is important to note that the existence of the ‘2P’ mode in forced transverse vibra-
tions was confirmed by Sheridan et al. (1998) using experimental measurements. Even
a hybrid mode where the ‘2P’ and ‘2S’ modes occur at the same time at different span-
wise locations along a tapered cylinder was found by Hover & Triantafyllou (1998),
also in forced-vibration. However, some two-dimensional numerical simulations, car-
ried out by Meneghini & Bearman (1995) and Blackburn & Henderson (1995), and
experiments, by Jeon, Shan & Gharib (1995) and Atsavapranee et al. (1998), do not
find the ‘2P’ mode.

Despite the fact that there are works where the ‘2P’ mode does not exist, Williamson
& Roshko (1988) suggested that a phase jump, φ, corresponds to a change of mode
from ‘2S’ to ‘2P’ in forced-vibration experiments. Even more, Brika & Laneville (1993)
and Khalak & Williamson (1999) showed independently, in free-vibration experiments,
that the jump from the initial branch to the lower branch is directly related to the
mode change from ‘2S’ to ‘2P’. In a similar way, Govardhan & Williamson (2000)
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1 History and fundamentals of vibrations

confirmed that a large jump in the ‘vortex phase’, φvortex, in the initial-upper branch
transition is associated with a jump between the ‘2S’ to ‘2P’ vortex wake modes. They
also conclude that there is no jump in φvortex at the upper-lower branch transition since
both branches are associated with the ‘2P’ mode. However, interestingly, Evangelinos
& Karniadakis (1999) concluded that the ‘P+S’ pattern may be associated with the
upper branch.

Besides the vortex formation modes mentioned above, others have been found. The
‘P’ mode indicates a pair of vortices formed per cycle. Although it may be mistaken as
a ‘2S’ mode, the ‘P’ mode have the vortices of a pair closer and on the same horizontal
axis. Other vortex formation mode, the ‘C’ mode, is defined as a vortex coalescence
and is rarely seen.
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1.5 Vortex-Induced Vibration

Figure 1.20: Sketches of the vortex shedding patterns found in Vortex-Induced Vi-
brations. S means a single vortex and P means a vortex pair, each pattern is defined
by the number of pairs and single vortices formed per cycle. Gray lines encircles the
vortices shed in one complete cycle. Based on Williamson & Roshko (1988).
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2 Theory of vortex induced

vibrations

In this chapter four main topics are developed. First, some theory about vibrating
systems and solutions of motion equations are offered. Secondly, a wide explanation
about vibration modes and different mathematical models to obtain the natural fre-
quency is offered. Later, flow around cylinders is reviewed. Finally, forces in cylinders
are studied starting with a cylinder in steady current and ends with a more compli-
cated case like a cylinder in oscillatory current. Even though the topics explained in
this chapter are not exclusive of VIV, they are necessary to understand the phenom-
ena present in it. In the fifth section important topics in VIV are presented, with the
concepts developed earlier, which are part of the particular objectives of this thesis.

2.1 Solutions to vibration equation

A vibrating structure, sketched in Fig. 2.1, has three forces acting on it: a spring force,
a damping force and a force on the structure. The spring force, namely −ky, is based
on k the spring constant and y the displacement of the structure from the equilibrium
position. The damping force, cẏ, is due to c the viscous damping coefficient and the
velocity of the system. Finally the force on the structure, F (t), depends on external
factors acting on the system.

The differential equation that governs the motion of the structure is:

F (t) = mÿ (t) + cẏ (t) + ky (t) (2.1)

where m is the total mass of the system (see sec. 1.5.2.1 for more detailed information).
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2 Theory of vortex induced vibrations

Figure 2.1: Sketch of a flexibly-mounted system vibrating in y direction.

2.1.1 Free vibrations without viscous damping

In this case, no external forces are acting on the structure. F (t) = 0 (free vibrations)
and the damping is null, c = 0. The equation is now

mÿ + ky = 0 (2.2)

The solution to this equation is

y = A cos (ωvt) + B sin (ωvt) (2.3)

where ωv is the angular frequency of the motion, namely

ωv =

√

k

m
(2.4)

2.1.2 Free vibrations with viscous damping

The damping must be considered, but the external forces are still zero. The equation
can be written as

mÿ (t) + cẏ (t) + ky (t) = 0 (2.5)
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2.1 Solutions to vibration equation

Here the solution is of the form

y = C1 exp (r1t) + C2 exp (r2t) (2.6)

where r1 = 1
2m

(

−c+
√
c2 − 4mk

)

and r2 = 1
2m

(

−c−
√
c2 − 4mk

)

. Depending on the
value of m, c and k, three different cases may occur. Only two are of interest for the
present work (both responses are shown in Fig. 2.2):

Over-damped case (c2 > 4mk) In which r1 and r2 have real values. Considering
y(0) = Ay and ẏ = 0, the solution will be:

y =
Ay

r1 − r2
(r1 exp(r2t)− r2 exp(r1t)) (2.7)

This type of motion is referred to as ‘aperiodic’ motion.

Under-damped case (c2 < 4mk) In which r1 and r2 are complex. The real part of
the solution, considering the same initial conditions as in the over-damped case, may
be written as:

y = Ay exp
(

− c

2m
t
)

cos (ωdvt) (2.8)

where A is the amplitude of vibrations at time t = 0, and the angular frequency is
given by

ωdv =

√

k

m
−
( c

2m

)2

(2.9)
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2 Theory of vortex induced vibrations

Figure 2.2: Free vibrations with viscous damping. a) over-damped case with no vi-
bration, and b) underdamped case the oscillations decrease with time.

2.1.3 Forced vibrations with viscous damping

In this case, there is an external force acting on the system, F (t). Now the equation is
in its full form, Eq. 2.82. If the external force takes the form F = F0 cos (ωt), where
ω is the angular frequency associated with the force, the general solution would be:

y = Ay exp
(

− c

2m
t
)

cos (ωdvt) + C1 cos (ωt) + C2 sin (ωt) (2.10)

The first term in this equation represents the case when F = 0, and with the time
its contribution to the movement of the system will be zero. Therefore, the other two
terms will govern the movement and the system will have the same angular frequency
as the force, ω.

Figure 2.3: Forced vibrations with viscous damping.
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2.1 Solutions to vibration equation

The case when only the two last terms of the Eq. 2.10 affect the structure is known
as steady forced vibrations. The solution may then be written as

y = A cos (ωt− φ) (2.11)

where

A =
√

C2
1 + C2

2 =
F0

k









1
√

(

1− ω2

ω2
v

)2

+
(

c
mωv

)2 (
ω
ωv

)2









(2.12)

and

φ = tan−1

(

C1

C2

)

= tan−1







(

c
mωv

)(

ω
ωv

)

1−
(

ω
ωv

)2






(2.13)

Figure 2.4: Phase delay (φ) illustration.
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2 Theory of vortex induced vibrations

2.1.4 Damping

2.1.4.1 Structural damping

If a rigid cylinder is suspended with springs in still water and displaced from its equilib-
rium position and then released, the cylinder would start to oscillate. These oscillations
will eventually disappear due to damping (structural plus fluid damping). To separate
the structural damping, the structure should be placed in vacuum. Only in this case
the damping will be caused merely by the structural damping.

For the simplest case, consider a structure in vacuum with free vibrations and with no
damping. The equation will be

mÿ + ky = 0 (2.14)

and the solution will be written as

y = Ay cos (ωvt) (2.15)

where ωv =
√

k/m, will be the angular frequency of an undamped free vibrations
system in vacuum.

Figure 2.5: Free vibrations in vacuum without damping.

Now consider the last system with damping. Since the structure is placed in vacuum,
the damping force will only correspond to the structural damping. The equation to
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2.1 Solutions to vibration equation

solve will be

mÿ + cẏ + ky = 0 (2.16)

and its solution

y = Ay exp
(

− c

2m
t
)

cos (ωdvt) (2.17)

where ωdv corresponds to Eq. 2.9. For convenience, the damping coefficient may be
written as

ζs =
c

2mωdv

(2.18)

Eq. 2.18 is the definition of the structural damping factor. Re-writing the solution:

y = Ay exp (−ζsωdvt) cos (ωdvt) (2.19)

in which

ωdv = ωv

√

1

1 + ζ2s
(2.20)

Figure 2.6: Free vibrations in vacuum with damping.
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2 Theory of vortex induced vibrations

2.1.4.2 Fluid damping in still fluid

Finally, consider a damped and free vibrations system in otherwise still fluid. The
difference with the last system is that the vibrations will decay faster in a fluid than
in vacuum. This is due to the fact that the fluid damping is added to the structural
damping.

When the cylinder is oscillating, the Morison force acts and the mass is no longer m
but rather m+m′. An additional hydrodynamic resistance force is present, which can
be observed as an increment in the total damping.

The equation for this case will be

(m+m′)ÿ + cẏ +
1

2
ρCDD |ẏ| ẏ + ky = 0 (2.21)

and its solution will be written as

y = Ay exp (−ζωdt) cos (ωdt) (2.22)

where the angular frequency, ωd, is given by

ωd = ωn

√

1− ζ2 (2.23)

reminding that

ωn =

√

k

m+m′
(2.24)

and ζ is the total damping (considering both structural and fluid damping)

ζ = ζs + ζf (2.25)
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2.1 Solutions to vibration equation

Figure 2.7: Free vibrations in still fluid with damping.

2.1.4.3 Measurement of damping

Testing is the ‘easiest’ way to determine the damping of a system. This is usually done
in air and/or in water. One of the main techniques used for measuring of damping is
the free decay. It consists on applying a known excitation to the structure (move the
system from its equilibrium point), record the response of the structure and find the
damping by matching the theoretically predicted response with the recorded results.

If yn and yn+1 were two consecutive amplitudes recorded in the experiment (see
Fig. 2.8), the ratio of both will be

yn
yn+1

=
Ay exp (−ζωnt)

Ay exp (−ζωn (t+ T ))
= exp (ζωnT ) (2.26)

in which T is the period of the vibration

T =
2π

ωd

(2.27)

From the Eq. 2.26 and 2.23, ζ is obtained as:

ζ =
δ

√

δ2 + (2π)2
(2.28)

where the quantity δ = ln (yn/yn+1)is known as logarithmic decrement.
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2 Theory of vortex induced vibrations

Figure 2.8: Recorded response of the structure in a free decay experiment.

2.2 Natural frequencies and vibration modes

There are different methods to determine the natural frequencies and the mode shapes
of a body. For example, the Dunkerley’s formula, the Rayleigh’s method, the Holzer’s
method, the Jacobi’s method, the matrix iteration method and the standard eigenvalue
method. The majority of these methods are beyond the scope of this thesis. To be more
specific, only the mathematical analysis of a single degree of freedom and a continuous
system considering the Euler-Bernoulli equation cantilevered beam is presented here.

2.2.1 Frequencies of lumped systems

A lumped system is also a single degree of freedom system. Consider a uniform slender
beam in cantilever with length l, mass m and properties k, E, I with a concentrated
mass M at the free end. In order to lump the beam mass and the concentrated mass,
an equivalent mass at the free end must be found by using the equivalence kinetic
energy.

First consider the free-body diagram of the beam shown in Fig. 2.9. The static deflec-
tion is:

y(x) =
Px2

6EI
(3l − x) =

Mgx2

6EI
(3l − x) =

ymax

2l3
(3lx2 − x3) (2.29)

where P is a force acting in the free end of the cantilever beam and g is the gravity.
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2.2 Natural frequencies and vibration modes

The maximum kinetic energy of the beam is given by:

KEmax =
1

2

ˆ

m

l
[ẏ(x)]2 dx (2.30)

where the integral is from 0 to l. By substituting y(x), the Eq. 2.30 becomes

KEmax =
m

2l

(

ẏmax

2l3

)2 ˆ

(3lx2−x3)2dx =
(m

2l

)

(

ẏ2max

4l6

)(

33

35
l7
)

=
1

2

(

33

140
m

)

ẏ2max

(2.31)

Figure 2.9: Beam undergoing transverse vibrations. Where y(x) is the transverse
deflection measured from its static equilibrium point.

Since the maximum kinetic energy is half the mass multiplied by the square of the
velocity, this means:

KEmax =
1

2
meqẏ

2
max (2.32)

From Eq. 2.32 it can be deduced that:

meq =
33

140
m (2.33)

The natural frequency of transverse vibration of the beam with a concentrated mass
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2 Theory of vortex induced vibrations

is given by:

ωn =

√

k

Meff

=

√

k

M + 33
140

m
(2.34)

where Meff is the effective mass acting at the end of the cantilever beam. If the
concentrated mass is removed, then a simple lumped cantilever beam system will
remain, see Fig. 2.10. It can be deduced that the natural frequency is:

ωn =

√

k
33
140

m
(2.35)

Figure 2.10: Lumped beam undergoing transverse vibrations.

2.2.2 Frequencies of continuous systems

First consider a uniform beam of mass density ρ and elastic modulus E with a length
L and a cross-sectional area A, which leads to a moment of inertia I (see Fig. 2.11).
The x axis is placed in the neutral axis of the beam and along it an external load per
unit length, f(x, t), exists. Finally, the transverse deflection is measured from the x
axis and is denoted by w(x, t).
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2.2 Natural frequencies and vibration modes

Figure 2.11: Beam undergoing transverse vibrations. Where w(x, t) is the transverse
deflection measured from its static equilibrium point.

If a differential element of the beam is taken, the external force acting on it will be
the one shown in Fig. 2.12. This is known as external loading f(x, t), and it causes
internal bending moment M , and the internal shear force V . There are other forces
involved but they are small in comparison, so their effects are ignored.

Figure 2.12: Free-body diagram of differential beam element. The left part represents
the external forces and the right side, the effective forces following Newton’s law.

The sum of forces in vertical direction is:

V −
(

V +
∂V

∂x
dx

)

+

ˆ

f(ς, t)dς = ρA
∂2w

dt2
dx (2.36)

where the integral is from x to x+ dx, and the variable ς is the curvature created due
to bending. The mean value theorem implies that there is an x where

´

f(ς, t)dς = f(x, t)dx

and since dx is infinitesimal, x ≈ x, so Eq. 2.36 becomes:

f(x, t)− ∂V

∂x
= ρA

∂2w

dt2
(2.37)
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Now, the sum of moments about the left side of the beam in Fig. Fig. 2.12 is:

M −
(

M +
∂M

∂x
dx

)

−
(

V +
∂V

∂x
dx

)

dx+

ˆ

(ς − x) f (ς, t) dς = ρA
∂2w

dt2
dx

(

dx

2

)

(2.38)

in Eq. 2.38 there are terms of order (dx)2, which are negligible compared to terms of
order dx. Also, mean value theorem is used on the integral and since ς − x is smaller
than dx, it can be deduced that the integral is also of order (dx)2. The only terms left
are:

V = −∂M

∂x
(2.39)

The internal bending moment in the cantilever beam, from mechanics of materials, is:

M = −EI
∂2w

dx2
(2.40)

where the second derivative of its deflected shape with respect to x is interpreted as
its curvature, E is the Young’s modulus and I is the area moment of inertia of the
cross-section. Substituting these results in 2.37:

f(x, t)− EI
∂4w

dx4
= ρA

∂2w

dt2
(2.41)

This equation can be nondimensionalized by:

x∗ =
x

L
, t* = t

√

EI

ρAL4 , w
∗ =

w

L
, f ∗ =

f

fm

where fm is the maximum value of f(x, t). These substitutions leads to:

fmL
3

EI
f ∗ − ∂4w∗

dx∗4
=

∂2w∗

dt∗2
(2.42)
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2.2 Natural frequencies and vibration modes

Finally, the ∗s have been dropped from nondimensional variables and the equation is
now:

fmL
3

EI
f − ∂4w

dx4
=

∂2w

dt2
(2.43)

Since the nondimensionalized equation is of fourth order, four boundary conditions,
two at x = 0 and two at x = 1 must be specified. The boundary conditions depend
on the supports of the beam. These conditions must have a physical meaning, in the
nondimensional form: the deflection is w, the slope of deflection is ∂w/∂x, the internal
bending moment is ∂2w/∂x2, and the internal shear force is ∂3w/∂x3.

2.2.2.1 Free vibration in vacuum

Vibrations here are free, this means that f(x, t) = 0. The equation of motion is given
by:

∂4w

dx4
+

∂2w

dt2
= 0 (2.44)

The boundary conditions for the fixed end in x = 0 are:

w = 0, and
∂w

∂x
= 0

and the boundary conditions for the free end in x = 1 are:

∂2w

∂x2
= 0, and

∂3w

∂x3
= 0

In order to solve the equation, the method of separation of variables is used. The
product solution is w(x, t) = X(x)T (t). This leads to:

1

T

d2T

dt2
= − 1

X

d4X

dx4

and equaling both sides to a constant:

39



2 Theory of vortex induced vibrations

d2T

dt2
+ λT = 0, and

d4X

dx4
− λX = 0

The solutions to these equations are:

T (t) = A cos
(

λ1/2t
)

+B sin
(

λ1/2t
)

(2.45)

X(x) = C1 cos
(

λ1/4x
)

+C2 sin
(

λ1/4x
)

+C3 cosh
(

λ1/4x
)

+C4 sinh
(

λ1/4x
)

(2.46)

Applying the boundary conditions, the five lowest nondimensionalized natural frequen-
cies for this specific case correspond to ωk =

√
λk: ω1 = 3.51, ω2 = 22.03, ω3 = 61.70,

ω4 = 120.9, and ω5 = 199.9. The corresponding dimensional natural frequency is

ω̄k = ωk

√

EI

ρAL4
(2.47)

The mode shape is

Xk(x) = Ck

[

cosh
(

λ1/4x
)

− cos
(

λ1/4x
)

− αk

(

sinh
(

λ1/4x
)

− sin
(

λ1/4x
))]

(2.48)

, where αk =
cos

(

λ
1/4
k

)

+cosh
(

λ
1/4
k

)

sin
(

λ
1/4
k

)

+sinh
(

λ
1/4
k

) . Ck can be calculated with the kinetic energy scalar

product
ˆ

Xj(x)Xk(x)dx (2.49)

the integral is from 0 to 1. This yields to:

Ci =
1

√

´

[cosh (λix)− cos (λix)− αi (sinh (λix)− sin (λix))]
2 dx

(2.50)

Fig. 2.13 represents the five normalized lowest mode shapes.
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2.2 Natural frequencies and vibration modes

Figure 2.13: Five lowest mode shapes.

The natural frequency depends on the eigenvalues, λk, and on cylinder properties
such as Young’s modulus, moment of inertia, density, cross-sectional area and length.
Neither of them depends on the orientation of the cylinder.

2.2.2.2 Free vibration in water

In order to simulate a cantilever beam in free vibration in water, the effect of water is
represented by its damping. Eq. 2.44 applies to this problem. Instead of a free end, in
x = 1, the beam has a viscous damper (see Fig. 2.14). The new boundary conditions
are:

∂2w

∂x2
= 0, and EI

∂3w

∂x3
= c

∂w

∂t

where the solutions are of the form:

w(x, t) = W (x)eλt (2.51)

W (x) is a complex function in general, and λ is the eigenvalue of the system which is
also complex in general. The detailed solution for the free vibration response is carried
out in (Gürgöze, 2006). When the beam vibrates at λ frequency, the absolute values
of W (x) represent the amplitude distribution over it.
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2 Theory of vortex induced vibrations

Figure 2.14: Beam undergoing free vibrations with a viscous damper simulating wa-
ter. Where w(x, t) is the transverse deflection measured from its static equilibrium
point.

In this work, the amplitude is considered only at the tip of the cylinder. In order to
solve the natural frequency at the tip of a cantilever cylinder, Eq. 2.44 was used with its
corresponding boundary conditions (Gürgöze, 2006) and the eigenvalues are obtained
by setting to zero the determinant of the dynamic stiffness matrix (detK(β, µ) = 0).
The dynamic stiffness matrix is:

K =
EI

1 + e2iβ − 4e(1+i)β + e2β + e(2+2i)β

[

αF α
α αM

]

(2.52)

where

β4 = −ρA

EI
λ2 β = βL µ =

cλ

EIβ3

αF = β3
{

(1− i) + e2β [(−1− i) + µ] + e(2+2i)β [(−1 + i) + µ] + µ− 4e(1+i)βµ+ e2iβ [(1 + i) + µ]
}

α = iβ2
(

−1 + e2iβ
)(

−1 + e2β
)

αM = β (1 + i)
(

−1 + ie2iβ − ie2β + e(2+2i)β
)

where c is a lumped viscous damping parameter that represents the effect of water
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2.3 Flow around a cylinder in steady current

as the working fluid. Finally the different frequencies, each one associated with one
eigenvalue, are given by 2.53:

ω2
i = (βiL)

4 EI

ρAL4
(2.53)

2.3 Flow around a cylinder in steady current

2.3.1 Regimes of flow around a smooth circular cylinder

The Reynolds number (Re), is a non-dimensional quantity used to describe similar
flow patterns in fluid flows under different circumstances. It is defined as the ratio
between the inertial and the viscous forces, which highlights the importance of each
force for a given flow condition. In the case of flow around a smooth circular cylinder,
it is defined as:

Re =
inertial forces

viscous forces
=

ρDU

µ
=

DU

ν
(2.54)

where D is the diameter of the cylinder, U is the main flow velocity, and ν is the
kinematic viscosity.

The flow is subjected to enormous changes as the Re increase from zero. Fig. 2.15
shows the different regimes of flow classified according to the Reynolds number. As it
can be seen (Fig. 2.15a), for very small Re there are no separation, it only occurs when
Re > 5. For 5 < Re < 40, a fixed pair of vortices appear in the wake of the cylinder
(Fig. 2.15b), which length, according to Batchelor (1967), increases with the Re.

When Re exceeds a value of 40, the flow is no longer stable and a phenomenon called
vortex shedding shows up. This event consists in the shedding of vortices alternately
to either side of the cylinder, normally with a very specific frequency. This is normally
known as a “vortex street” (Fig. 2.15d-f). In the range 40 < Re < 200, the vortex
street is fully laminar and it does not vary along the cylinder (is a 2-D phenomenon).

When Re increases, the flow starts a transition from laminar to turbulent. As stated
by Bloor (1964), in the range 200 < Re < 300 this transition moves towards the
cylinder, and once Re = 400 the vortices formed are turbulent. According to the work
of Gerrard (1978) and Williamson (1988) in the range 200 < Re < 300 the vortices are
shed in different cells along the cylinder, so the phenomena is now 3-D. It is important
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2 Theory of vortex induced vibrations

to notice that although the wake can be partially turbulent, the boundary layer over
the cylinder remains still laminar.

Even for the subcritical range, 300 < Re < 3× 105, the boundary layer stays laminar
despite the fact that the wake is now completely turbulent (Fig. 2.15e). Beyond this
point, 3× 105 < Re < 3.5× 105, the range is known as the critical flow regime. Here
the boundary layer starts to become turbulent at the separation point but only in one
side of the cylinder (Fig. 2.15f). This turbulence in the boundary layer causes a non-
zero mean lift on the cylinder. According to Schewe (1983), the side of the cylinder at
which the turbulent separation occurs may switch and consequently the lift changes
its direction.

In 3 × 105 < Re < 3.5 × 105 the regime is known as the supercritical flow regime.
Here the boundary layer separation is turbulent on both sides of the cylinder, but the
transition to turbulent flow in the boundary layer is not complete. The transition from
laminar to turbulent is somewhere between the stagnation point and the separation
point (Fig. 2.15g). Beyond Re = 1.5× 106, the boundary layer is totally turbulent on
one side of the cylinder. The other side is partially laminar and partially turbulent.
This type of response corresponds to the so-called upper transition flow regime, 1.5×
106 < Re < 4 × 106. Further this last value, Re = 4 × 106, the boundary layer is
turbulent everywhere and is referred to as the transcritical flow regime (Fig. 2.15i).
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a)
No separation / Creeping

flow
Re < 5

b)
A fixed pair of symmetric

vortices
5 < Re < 40

c) Laminar vortex street 40 < Re < 200

d)
Transition to turbulence in

the wake
200 < Re < 300

e) Wake completely turbulent
300 < Re < 3× 105

Subcritical

f)

One side with a laminar and

the other with turbulent

boundary layer separation

(still both sides with a

laminar boundary layer)

3× 105 < Re < 3.5× 105

Critical (Lower transition)

g)

Both sides with turbulent

boundary layer separation

(both sides with partly

laminar partly turbulent

boundary layer)

3.5× 105 < Re < 1.5× 106

Supercritical

h)
Boundary layer completely

turbulent at one side

1.5× 106 < Re < 4× 106

Upper transition

i)
Boundary layer completely

turbulent at both sides
4× 106 < Re Transcritical

Figure 2.15: Regimes of flow around a smooth circular cylinder in steady current. A:
laminar boundary layer separation; B: turbulent boundary layer separation; and C:
turbulent boundary layer separation with boundary layer completely turbulent.
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The preceding regimes are based mainly in the work of Roshko (1961) and Schewe
(1983). However, there is no general classification well accepted by the entire scientific
community.

2.3.2 Vortex shedding

As mentioned in the last section, for Re > 40 the vortex shedding phenomenon appears.
For those cases, the boundary layer separates from the cylinder surface due to the
adverse pressure gradient, which is imposed by the divergent geometry of the flow
environment at the rear side of the cylinder. This event forms a shear layer (Fig. 2.16).

The boundary layer formed contains a certain vorticity that feeds the shear layer,
formed downstream the separation point, and yields the shear layer to roll up into
a vortex . This vortex has the same sign of the incoming vorticity (see vortex A in
Fig. 2.16). Likewise, on the other side of the cylinder occurs the same phenomenon
but with a lag time, forming other vortex (see vortex B in Fig. 2.16).

Figure 2.16: The shear layer. The shear layer roll up to form a vortex, one for each
side of the cylinder. Based on Sumer & Fredsøe (1997).

The pair of vortices formed due to the shear layer is unstable when is exposed to small
disturbances. This leads one vortex to grow larger than the other. The larger vortex
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2.3 Flow around a cylinder in steady current

throws the other vortex toward the wake due to the asymmetric flow (see Fig. 2.17).
One vortex spins in the clockwise direction while the other spins in the anticlockwise
direction. This difference will cut off the supply of vorticity from the boundary layer
to one vortex and will cause the shedding of it. As a free vortex, it will be drawn
downstream by the main flow.

The vortex shedding only happens when the two shear layers (one at each side of the
cylinder) interact with each other. If this interaction between the layers is affected
somehow, no vortex shedding will occur. Some ways to prevent the interaction consist
of placing a horizontal plate at the rear side of the cylinder, or to place the cylinder
close enough to a wall, among others.

Figure 2.17: Vortex shedding mechanism. In the first scheme, the vortex A is larger
and throws the vortex B across the wake. In the second scheme, the vortex B has
grown enough to throw the vortex C across the wake. This mechanism is repeated
in an alternate manner at each side of the cylinder to form the “vortex street”. Based
on Sumer & Fredsøe (1997).

2.3.2.1 Vortex-shedding frequency

As the Reynolds number is used to describe flows, there is a dimensionless number
that helps to describe an oscillatory flow. This number depends on the normalization
of the vortex shedding frequency:

St = St (Re) =
fvD

U
(2.55)

where fv is the vortex shedding frequency, D is the diameter of the cylinder and U
is the main flow velocity. This normalized vortex shedding frequency is known as the
Strouhal number (St).
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2 Theory of vortex induced vibrations

Figure 2.18: Sketch of the Strouhal number for a smooth circular cylinder. Based on
experimental data from: Williamson (1989), Roshko (1961), and Schewe (1983).

When the vortex shedding first appears, the St number takes a value of approximately
0.1 (see Fig. 2.18). It increases until Re ⋍ 300, from this value onwards the St number
stays practically at a constant value of 0.2. The St number change its value again
when Re = 3 × 105, suddenly it jumps from 0.2 to 0.45. At this point, Re = 3 × 105,
the boundary layer is turbulent at the separation point on both sides of the cylinder.
The outcome is a delay in the boundary layer separation where the separation point
moves downstream (see Fig. 2.19). Now that the vortices are closer to each other, the
interaction is faster than before and the shedding vortex increases drastically, the same
as the St number.

Figure 2.19: Sketch of the separation points. Based on Sumer & Fredsøe (1997).

At Re = 1.5 × 106, the St number jumps again, but this time its value decreases. At
this point, the boundary layer at one side of the cylinder is turbulent and laminar
on the other side. This asymmetry inhibits the vortex interaction partially and the
vortex shedding becomes irregular. This behavior changes when Re overpass the value
of 4.5× 106; there, the St number takes a value of 0.25-0.30.
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2.4 Forces on cylinders

2.4.1 Forces in steady current

Because of the flow around a circular cylinder, two forces will appear. One caused
by the pressure and one due to the friction. The total mean resultant force due to
pressure per unit length is:

F p =

ˆ

p · r0dφ (2.56)

While the total resultant force due to friction is:

F f =

ˆ

τ 0 · r0dφ (2.57)

in which p is the time-averaged pressure and τ 0 is the time-averaged wall shear stress
on the cylinder surface. The geometry used in these integrals is shown in Fig. 2.20. In
this section, all the integrals are defined for dφ from 0 to 2π.

Figure 2.20: Definition sketch.

Besides the above method, there are other way to classify these forces depending on
the direction in which they are applied. The total in-line force, known as the mean
drag, is the sum of the corresponding component of the Eq. 2.56 and 2.57:

FD =

ˆ

p · cos (φ) · r0dφ+

ˆ

τ 0 · sin (φ) · r0dφ (2.58)
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While the total cross-flow force, known as the mean lift, is:

FL =

ˆ

p · sin (φ) · r0dφ+

ˆ

τ 0 · cos (φ) · r0dφ (2.59)

In this case this last force, F̄L, will be null due to symmetry in the flow. Nevertheless,
the instantaneous cross-flow component is non-zero and its value can be large.

2.4.2 Drag and lift

The forces, as well as the flow itself, vary as the Re number is changed, but also when
the surface roughness, the cross-sectional shape and the incoming turbulence change.
Independently of these changes, the vortex shedding phenomenon is always present.

Due to vortex shedding, the pressure distribution is different as the vortex shedding
process goes on. These changes are periodic and they will result in the variation of the
force components around the cylinder.

As Fig. 2.21 shows, the drag force acting on the cylinder will oscillate around the mean
value and will always be positive or in the same direction. The lift force, on the other
hand, changes its direction and it may have a zero value in a specific time. However,
both forces vary periodically along the vortex shedding process.

Figure 2.21: Sketch of time development of pressure distribution at different moments
of the vortex shedding process. Based on Drescher (1956).
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2.4.2.1 Mean drag

Form drag and friction drag For Re > 104, Achenbach (1968) proved that the
form drag (or in-line pressure force) represents the 97-98% of the total drag force. For
practical purposes, the friction drag can be omitted in most of the cases.

Following this idea, Fig. 2.22 shows the pressure distribution obtained from the poten-
tial flow theory, which is given by:

p− p0 =
1

2
ρU2

(

1− 4 sin2 φ
)

(2.60)

where p0 is the hydrostatic pressure. As it can be seen, the measured pressure distribu-
tion is negative at the rear side of the cylinder. In contrast, the potential flow theory
gives a significantly different result. One may think that as a result of separation, the
pressure on the cylinder remains constant at the rear side because the flow in the wake
is very weak compared to the outer-flow. This result is important because it shows that
sometimes the potential flow theory is not close to reality, and the outcomes obtained
with it cannot always be applied to certain problems.

Figure 2.22: Sketch of pressure distributions, potential flow theory and Re = 105.
Based on Achenbach (1968).
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Drag coefficient The drag force can be calculated as

FD =

ˆ

(p cos (φ) + τ 0 sin (φ)) r0dφ (2.61)

manipulating the equation, it can be written as

FD

1
2
ρDU2

=

ˆ

[(

p− p0
ρU2

)

cos (φ) +

(

τ 0
ρU2

)

sin (φ)

]

dφ (2.62)

where D = 2r0, is the cylinder diameter and dφ is defined from 0 to 2π. The right-hand
of the Eq. 2.62 is a function of Re. Consequently, it can be written in the form

FD

1
2
ρDU2

= CD (2.63)

where CD is known as the mean drag coefficient or drag coefficient.

Figure 2.23: Drag coefficient for a smooth circular cylinder as function of the Re
number. Based on data from: Schewe (1983) and Schlichting (1979).

Fig. 2.23 present the behavior of the drag coefficient when Re varies. A critical point
occurs when Re = 3 × 105, here the drag coefficient drops drastically. This is known
as the drag crisis and it can be explained with the pressure diagrams (see Fig. 2.24).
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2.4 Forces on cylinders

Figure 2.24: Pressure distributions. S denotes the separation points. a) Circular
cylinder in the subcritical regime, and b) Circular cylinder in the supercritical
regime. Based on Achenbach (1968).

The separation points moves from φ = 78° in a laminar separation, to φ = 140° in
turbulent separation. This results in a narrow wake with a smaller negative pressure,
which will lead to a smaller drag coefficient.

2.4.3 Drag force in oscillatory flow

Now that the forces and its origin were explained. Forces in oscillatory flows, which
are more like those on VIV, will be explained in detail in this section. The drag force
in a steady current is given by:

FD =
1

2
ρCDDU |U | (2.64)

in which FD is the in-line force per unit length of the cylinder and CD is the drag
force coefficient. Here, instead of writing U2, the expression is U |U |, so the force
can conserve the sign (direction) of the velocity. For oscillatory flows, where U =
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Um sin (ωt), the drag force has two more components, namely:

FD =
1

2
ρCDDU |U |+m′U̇ + ρV U̇ (2.65)

in which the second term of the right hand is the hydrodynamic mass force and the
third term is the Froude-Krylov force; here m′ denotes the hydrodynamic mass and V
is the volume of the cylinder.

2.4.3.1 Hydrodynamic mass force

In order to understand the hydrodynamic mass, one might think of a plate submerged
into still water. When the plate moves from rest in the horizontal position (see
Fig. 2.25a), it undergoes practically no resistance. When the plate moves from rest
in the vertical position, Fig. 2.25b, not only the plate but also the fluid surrounding,
is moving along. This phenomenon occurs due to the pressure from the plate. This
mass of fluid that is accelerated with the plate due to the pressure, is known as the
hydrodynamic mass. The existence of the hydrodynamic mass means that the total
force to move the body is not F = ma but F = (m+m′)a, where m is the mass of the
solid object and a is the acceleration.

Figure 2.25: Movement of a plate in a still fluid; a) horizontal plate, and b) vertical
plate. Based on Sumer & Fredsøe (1997).

The hydrodynamic mass is normally calculated excluding the frictional effects. That is
to say that the flow is calculated using only the pressure forces and the inertia forces.
As a result, the hydrodynamic mass may be calculated using potential flow theory.
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In order to known m′ for a body in still water, first the body needs to be accelerated,
later the flow field around the body needs to be calculated (if it is possible using
potential flow theory). With the flow field the pressure on the surface of the body can
be known, and finally the force on the body due to pressure may be determined.

Figure 2.26: Sketch of potential flow around an accelerated cylinder moving in the x
axis at U velocity in otherwise still fluid.

Considering the case sketched in Fig. 2.26, the velocity potential is given by (Milne-
Thomson, 1962),

φ = U
r20
r
cos (θ) (2.66)

from which the velocity components can be obtained:

vθ = −1

r

∂φ

∂θ
= U

r20
r2

sin (θ) (2.67)

vr = −∂φ

∂r
= U

r20
r2

cos (θ) (2.68)

Now the pressure around the cylinder can be calculated using the Bernoulli equation

p

ρ
+

1

2
v2 − ∂φ

∂t
= cte (2.69)
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in which v2 = v2r + v2θ = U2(sin2 (θ) + cos2 (θ)) = U2 on the cylinder surface. Since v2

does not vary with r or θ, the pressure can be written as

p

ρ
=

∂φ

∂t
+ cte (2.70)

Now the pressure can be calculated neglecting the constant term

p = ρ
∂φ

∂t
= ρ

∂

∂t

(

U
r20
r
cos (θ)

)

= ρr0 cos (θ)
∂U

∂t
= ρr0a cos (θ) (2.71)

Integrating around the cylinder, the total force due to pressure is

Fp,s = −
ˆ

ρr0a cos (θ) dθ = −ρr20aπ (2.72)

The force required to accelerate a cylinder in an otherwise still fluid is

F = ma+ ρr20πa = (m+m′) a (2.73)

from where m′ = ρr20π. Usually the hydrodynamic mass is written as

m′ = ρCmA (2.74)

in which A is the cross-sectional area, for a circular cylinder A = πr20, and Cm is the
hydrodynamic coefficient. For a circular cylinder:

Cm = 1 (2.75)

It is important to notice that this result is based on several assumptions and simplifications.
For example, a circular cylinder with velocity U in otherwise still fluid; frictional effects
equal to zero; namely, this calculation implies that the fluid can be described using the
potential flow theory. If these requirements are not well accomplished, the Cm needs
to be calculated using other techniques.
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2.4.3.2 The Froude-Krylov force

As seen in the previous section, the hydrodynamic mass force is caused by the acceler-
ation of the fluid in the nearby surroundings. However the accelerated motion of the
fluid in the not-so-close surroundings, outer flow region, will also generate a pressure
gradient:

∂p

∂x
= −ρ

dU

dt
= −ρa (2.76)

where U is the velocity in the main flow, far away from the cylinder. This force will
produce an extra force, known as the Froude-Krylov force. This force is also calculated
using the pressure:

Fp,f = −
ˆ

pdS (2.77)

where S is the surface of the body. Using the Gauss theorem, the equation now is

Fp,f = −
ˆ

∂p

∂x
dV = ρV a (2.78)

If the body moves in an otherwise still water, there will be no pressure gradient in the
outer flow, and therefore there will be no Froude-Krylov force.

2.4.3.3 The Morison equation

The total in-line (drag) force for an accelerated fluid environment, where the cylinder
is held stationary, can be calculated using the in-line force in steady current, the
hydrodynamic mass force and the Froude-Krylov force. The force FD is now:

FD =
1

2
ρCDDU |U |+ ρCmAU̇ + ρAU̇ (2.79)

Manipulating the equation, it can be written as

FD =
1

2
ρCDDU |U |+ ρ (Cm + 1)AU̇ (2.80)
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FD =
1

2
ρCDDU |U |+ ρCMAU̇ (2.81)

where CM = Cm + 1, is referred to as the inertia coefficient. Eq. 2.81 is known as the
Morison equation. And in the case of a body that moves relative to the flow in the
in-line direction, the Morison equation can be written as:

FD =
1

2
ρCDD (U − Ub) |U − Ub|+ ρCmA

(

U̇ − U̇b

)

+ ρAU̇ (2.82)

where Ub is the b. The last term in Eq. 2.82 only depends on U because this force is
associated with the motion of the fluid and not with the motion relative to the body.

Measurements of the CD and CM coefficients Nowadays, there are several nu-
merical codes to calculate the flow around and the forces on a circular cylinder in
oscillatory flows but they are under development and are not fully able to describe
the variation of the force coefficients. Despite technological advances in the numerical
field, experiments are still the best source of information at the present time.

2.4.4 Lift force in oscillatory flow

Under an oscillatory flow, a cylinder may experience a lift force. This lift force oscillates
at a fundamental frequency different from the one of the flow. The frequency in the
lift force depends on the frequency of vortex shedding. That is why if the flow around
the cylinder is a creeping flow, no lift will be generated.

For oscillatory flow, a helpful parameter is the so-called Keulegan-Carpenter number
(KC). This quantity is equal to:

KC =
2πa

D
(2.83)

where a is the amplitude of the motion and D is the diameter of the cylinder. Small
KC numbers mean that the motion of the water particles is small compared to the
total width of the cylinder, therefore separation may not even occur. On the other
hand, large KC numbers mean that water particles travel large distances compared
to the width of the cylinder, causing separation and vortex shedding. For the vortex
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street to exist, KC is approximately 4. Therefore, at this point the lift force starts to
grow. In order to have a well-established lift force KC need to be around 6 or 7.

The lift force undergoes two maxima values (see Fig. 2.27), the first and the biggest
one at KC = 10 and the second when KC = 16. Williamson (1989) poses that these
peaks may reflect an increase in the repeatability of the shedding patterns. Each
peak corresponds to a certain pattern of shedding. The first peak corresponds to a
single-pair regime and the second peak corresponds to a double-pair regime.

Figure 2.27: Sketch of the lift force coefficient (RMS) as function of KC number.
Based on Williamson (1985).

The lift force (and also the drag force) has a sinusoidal behavior, so the force can
be described using the maximum value or its corresponding RMS (root-mean-square)
value:

FLmax =
1

2
ρCLmaxDU2

m (2.84)

FLrms =
1

2
ρCLrmsDU2

m (2.85)

in which Um is the maximum velocity. Both lift coefficients are related by the equation:

CLmax =
√
2 · CLrms (2.86)
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2.5 Circular cylinders in Vortex-Induced Vibration

2.5.1 Cross-flow vortex-induced vibrations

As mentioned before, for Re > 40 a cylinder in a steady current will experience vortex
shedding. Due to the vortex shedding, the lift and drag forces will oscillate. Now
considering a flexibly-mounted cylinder, these forces may induce vibrations of the
cylinder. The lift force causes cross-flow vibrations and the drag produces in-line
vibrations (see Fig. 2.28).

Figure 2.28: Different type of oscillations.

In 1968, Feng carried out an experiment where a circular cylinder with one degree of
freedom was exposed to air flow. He noticed that at a certain air velocity, the cylinder
experienced small vibrations. At that point the natural frequency and the vibration
frequency of the system coincided. He also noted that before that particular point, the
vortex-shedding frequency was identical to the stationary-cylinder frequency. However,
after that point the vortex shedding frequency (fv), the vibration frequency (f) and
the natural frequency (fn) of the system were the same despite the air velocity. This
phenomenon was known as ‘lock-in’, ‘synchronization’, ‘resonance’, among others. As
a note, recent studies have proven that this phenomenon is shown even when the
frequencies are not equal, synchronization can be achieved at hundreds of times the
natural frequency.

It can be concluded that at that specific point, the lift force and the movement of
the cylinder occur at the same frequency and therefore the amplitude of the cylinder
oscillations will be large (which in fact happens). When the air flow velocity over-
passed some value, Feng noticed that the shedding frequency unlocked from the natural
frequency and jumped to follow the stationary-cylinder frequency again; that means
that the large amplitudes stopped.

For small vibrations in still fluid, A/D < 0.8, Cm is close to 1. When the cylinder is
subject to a current the value of Cm will be different (see Fig. 2.29). In fact, the new
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hydrodynamic mass coefficient will be denoted as Cmc, therefore the hydrodynamic
mass will be defined as

m′

c = ρCmc
πD2

4
(2.87)

Figure 2.29: Hydrodynamic mass in still fluid and in current.

Cmc values have been measured by Sarpkaya (1978) for a circular cylinder subject to
a steady current and oscillating in the cross-flow direction (forced oscillations), see
Fig. 2.30.

Figure 2.30: Sketch of the hydrodynamic mass coefficient for a circular cylinder vi-
brating in the cross-flow direction (forced oscillations) and subject to a current. Vr

is the reduced velocity, where U is the velocity of the main flow, D is the diameter
of the cylinder and f is the frequency of the forced vibrations. Based on Sarpkaya
(1978).

61



2 Theory of vortex induced vibrations

2.5.2 The Griffin plot

In 1975 Griffin et. al. made the first compilation of results from different researches
in VIV and compared them using the same parameter, the Skop-Griffin parameter
SG. In 1980, Griffin plotted a logarithmic axes representation to cluster the maximum
amplitude of the cylinders in VIV, A∗

max, versus the parameter SG (see Fig. 2.31). Even
though this representation, known as the Griffin plot, is widely used in engineering
to design structures, it is not well known under which circumstances it may or not
apply. Actually, several validity issues under different circumstances are pointed out
in Sarpkaya (1979, 1993).

Figure 2.31: First extensive compilation of several studies, Griffin et al. (1975).

If similar data were plotted considering a linear representation in the y-axis, it can be
observed a dispersion like in Fig. 2.32. This dispersion is “hidden” by the logarithmic
axis. As stated by Williamson & Govardhan (2004), it seems no logic to collapse data
from different systems undergoing VIV (elastic base, pivoted or cantilevered cylinders).

Considering data in Fig. 2.32 several authors, cited in Blevins (1990), have developed
different empirical functions to relate A∗

max with SG. However, none of them has been
accepted by the scientific community.
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Figure 2.32: Updated Griffin plot using a linear representation in the y-axis,
Williamson & Govardhan (2004).

Figure 2.33: Modified Griffin plot, using the (m∗ + CA) ζ instead of the SG parame-
ter.
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Williamson & Govardhan (2004) plotted A∗

max versus (m∗ + CA) ζ in another effort
to find an easy-to-use simple relation, see Fig. 2.33. Although data seems to collapse
better in a trend line, certain dispersion exists. This dispersion does not allow to use
a general formula to describe the maximum amplitude behavior. Citing Williamson
(2005) himself: “After 30 years the Griffin Plot is not yet fully defined!”.

As mentioned above, there are still several unknowns as far as VIV is concerned. Most
of the works in the literature have been developed using rigid cylinders elastically
mounted, with forced vibrations, or with direct numerical simulations in 2-D. There are
relatively few investigations that use flexible cylinders in cantilever with free vibrations,
configuration proposed for this thesis.

2.5.3 The Williamson-Roshko map

In 1988, Williamson & Roshko published a vortex shedding modes map, see Fig. 2.34.

Figure 2.34: Williamson-Roshko map, Williamson & Roshko (1988).
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This map was originally obtained with data of controlled forced vibrations. This
means, instead of vortex induced vibrations (a cylinder moving by the effect of the
formed vortex in the rear part) in these cylinders vortex induced by vibrations exists
(the cylinder is forced to vibrate by external means and the vortex appear due to
the cylinder movement). In many cases, these two types of vibrations are used as a
VIV even though they have different configurations and properties. There are regions
in which the comparison is valid and the results agree, however, regions where the
comparison is far from accurate have also been found. It is still an open question
of whether or not using this Williamson-Roshko map to predict the vortex shedding
mode for different vibrating systems.

Williamson & Govardhan (2004) suggested to use the parameter U∗ (normally used
in free vibrations) to compare with A∗

max in the Williamson-Roshko map, Fig. 2.35.
According to data obtained by them, the map shows a good correlation between the
branches and the vortex shedding modes in each of them.

Figure 2.35: Updated Williamson-Roshko map, Williamson & Govardhan (2000).
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Although data published by Williamson & Govardhan (2000, 2004) coincide with the
Williamson-Roshko map, recent research suggests that it can not be used generally for
all cylinder configurations. As shown in Fig. 2.35, the map suggests that the vortex
shedding mode of the system is 2S in the initial branch, while the upper and lower
branches correspond to a 2P. However, in the data obtained in Monreal (2015) for a
flexible cylinder in cantilever, the vortex shedding pattern observed is the same in the
whole synchronization zone, corresponding to a 2S.
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In this chapter, the experimental setup is explained. The dynamic response in free
vibrations is processed in order to get the parameters of each cylinder. These parame-
ters: m (total mass of the system), c (structural damping), and k (spring constant) are
useful to calculate forces acting on the cylinder along with the synchronization regime.
The dynamic response in the entire lock-in region is studied and the maximum ampli-
tude and frequency at different Re numbers are given. At the end of the chapter, also,
the hydrodynamic response is shown.

3.1 Experimental setup

In order to study the lock-in region, and therefore the VIV phenomenon, cantilevered
uniform flexible circular cylinders were used. Fig. 3.1 illustrates the schematic diagram
of the experimental apparatus. It consists of a 19 mm thick solid aluminum plate,
whose dimensions are shown in the figure. To avoid flow perturbations, one side was
beveled at 30 degrees.

External lighting was used to assure that the high-speed video camera record the tip of
the cylinder. The lighting consisted of two 3-watt and 250-lumen LED lamps, facing
each other, both pointing to the tip of the cylinder. The high-speed video camera
was an “Edgertronic ®”. It is designed with a specialized 1280 × 1024 CMOS Image
Sensor, ultra-high-speed electronics, memory, and image processing electronics. This
camera allows up to 17,791 frames per second at 192 × 96 pixels resolution.

A schematic diagram of the entire experimental setup is presented in Fig. 3.2. The
experimental apparatus was placed in a water tunnel, which has a test section of
0.381m × 0.508m × 1.5 m. The operating velocity range varies between 0.01 and 0.3
m/s. Levels of turbulence in the test section are less than 1% RMS. The aluminum
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plate was placed ensuring the in-line flow direction was in the x axis and the cross-flow
direction corresponded to the y axis.

Figure 3.1: Experimental model scheme.

Figure 3.2: Experimental setup: schematic diagram of the water tunnel and the ap-
paratus.
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3.2 Test cylinders

In this thesis, different cantilevered uniform flexible circular cylinders were tested. To
cover as much Re numbers as possible in the lock-in region several different materials,
diameters and lengths were chosen for the cylinders. Geometrical ranges corresponding
to diameter and length are 1.56 mm 6 D 6 3.19 mm and 30 cm 6 L 6 40 cm,
respectively. Materials tested are aluminum, bronze, copper and stainless steel. The
different combinations of length, diameter, and material are presented in Tab. 3.1. The
mass ratio,m∗, is taken for simplicity and is the ratio between the cylinder density and
the working fluid density (in this case water).

Each of these cylinders was placed in the experimental apparatus to run several tests.
To measure the dynamic response of the cylinder, the Particle Tracking Velocimetry
(PTV) technique was implemented. The PTV technique consists of finding a specific
figure, in this case the tip of the cylinder represented in Fig. 3.3, and track its position
along each frame of the video. A code in Matlab ® specifically developed for this study
computed the (x, y) location coordinates of the tip of the cylinder by using circular
Hough transform. This allows to get the path of the cylinder over time in both axes
separately.

Figure 3.3: PTV technique in the tip of the cylinder.

The path can be processed by the discrete Fourier transform. The Fourier analysis
converts time into frequency by decomposing a sequence of values into components of
different frequencies. In this way, the natural frequency of the system can be deter-
mined. In Tab. 3.2 the different paths and their respective frequency histograms in air
are shown. Tab. 3.3 presents the corresponding results in water.
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Material L [m] D [mm] m∗
= ρ/ρf

Aluminum 0.30 1.57 2.66

Aluminum 0.35 1.57 2.66

Aluminum 0.35 2.39 2.66

Aluminum 0.35 3.18 2.66

Aluminum 0.40 1.57 2.66

Aluminum 0.40 2.38 2.66

Aluminum 0.40 3.18 2.66

Bronze 0.30 1.56 8.49

Bronze 0.30 2.30 8.49

Bronze 0.35 1.58 8.49

Bronze 0.35 2.33 8.49

Bronze 0.35 3.16 8.49

Bronze 0.40 1.58 8.49

Bronze 0.40 2.33 8.49

Bronze 0.40 3.15 8.49

Copper 0.30 1.58 7.89

Copper 0.30 2.36 7.89

Copper 0.35 1.58 7.89

Copper 0.35 2.38 7.89

Copper 0.35 3.20 7.89

Copper 0.40 1.58 7.89

Copper 0.40 2.38 7.89

Copper 0.40 3.20 7.89

Stainless Steel 0.30 1.57 7.91

Stainless Steel 0.30 2.34 7.91

Stainless Steel 0.35 1.57 7.91

Stainless Steel 0.35 2.34 7.91

Stainless Steel 0.35 3.19 7.91

Stainless Steel 0.40 1.57 7.91

Stainless Steel 0.40 2.34 7.91

Stainless Steel 0.40 3.19 7.91

Table 3.1: Different combinations of length, diameter and mass ratio (m∗) of the
cylinders under study.
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Table 3.2: Impulse response of the different materials in still air. a) Aluminum, b)
Bronze, c) Copper, and d) Stainless steel.
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Table 3.3: Impulse response of the different materials in still water. a) Aluminum,
b) Bronze, c) Copper, and d) Stainless steel.
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3.3 Obtaining parameters

3.3.1 Stiffness of the cylinder (k)

For each cylinder, the specific mass, spring and damper coefficients need to be deter-
mined. The first step was to find the stiffness (k). To accomplish this, a picture of
the top view of the cylinder in the equilibrium position was taken. Then using a set of
weights and pulleys, a known perpendicular force was applied (Fig. 3.4), and a picture
with the same camera position was taken. This procedure was repeated with several
weights to obtain different measurements, so they can be compared. With the acquired
photos, the displacement of the center of the cylinder relative to the equilibrium point
was calculated (Fig. 3.5). Finally Eq. 3.1 was used:

k =
F

x
(3.1)

where F represents the known force applied to the cylinder and x is the displacement
of the center of the cylinder.

Figure 3.4: Schematic diagram: experimental procedure for the estimation of stiffness
of the cylinder.
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x0 with F0 = 0 x1 with F1 = (0.01 kg)g x2 with F2 = (0.05 kg)g

Figure 3.5: Actual photos of the stiffness experiment. Where g is the gravity. a)
equilibrium position, b) displacement x1 with a force applied F1, c) displacement x2

with a force applied F2.

In Fig. 3.6, the quantitative results of the test are shown.To see the experimental results
of the estimation of stiffness of each cylinder, refer to sec. 5.2.

Figure 3.6: Plotted results of the stiffness experiment for one cylinder.
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3.3.2 Viscous damping (ζ)

The next step was to find the damping of the cylinder. To achieve this, the experimen-
tal apparatus was subjected to a small impulse perturbation and the dynamic response
was recorded (free vibration). These images were processed using the PTV technique,
see Fig. 3.7. The recorded answer was adjusted to the mathematical model:

y (t) = A0 exp (−ζωdt) sin (ωdt+ ϕ) (3.2)

where A0 is the maximum amplitude, ωd is the damped angular frequency, and ϕ is
the phase that determines the behavior needed to match the initial conditions. Here
the damping ratio, ζ, consists of the structural damping , ζs, and the damping due to
the surrounding fluid, ζf . For detailed information about the solutions to vibration
equation, and structural and fluid damping see sec. 2.5.

ζ = ζs + ζf =
δ

√

δ2 + (2π)2
(3.3)

Free vibration with air as surrounding fluid In this case, the assumption that the
response in air is practically equal to the response in vacuum was made. This means
that the damping ratio corresponds only to the structure damping, namely ζ = ζs.
Using the response in air to fit Eq. 3.2, the coefficients ζ and ωd were known. And
with Eq. 3.4 the value of ωn was calculated.

ωd = ωn

√

1

1 + ζ2
(3.4)

Knowing ωn and using Eq. 3.5, the value of m was known. Here m represents the
equivalent mass coefficient needed for the discretized model, see Fig. 3.8a.

ωn =

√

k

m
(3.5)
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Strictly speaking, Eq. 3.5 should have not only m but m+m′ in the right hand of the
equation. However, the assumption that the response in air is practically equal to the
response in vacuum allows to neglect the hydrodynamic mass, m′ (see sec. 2.4.3.1 for
detailed information about m′).

Finally, the only unknown parameter was the viscous damping coefficient, c. Using
Eq. 3.6, this last parameter could be calculated.

ωd =

√

k

m
−

( c

2m

)2

(3.6)

It is important to highlight that all three parameters (m, c and k) calculated here are
assumed to be calculated in vacuum, and their values will be used on the discretized
model.

Free vibration with water as surrounding fluid As can be seen from Fig. 3.7, the
response in water is different from the response in air. In water, the frequency is lower
and the damping of oscillations is bigger. This is because here the damping ratio, ζ,
corresponds to both structural and fluid damping, namely ζ = ζs + ζf . The viscosity
of water is bigger than air viscosity, and this leads to an increased energy dissipation.
In this case the value of ζf is so big that it dominates the total damping, ζ.

Figure 3.7: Response of a stainless steel cylinder in free vibration. In air at the left
and in water at the right.

The same method to know the parameters used in free vibration with air as surrounding
fluid was applied. Using Eq. 3.2 to fit the response in water, the coefficients ζ and ωd

were known; and using Eq. 3.4 the value of ωn was calculated.
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Then in order to calculate the mass coefficient, Eq. 3.5 becomes

ωn =

√

k

m+m′
(3.7)

Here the mass involves not only the mass due to the structure, m, but also the hy-
drodynamic mass, m′, which is the mass of fluid accompanying the displacement of
the cylinder due to the inherent viscosity of the fluid (see Fig. 3.8 b). From the free
vibration with water as surrounding fluid, the value of m is known and m′ can be
calculated.

Figure 3.8: Discretized model. a) In air the equations only include the mass due to
the structure, b) in water the equations include the mass due to the structure and
the hydrodynamic mass.

In sec. 5.2 the path and frequency for each cylinder in air is shown, in chapter 5.2 there
are the same plots but in water. In the path plot, two red circles mark the values used
to determine ζ by using the Eq. 2.28, where the logarithmic decrement is calculated
by δ = 1/i ln (yn/yn+i) and i represents the number of cycles or periods from yn to
yn+i. This is mentioned in sec. 2.1.4.3.

3.3.3 Mass (m)

Finally, the mass is obtained by weighing the metallic cylinder in a scale. It is impor-
tant to mention that the parameters calculated in air are considered as vacuum due
to its small ζf .
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3.4 Dynamic response

Once the parameters are known, the next test is to find the lock-in region and record
the dynamic response of the tip. For tracking the tip, the experimental apparatus
with the cylinder was placed on the tunnel test section, with the in-line direction
(axis x) and cross-flow direction (axis y) fixed, as shown in Fig. 3.1 and Fig. 3.2. The
flow starts at a very low Reynolds numbers, Re, until the cylinder starts to oscillate,
then the velocity is increased and therefore the Re. The experiments cover the entire
synchronization regime, with Re ranging from 75 to 1050. A variable △Re was used
depending on the cylinder, the Re numbers, among others.

In this test, the most significant result is the maximum amplitude in the cross-flow
direction against Re. This is illustrated in Fig. 3.9. It is important to note that in this
work the amplitude of the in-line oscillations differs by one order of magnitude with
the amplitude of the cross-flow oscillation, which is in accordance with Jauvtis (2003).
Therefore, the results obtained only consider the cross-flow direction.

Figure 3.9: Maximum amplitude in the transverse direction vs Reynolds number.

Fig. 3.10 represents an example of the behavior of the tip of the cylinder in the three
different points of the synchronization regime.
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Figure 3.10: Path of the tip of the cylinder at different Re. a) Re = 310, b) Re = 438
and c) Re = 564.

The results proved that the dynamic of the cylinder is consistent with that described in
several scientific articles presented by Oviedo et al. (2014) and Khalak & Williamson
(1999). In Fig. 3.11, the left column depicts the orbits of the free-end of the cylinder.
In the right column the cylinder displacements over time are shown in both axes, blue
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line for the y axis and red line for the x axis. Both columns show the three same points
shown above.

Figure 3.11: Orbits of the free-end of the cylinder and cylinder displacements over
time in both axes. Both columns show three different points of the lock-in region:
a) Re = 310, b) Re = 438 and c) Re = 564.

80



3.4 Dynamic response

3.4.1 Standard Error of the Mean and Residual Standard
Deviation

For the experimental campaign, several repetitions were made according to the physical
or geometric parameter. For the case of mass (m) and diameter (D), three repetitions
of each measurement were made. For damping ratio (ζ), frequency (fwater, fvacuum)
and spring coefficient (k), six experiments were carried out. Finally, each experimental
point in the lock-in region was repeated five times. This means that five videos, eight
seconds each, were taken. Fig. 3.12 illustrates the amplitude vs time corresponding to
5 repetitions for a specific point.

Figure 3.12: Amplitude vs time corresponding to 5 repetitions for a specific point:
Bronze, L=0.3m, D=2.4 mm and Re=305.

To obtain the error bars, the standard error of the mean (SEM) was used. Considering
all data available to calculate the SEM, the error for this example is 8.1064e-04. On
the other hand, if only the five maxima (one per each replica) values are used, the
SEM is 0.0071. In both cases, it is practically negligible.

Based on these results, the error bars are calculated using the residual standard de-
viation (RSD), which uses the difference between predicted and actual values. The
predicted values are obtained from:

Yest = A∗

y,max = A sin (ωt) (3.8)
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To calculate the RSD the formula below is used:

Sres =

√

∑

(Yi − Yest)
2

(n− 1)
(3.9)

Where Sres is the residual standard deviation, Yi is the experimental value, Yest is the
estimated value and n is the amount of data. Fig. 3.13 presents the experimental and
estimated data corresponding to the case represented in Fig. 3.12.

Figure 3.13: Example of estimated and experimental values for a specific point:
Bronze, L=0.3m D=2.3948 mm and Re=305.

Using this method, the standard error of the residual is calculated by dividing the
Sres by the square root of n. The resulting value is 0.0017, also negligible. The
described procedure was performed for each experimental point. The calculations are
not included in this thesis because only group one presents significant, but still small
<5%, error bars.
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3.5 Hydrodynamic response

3.5.1 Particle Image Velocimetry

To study the hydrodynamics around the cylinders, the Particle Image Velocimetry
(PIV) technique was used. The apparatus used to perform the experiments is shown
in Fig. 3.14. For this technique the fluid was seeded with hydrogen bubbles. In this
case, the bubbles were produced by electrolysis. The size of the bubbles is controlled
principally by modifying the diameter of the cathode and the voltage input. One of
the greatest advantages of this technique is that bubbles allow to keep the tunnel water
clean, unlike other methods as using glass nanoparticles.

When the fluid is seeded correctly, a spatial plane is illuminated with external LED
lighting from the bottom. This allows the bubbles to shine and be visible for the
camera. An example of the frame captured during these tests is in Fig. 3.15.

Figure 3.14: Experimental model with an electrolysis control system.
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Figure 3.15: Actual frame of the hydrodynamic test. .

The high-speed video camera used to record the cylinder was an “Edgertronic ®”.
The motion of the seeding bubbles was used to calculate speed and direction (the
velocity field) of the flow being studied. In Fig. 3.16 a simplified graphical explanation
of this technique is shown. To perform the PIV, the images were processed using
the “PIVlab” software. Detailed information about how pre-processing, correlation
and post-processing techniques affect the accuracy and the quality of PIV results are
explained in Thielicke 2014a and Thielicke 2014b.

Figure 3.16: Simplified model of PIV technique.

3.5.2 Vortex shedding pattern

The hydrodynamic response is expected to be the same in the three branches. In this
case, it can be observed that the hydrodynamic is 2S mode (two-pair of single vortex),
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as can be observed in Fig. 3.17. This means two pairs of vortices are shed per period,
one vortex spins clockwise and the other spins counter-clockwise.

a)

b)

c)

Figure 3.17: Vorticity in the synchronization regime. All the images correspond to
the aluminum 40 cm length and 1.57 mm diameter cylinder. a) Re = 95, b) Re = 119
and c) Re = 167.

It is important to notice that in all the experiments developed in this thesis, a one
millimeter Mitutoyo® calibration pattern was used. This pattern allows to calculate
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the uncertainty of the experiments, as well as having traceability and accurate values
in the measurements and calculations. In Fig. 3.18 a picture of the calibration pattern
and a 2.3 mm cylinder is shown, due to illumination only half of the cylinder is visible
on the right side of the image.

Figure 3.18: 1mm Mitutoyo® calibration pattern. .
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The first part of this chapter shows the existence of four different groups, corresponding
to different behaviors of the maximum amplitude as a function of Re. Atypical branches
are distinguished and explained in detail. An analysis was developed in order to classify
this branches with a characteristic parameter, resulting in the slope of the reduced
velocity, V , and Re numbers the best arrangement parameter.

4.1 Classification of different groups

This section presents the experimental results obtained through the synchronization
regime for all the cylinders tested. The maximum amplitude as a function of Re is
illustrated in Fig. 4.1. Based on the different behavior patterns, four different groups
are recognized and named groups 1 to 4. Fig. 4.1b is presented to point out the differ-
ence in magnitude order between the in-line and cross-flow direction. It is important
to highlight that in this work the amplitude of the in-line oscillations differs by one
order of magnitude with the amplitude of the cross-flow oscillation, which agrees with
(Jauvtis and Williamson, 2003). Therefore, the results obtained only consider the
cross-flow direction.
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Figure 4.1: Maximum amplitude vs Re for all the cylinders tested. a) cross-flow
direction, and b) in-line direction.

Results corresponding to the first group can be observed separately in Fig. 4.2. They
correspond to slender cylinders with 1.58±0.05 mm diameter, for the different lengths
and materials. Two different zones or branches characterize this group.

• The initial branch includes the first oscillations of the cylinder until it reaches
its maximum amplitude. A rapid increase in the amplitude is observed.
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• The lower branch includes the points from the maximum amplitude until the
cylinder stops oscillating: where the amplitude decreases constantly (the Re vs
Ay slope is constant).

Figure 4.2: Maximum amplitude against Re for different materials and lengths cor-
responding to group 1. Results for D = 1.58± 0.05 mm.

The second group, Fig. 4.3, comprises all ranges of different diameters and lengths. This
group is the most common amplitude pattern seen in the literature, in concordance
with (Cicolin and Assi, 2017; Fujarra et al., 2001; Oviedo-Tolentino et al., 2014; Wang
et al., 2017), to name some. Govardhan and Williamson (2000) defines this group for
cylinders with low mass-damping ratios, showing three typical branches: initial, upper
and lower. According to Govardhan and Williamson (2000), the frequency of oscillation
of the cylinder passes through the natural frequency of the cylinder in water in the
transition from initial to upper branch. In like manner, the frequency of oscillation
of the cylinder passes through the natural frequency of the cylinder in vacuum in the
transition from upper to lower branch. In this work, frequency is not used as a way for
classifying the branches. Instead, the amplitude is the main criterion for categorizing
the branches.

Based on experimental results, a slightly different description of the branches is pro-
posed:

• The initial branch, which includes the start of the cylinder oscillations and ends
at the point of maximum amplitude. The amplitude increases rapidly.

• The upper branch, starts at the maximum amplitude and contains all points
where the amplitude decreases rapidly at a practically constant slope.
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• The lower branch, in which a change of slope is observed in the fall of the am-
plitude (slightly lower or even constant) until the cylinder stops oscillating.

The main difference between groups 1 and 2 lies in the behavior after the maximum
amplitude is reached. For group 1, most of the points in the lower branch fit in a
single straight line, see Fig. 4.4a. For group 2, a straight line with negative slope can
be visualized for points in the upper branch, but a change in the slope (indicating the
beginning of lower branch) can be clearly observed, see Fig. 4.4b.

Figure 4.3: Maximum amplitude against Re for different materials, diameters and
lengths corresponding to group 2.

In the previous two groups, the maximum amplitude value is always reached somewhere
between the natural frequency in vacuum and the natural frequency in the working
fluid (water in this case). An example of this can be seen in Fig. 4.4 for each group.
The maximum, marked with an arrow, will be named “typical maximum” hereafter.
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Figure 4.4: Amplitude and reduced velocity against Reynolds number. Selected
cylinders corresponding to different groups: a) Group 1; b) Group 2; c) Group
3; d) Group 4.

Fig. 4.5 illustrates the third group. This is characterized by an increase in the ampli-
tude, even after the typical maximum value observed in previous groups (as well in the
literature in general). Due to operational limitations of the tunnel, the entire lock-in
region of all the cylinders could not be obtained. However, the Re range obtained is
wide and sufficient to classify the data into two branches:

• The initial branch, from the starting point of the cylinder oscillations until its
typical maximum amplitude is reached (between the natural frequency in vacuum
and water).

• The final branch, from the typical maximum amplitude until the cylinder stops
oscillating. In this last branch, unlike groups 1 and 2, a gradual increase is
observed after the typical maximum until it reaches a second maximum (a global
one). In Fig. 4.5, for the case of aluminum cylinder (L = 40 cm, D = 2.3 mm) the
amplitude in this last branch seems similar to a parabola concave downward. For
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the case of bronze cylinder (L = 30 cm, D = 2.3 mm) the amplitude increases
constantly until it leaves the lock-in region.

Similar behavior is found in (Yamamoto et al., 2004) in which an amplitude that
does not follow the classical conduct is reported, theoretically, for a cantilever flexible
cylinder. Furthermore, in (Vicente-Ludlam et al., 2018) their results show a notably
similar behavior although they studied a slender elastically mounted circular cylinder
with Re ranges from 1500 to 10 000. This remarkable behavior is relevant due to the
importance of the maximum (global) amplitude. For some specific applications, like
harvesting energy, it is desirable to have large oscillations.

Figure 4.5: Maximum amplitude against Re for different materials, diameters and
lengths corresponding to group 3.

Vicente-Ludlam et al. (2018) offer detailed experimental results for a slender elastically
mounted circular cylinder under the effect of imposed rotation. For specific values
where an amplitude-type extremely similar to group 3 appears, f ∗ = fresp/fd reaches a
near-constant value after Vr ≈ 10. According to the authors, this result reinforces the
idea that the cylinder undergoes galloping-type oscillations. Although in the present
work the f ∗ is also near-constant, the Vr is around 6 for all the groups.

Moreover, they conclude that a loss in synchronization between vortex shedding and
oscillations is responsible for the distinct amplitude responses. However, in at least
one cylinder of group 3 this is not the case. It is important to highlight the obviously
differences between data for a flexible cylinder and for an elastic cylinder. Not to
mention that in this study there is no rotation in the cylinder.
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However, Vicente-Ludlam et al. mention that when A∗ seems to adopt a quasi-linear
dependence on the reduced velocity, it resembles the dependence of galloping-type
instability where motion-induced forces are dominant, in contrast to VIV where fluid
forces are mainly driven by vortex shedding. This asseveration may apply to flexible
cylinders but more detailed experiments in hydrodynamic response is needed.

The fourth group, depicted in Fig. 4.6, includes cylinders that exhibit a notorious
amplitude peak in the initial branch. This peak is consistent with a jump in the
response frequency. This jump is shown in Fig. 4.4d, where the Vr number decreases
its value and then jumps up again, following the typical behavior. In all cases, the jump
occurred before the response frequency reaches the natural frequency in the working
fluid. In addition, in all cases the amplitude returns to normal behavior also before
reaching the natural frequency in the working fluid.

In this group, due to the mentioned operational restrictions, the entire lock-in region
could not be achieved. Nevertheless, the peak in the initial branch is clearly shown.

It is important to highlight that not always, based on the experimental results, the
maximum amplitude is reached at the exact natural frequency in the working fluid or
in vacuum. However, in all the cylinders, a local maximum exists in the amplitude
between natural frequencies.

Figure 4.6: Maximum amplitude against Re for different materials, diameters and
lengths corresponding to group 4.

To find an adequate parameter for the classification of cylinders into groups one to
four, 15 different parameters were analyzed. Fig. 4.7 shows the scatter plot matrix
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for material, length, diameter and “groups”, represented with colors and markers. A
good classifying parameter should show as little dispersion as possible. For instance,
focusing attention on the material, there are four (aluminum, bronze, copper and
Stainless steel). For material 1, there are four different markers, which means that
all four groups are scattered here. This is repeated for all materials. Therefore, this
parameter is not a good parameter to classify the groups. Otherwise, all red circles
(group 1) would be gathered in a column over material 1, all blue squares over material
2, and so on. The same behavior is observed for lengths, which are three (see Tab. 3.1).
In the case of diameter, this classifies correctly group 1 but not the other groups.

Figure 4.7: Scatter plot matrix between materials, lengths, diameters and groups.

It must be clarified that each point represents one cylinder and that they can be over-
lapped in Fig. 4.7. Therefore, although the matrix allows appreciating the dispersion
of the groups according to the analyzed parameter, Fig. 4.8 is presented with the same
analysis but expanding the points to avoid overlapping and detailing the values of
parameters. The y axis represents the groups without such overlapping to observe all
the cylinders.
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Figure 4.8: Scatter analysis between groups and a) materials: 1-Aluminum, 2-Bronze,
3-Copper, 4-Stainless steel, b) lengths, and c) diameters.

Other parameters analyzed were mass-damping ratio, spring constant, natural fre-
quency in vacuum and in water, among others (Fig. 4.9-Fig. 4.13). The mass ratio is
not shown because is equivalent to Fig. 4.8a. None of the parameters shown in Fig. 4.9
or Fig. 4.10 classifies the groups adequately for the same reasons explained in Fig. 4.7
and Fig. 4.8. As in the previous case, Fig. 4.11 is presented for expanding the points
to avoid overlapping and detailing the values of parameters.

Figure 4.9: Scatter plot matrix between damping ratio, mass-damping parameter,
natural frequency in vacuum and groups.

95



4
Results and discussion of amplitude response in the Griffin plot and its comparison

with classification parameters

Figure 4.10: Scatter plot matrix between mass, damping coefficient, spring constant
and groups.

In Fig. 4.11 the parameters were calculated considering vacuum values for frequency
and damping ratio, and without considering the added mass. The parameters shown in
Fig. 4.12 and Fig. 4.13 were calculated considering water as the working fluid. However,
as shown, even with these parameters there is not a good classification.

Figure 4.11: Scatter analysis between groups and a) damping ratio, b) mass-damping
ratio, c) natural frequency in vacuum, d) mass, e) damping coefficient and f) spring
constant.
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Figure 4.12: Scatter plot matrix between natural frequency in water, damping coef-
ficient in water, damping ratio in water, mass-damping ratio in water and groups.

Figure 4.13: Scatter analysis between groups and a) natural frequency in water, b)
damping coefficient in water, c) damping ratio in water, d) mass-damping ratio in
water.

The analysis corresponding to the slope obtained between Vr and Re numbers is rep-
resented in Fig. 4.14. To appreciate the results in a better way, in Fig. 4.15a all points
have the same height and in Fig. 4.15b each group has been separated. The classifica-
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tion is almost perfect except for two cylinders: a blue square (group 2) and a green
triangle (group 3) located out of their corresponding ranges.

Figure 4.14: Scatter plot between the slope of Vr vs Re and groups.

Figure 4.15: Scatter analysis between groups and Vr vs Re slope.

A closer analysis demonstrates that both cylinders have a jump in frequency, which
corresponds perfectly with the characteristic behavior of group 4, see Fig. 4.16. In
Fig. 4.16a the cylinder amplitude exhibits behavior as described in group 2, but it
shows a jump in frequency and amplitude at the initial branch as described in group 4.
Similarly, in Fig. 4.16b the cylinder presents characteristics of group 3 but also shows
a jump at the initial branch as group 4.
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4.1 Classification of different groups

Figure 4.16: Amplitude and reduced velocity against Reynolds number. Selected
cylinders: a) group 2 and b) group 3.

In Fig. 4.17 all the cylinders tested are shown in the same plot. This time each line
represents one cylinder. Even so, the groups are still well classified. The cylinders
labeled in Fig. 4.17 as “Cylinder A” and “Cylinder B” correspond to Fig. 4.16a and
Fig. 4.16b, respectively.

Figure 4.17: Vr vs Re for the four different groups.

The experimental data obtained in this work can be classified according to this pa-
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rameter as follows:

Group Range (×10−3)

Group 1 65.1 > Vr/Re > 27.7

Group 2 25.5 > Vr/Re > 8.4

Group 3 12.2 > Vr/Re > 5.8

Group 4 6.7 > Vr/Re > 2.9

Table 4.1: Group classification according to Vr/Re parameter.

These ranges are valid for flexible cylinders in cantilever vibrating at their first mode
and operational conditions and geometrical ranges specified in sec. 3.2. To interpolate
the results obtained in this work, a 2D polynomial linear fit is presented, see Fig. 4.18.

Figure 4.18: Polynomial linear model plot used to predict Vr/Re using L/D and ωv.

The curve fitting equation is described by Eq. (3) with 95% confidence.

Vr

Re
= C0 + C1 × ωv + C2 ×

(

L

D

)

(4.1)

The coefficient values are shown in Tab. 4.2. Resulting in a goodness of fit of R2
adj =

0.8213.
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4.2 Natural frequencies in water and vacuum

Coefficient Value

C0 -0.008227

C1 -0.0001579

C2 0.0002312

Table 4.2: Coefficients of polynomial fit equation-

By knowing only the L/D ratio and ωvacuum before performing experiments through the
entire synchronization zone, Eq. 4.1 can be used to predict the maximum amplitude
behavior for a given cylinder. If a certain behavior is more useful for an application,
then the cylinder can be selected based on the Vr/Re parameter.

4.2 Natural frequencies in water and vacuum

This section presents the experimental results obtained through the synchronization
regime for all the cylinders tested. By following the procedure described in subsection
sec. 2.2.2.2, the natural frequencies were obtained for the first mode. The experimental
and calculated values corresponding to natural frequencies in vacuum and water, ωv

and ωd, are presented in Tab. 4.3.

Material L [m] α = L/D ωv,exp ωv,calc ωw,exp ωw,calc

Aluminum 0.30 191.01 79.89 75.68 64.69 70.42

Aluminum 0.35 222.90 58.34 56.02 46.72 53.03

Aluminum 0.35 110.04 116.69 113.37 97.03 108.30

Aluminum 0.40 254.39 44.88 43.16 35.94 40.69

Aluminum 0.40 167.52 67.32 65.63 55.86 61.54

Aluminum 0.40 125.60 89.76 87.36 75.47 80.39

Bronze 0.30 192.18 51.16 53.31 46.72 52.49

Bronze 0.30 130.16 78.99 78.95 73.67 74.45

Bronze 0.35 221.27 37.70 39.87 35.94 37.82

Bronze 0.35 150.07 53.86 58.96 52.11 55.27

Bronze 0.35 110.72 77.19 79.95 71.88 71.97
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Material L [m] α = L/D ωv,exp ωv,calc ωw,exp ωw,calc

Bronze 0.40 252.68 29.62 30.69 26.95 28.96

Bronze 0.40 171.53 42.19 45.41 39.53 42.65

Bronze 0.40 126.61 59.24 61.36 55.70 58.60

Copper 0.30 189.20 79.89 72.03 73.67 72.40

Copper 0.30 126.65 115.79 106.99 109.61 109.22

Copper 0.35 221.24 58.34 52.86 53.91 53.51

Copper 0.35 146.86 87.07 79.64 80.86 80.00

Copper 0.35 109.29 113.99 107.46 106.02 106.75

Copper 0.40 252.05 44.88 40.93 41.33 41.04

Copper 0.40 167.98 66.42 61.25 61.09 61.23

Copper 0.40 125.00 88.86 82.56 80.86 81.79

Stainless Steel 0.30 190.50 75.40 72.93 70.08 71.94

Stainless Steel 0.30 128.10 111.30 108.69 160.02 106.32

Stainless Steel 0.35 221.77 56.55 54.04 52.11 52.40

Stainless Steel 0.35 149.47 82.58 80.04 77.27 77.55

Stainless Steel 0.35 109.57 107.71 109.52 100.63 103.30

Stainless Steel 0.40 253.42 43.08 41.53 39.53 41.49

Stainless Steel 0.40 170.84 63.73 61.53 59.30 61.33

Stainless Steel 0.40 125.25 85.27 84.22 77.27 81.33

Table 4.3: Experimental vs theoretical values for natural frequency in water and vac-
uum, all frequencies are in rad/s.

4.3 Comparison with results found in literature

Griffin et. al (1975). made the first compilation of results from different researches in
VIV and compared them using the same parameter, the Skop-Griffin parameter SG.
In sec. 2.5.2, a brief history of the Griffin plot is given.

Fig. 4.19 shows the modified Griffin plot, presented in Williamson & Govardhan (2004),
overlaying data from experimental results obtained in this thesis. Each point in the plot
represents the maximum amplitude of one cylinder through the entire synchronization
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regime. Gray bullet points represent Williamson & Govardhan data and colored points
correspond to data from this work.

At a glance, data reported here seem to fit well in the plot. However, this plot has a
logarithmic scale on the x-axis. If the scale is replaced with a linear scale, with the
same limits, the representation loses sense (see Fig. 4.20a). To avoid this, a zoom-in is
made in Fig. 4.20b. In this plot data still seem to fit well.

Figure 4.19: Modified griffin plot with a logarithmic scale in the x-axis, overlapping
data from this work.

a) b)

Figure 4.20: Modified Griffin plot with linear scale in the x-axis. In a) holding the
limits, and b) with zoom in.
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Finally, to prove if data truly matches the Griffin plot a curve fitting was performed
with and without data from this work. The solid line represents the model for original
data only with a R2 = 0.8761. The dotted line describes original plus actual data with
a R2 = 0.7842. A lower R-square number is a signal that it will be “more problematic”
to predict data with reasonable accuracy. The original model will underestimate the
amplitude for cantilevered uniform flexible circular cylinders. An even wider study in
this type of cylinders is needed to fulfill the Griffin plot and clearly see if there is a
specific model that can suite accurate amplitude predictions. Regarding the groups
explained in this chapter, no relevant observation was made suggesting that amplitude
is specifically dependent on group classification.

Figure 4.21: Comparison between modified Griffin plot (Williamson & Govardhan)
and modified Griffin with actual data.
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of vortex shedding in the

Williamson-Roshko map.

For a stationary cylinder with Re & 40, the wake structure is the classic von Kármán
vortex street. In Fig. 2.15 the flow regimes around a smooth fixed circular cylinder
in a steady current are shown. However, for cylinders undergoing vortex induced
vibrations, the vortex shedding modes can vary (Fig. 1.20). In this chapter, the hydro-
dynamic response is detailed across the four different groups described in chapter 4.
One cylinder was selected for each group and its main hydrodynamic characteristics
are discussed. The vortex shedding modes and cylinder trajectories are illustrated at
different Vr values.

5.1 Vortex shedding mode along the lock-in region

This section presents the experimental results obtained through the synchronization
regime for the four cylinders selected. Fig. 5.1 presents the maximum amplitude against
Re, and the vortex shedding mode, for the cylinder corresponding to group 1. All the
images show the cylinder at the upper maximum amplitude of the cycle. In the entire
synchronization regime, the vortex shedding is a 2S mode. This means two single
vortices per cycle of oscillation.

For the initial branch (Re < 103) it can be observed that the trajectory of the cylinder
is a thin vertical line and the vortices are shed in two different horizontal lines, one for
the clockwise and other for the counter-clockwise. These lines are close enough so that
there is no free stream street between the vortex lines. At the maximum amplitude of
the lock-in region, the trajectory has an eight-shape and the vortex lines are separated
by a free stream street. In the lower branch (Re > 103), the eight-shape trajectory
starts to collapse into a vertical line and the vortex lines start to approach each other
and the free stream street disappears.
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Figure 5.1: Vortex shedding mode for Aluminum L = 0.4 m and D = 1.5724 mm
cylinder (Group 1). Yellow vortex is clockwise (CW) and blue are counter-clock wise
(CCW) direction.

For the case of group 2, Fig. 5.2 allows appreciating the modes 2S, P+S, and 2P. Each
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pattern is defined by the number of pairs and single vortices formed per cycle. S and
P mode implies a single vortex and a vortex pair, respectively. In the initial branch
(Re < 355), the only shedding mode is the 2S. At the beginning of the synchronization
regime, the vortex lines are relatively close. As the Re increases, the distance between
the vortex lines also increases whereas the trajectory remains as a thin vertical line.
In the upper branch (355 < Re < 396), although the trajectory shape is the same,
the vortex shedding mode jumps to a P+S (one pair and one single vortex are shed
per cycle of oscillation). Here two CCW direction vortices and only one CW are shed.
The CW vortex is placed vertically at the center of the other two vortices. The CCW
vortex pair is separated downstream. In the lower branch (Re > 396) the P+S mode
dominates until the amplitude decreases rapidly. In this last section, the 2P mode
appears. Across this branch, the cylindrical trajectory remains the same and the only
change in the hydrodynamics is the time that the separation of the two CCW vortices
takes. As the Re increases, the vortex pair is separated in a shorter time. Finally, at
the very last section of the lower branch, the 2P mode appears and four vortices are
shed in each cycle, two CW and two CCW.
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Figure 5.2: Vortex shedding mode for Copper L = 0.4 m and D = 2.3812 mm cylinder
(Group 2).

Fig. 5.3 depicts the results corresponding to group 3. Two branches, the initial and
final, are distinguished. The initial branch (Re < 345) is dominated by the 2S mode.
The trajectory begins as a thin line but as Re increases, the line widens gradually. In
the final branch (Re > 345), the vortex shedding mode undergoes a transition from
2S to P+S to 2P. The P+S mode, two CCW and one CW can be seen from the
typical maximum to the global maximum. From there on the 2P mode is observed.
It is important to note that in the last two images the CW vortex pair is separated
downstream, even tough it is not shown.
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5.1 Vortex shedding mode along the lock-in region

Figure 5.3: Vortex shedding mode for Aluminum L = 0.4 m and D = 2.3878 mm
cylinder (Group 3).

Finally, group 4 (Fig. 5.4) includes cylinders that exhibit a notorious amplitude peak
in the initial branch. This peak is consistent with a jump in the response frequency. In
the beginning, the trajectory of the cylinder is a thin vertical line and the vortices are
shed in two different horizontal lines. The vortex lines are nearby and they separate
until the amplitude reaches its typical maximum. In this region, the vortex shedding
mode is 2S. Passing this peak, where the amplitude starts to increase again, the mode
switches to a 2P and the trajectory becomes a wider line.
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Figure 5.4: Vortex shedding mode for Bronze L = 0.35 m and D = 3.161 mm cylinder
(Group 4).
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Even though the hydrodynamics alone is not enough to explain the different behavior
among the groups, the jump between modes are aligned with most of the different
branches in each group.

5.2 Vortex shedding mode in the Williamson

Roshko map

The Williamson & Roshko (1988) map of vortex modes was originally developed for
forced transverse oscillations of circular cylinders. Govardhan & Williamson (2000)
pointed out that this map collapses well with different systems including transverse
freely oscillating elastically mounted cylinders. However, when the cylinder amplitudes
obtained in this work are overlaid on the W-R map, it can be seen that the modes do
not coincide. From Fig. 5.5 to Fig. 5.8, the different groups in the W-R map are shown.

Figure 5.5: Hydrodynamic response in the W-R map for Aluminum L = 0.4 m and
D = 1.5724 mm cylinder (Group 1).
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Figure 5.6: Hydrodynamic response in the W-R map for Copper L = 0.4 m and
D = 2.3812 mm cylinder (Group 2).

Figure 5.7: Hydrodynamic response in the W-R map for Aluminum L = 0.4 m and
D = 2.3878 mm cylinder (Group 3).
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Figure 5.8: Hydrodynamic response in the W-R map for Bronze L = 0.35 m and
D = 3.161 mm cylinder (Group 4).

Fig. 5.9 to Fig. 5.11 reveal the discordance between the Williamson Roshko map, de-
veloped for forced transverse oscillations, and the modes originated by cantilevered

uniform flexible circular cylinders. This clearly shows that not only the original W-R
map is not suitable for all the different cylinders but, also, that even in the same type
of cylinders this map is variable depending on the group classification. The P+S mode
of group 3 is overlaid with the 2P mode from group 4.
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Figure 5.9: W-R map for 2S vortex shedding mode.

Figure 5.10: W-R map for P+S vortex shedding mode.
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Figure 5.11: W-R map for 2P vortex shedding mode.
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Conclusions

In this work, an experimental apparatus was built in order to investigate the vortex-
induced vibrations (free oscillations) of a cantilevered uniform flexible circular cylinder

in a steady current along the entire lock-in region. A Matlab ® code was developed
to determine the dynamic response of the cylinder using the PTV technique. For the
hydrodynamic response, in order to use the PIV technique, a customized system to
seed the fluid was constructed. Conclusions derived from this study are:

• Experimental results demonstrate the existence of four distinct groups, corre-
sponding to different behaviors of the maximum amplitude as a function of Re.

– Group 1 is observed mainly in the smallest diameter cylinders, regardless of
height and material. It consists only of two branches.

– Group 2 represents the most common response found in the literature. It
consists of three different branches. Contrary to the typical classification
based in frequency, here an amplitude-based criterion is proposed.

– Group 3 is rarely described in the literature and, as far as the authors are
aware, no evidence of similar behavior in flexible cylinders has been reported
earlier. This group consists of two branches and has two local maxima, one
described in this work as “typical maximum” and other as global maximum.

– Group 4 is characterized by a jump in frequency, which corresponds with a
peak in the maximum amplitude in the initial branch. This peak is observed
even in cylinders from groups 2 and 3.

• In all cases a local maximum amplitude named here “typical maximum”, occurs
at some point between natural frequency in a vacuum and natural frequency in
the working fluid.

Several parameters were tested to classify the different groups. The slope obtained
between Vr and Re numbers demonstrates the best results. Ranges corresponding to
this slope and respective groups are offered in chapter 4. In addition, using a proposed
polynomial fit, the Vr/Re slope can be calculated using L/D and m∗ ratios. This allows
to predict the maximum amplitude behavior for a given cylinder before performing any
time-consuming experiment.

As pointed out in chapter 4, although some researches have proposed that a loss in
synchronization between vortex shedding and oscillations is responsible for the distinct
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amplitude responses (at least in group 3), the hydrodynamics studied so far in this
work has not offered conclusive evidence. However, future work is needed to completely
study all the cylinders in the entire synchronization regime. Research is still needed
to reveal the exact reasons why there are different types of responses.

Regarding chapter 5 modes 2S, 2P and P+S were observed. There is a clear discor-
dance between the data collected in this work and the original Williamson-Roshko
map (developed for forced transverse oscillations). From what can be seen, all groups
have different behavior. Also, the areas of the different modes overlap each other. For
example, the 2S mode area from group 1 is overlap with the 2S mode area from group
2. But the same area from group 1 is also overlapped with the P+S area from group
2.

This clearly shows that not only the original W-R map is not suitable for all the
different cylinders but, also, that even in the same type of cylinders this map is variable
depending on the group classification.

Contributions and future work

This work represents an effort to better understand the behavior in the dynamics and
hydrodynamics of cantilevered uniform flexible circular cylinders subjected to VIV.
Meticulous experimental research with 32 cylinders was performed. Based on experi-
mental results, dynamic atypical behaviors (different from reported in the literature)
were observed and classified. Four different groups were presented and the properties
of each of its characteristic branches were detailed. The Vr/Re parameter was pro-
posed to predict the maximum amplitude behavior for a given cylinder by knowing
only the L/D ratio and ωvacuum before performing experiments through the entire syn-
chronization regime. This can be useful to take advantage of the different behaviors
for a specific application. Future work may consider testing the Vr/Re parameter in a
real scale experiment to compare results with those presented here. In the Griffin plot
data seams to fit the curve, however, the amplitudes for this specific type of cylinders
will be underestimated. An even wider study in this type of cylinders is needed to
fulfill the Griffin plot and clearly see if there is a specific model that can suite accurate
amplitude predictions.

Regarding the hydrodynamic response, a relation between jumps in the vortex shedding
modes and the change of branches were observed. Although phenomena correspond,
with the information collected in this work, it is not possible to know if these jumps
cause the dynamic response, or if the dynamic response causes these mode changes.
More experiments on hydrodynamics are needed to answer that question. Vortex
shedding modes do not match the Williamson-Roshko map, which is logical considering
that it was originally developed for forced transverse oscillations of circular cylinders.
Even more, for each group very clear differences are shown. This fact leads to thinking
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that for each group found, the type of vortex shedding modes that exist in each branch
should be maintained, but probably not where they are in a graph A∗

max vs Vr.
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Appendix A

Stiffness of the cylinder (k)
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Appendix B

Viscous damping in air (ζ)
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Path Frequency
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Path Frequency
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Path Frequency
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Path Frequency
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Path Frequency
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Appendix C

Viscous damping in water (ζ)
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Path Frequency
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Path Frequency
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