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But what saith it? “The Word is nigh thee, even in thy mouth and in thy heart,” that is,
the word of faith which we preach: that if thou shalt confess with thy mouth the Lord Jesus,
and shalt believe in thine heart that God hath raised Him from the dead, thou shalt be saved.
For with the heart man believeth unto righteousness, and with the mouth confession is made
unto salvation. For the Scripture saith, “Whosoever believeth in Him shall not be ashamed.”
For there is no difference between the Jew and the Greek, for the same Lord over all is rich
unto all who call upon Him. For “whosoever shall call upon the name of the Lord shall be
saved.” (Romans 10:8–13)



Abstract

The study of infectious disease behavior has been a scientific concern for many years as early
identification of outbreaks provides great advantages including timely implementation of public
health measures to limit the spread of an epidemic. This thesis proposes a methodology that
merges the predictions of (i) a computational model with machine learning, (ii) a projection
model, and (iii) a proposed smoothed endemic channel calculation. The predictions are made
on weekly Acute Respiratory Infections (ARI) data obtained from epidemiological reports in
Mexico, along with the usage of key terms in the Google search engine. The results obtained
with this methodology were compared with state-of-the-art techniques resulting in reduced
Root Mean Squared Percentage Error (RMPSE) and Maximum Absolute Percentage Error
(MAPE) metrics, achieving a MAPE of 21.7%. This approach uses readily available data, such
as Internet search terms and routine disease surveillance data (ARI data) and could be extended
to detect and raise alerts on possible outbreaks on ARI as well as for other seasonal infectious
diseases on several regions.



Resumen

El estudio del comportamiento de enfermedades infecciosas ha sido, por muchos años,
de interés científico debido a grandes ventajas provistas por una identificación temprana de
brotes, como puede ser la implementación de medidas de salud pública a tiempo para limitar la
expansión de una pandemia. Esta tesis propone una metodología que integra predicciones de (i)
un modelo computacional basado en aprendizaje automatizado, (ii) un modelo de proyección
y (iii) la propuesta del cálculo de canales endémicos suavizados. Las predicciones se hacen
con datos semanales de Infecciones Respiratorias Agudas (IRA) obtenidos de reportes epidemi-
ológicos en México, además datos sobre el uso de palabras clave en el motor de búsqueda de
Google. Los resultados obtenidos son comparados con técnicas del estado del arte obteniendo
en valores reducidos en métricas: la Raíz de Error Cuadrático Medio Porcentual (RMSPE, por
sus siglas en ingles) y el Error Absoluto Porcentual Máximo (MAPE, por sus siglas en ingles).
Específicamente, obteniendo un MAPE de 21.7%. Esta metodología utiliza datos disponibles al
día, como lo son los términos de búsquedas por Internet y datos rutinarios de vigilancia (IRA) y
puede ser extendida para detectar y enviar alertas en presencia de posibles brotes de IRA, así
como otras enfermedades infecciosas estacionales en distintas regiones.
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1

Introduction

Acute Respiratory Infections (ARI) are one of the main causes of morbidity and mortality in
the world, particularly in children under 5 years old and adults over 65 years old. It has been
estimated that 156 million acute lower respiratory infections1 occur worldwide every year and
almost 2.4 million deaths are estimated to have occurred associated with these infections in
2016 [104, 80, 9, 62, 34]. Therefore, the development of an effective monitoring and response
system for infectious diseases is still a challenge [83, 114].

The most frequent pathogens that cause ARI are Respiratory Syncytial Virus (RSV), human
metapneumovirus, rhinovirus/enterovirus, influenza viruses, parainfluenza 1-4, adenovirus,
coronavirus, Streptococcus pneumoniae, and Mycoplasma pneumoniae [68, 103]. ARI show
a seasonal pattern where RSV and influenza viruses are the major pathogens that contribute
to this behavior. Changes in circulating viral strains of these viruses may result in winter ARI
epidemics. In addition, introduction of novel influenza strains or other viruses into the human
population can lead to the emergence of pandemics.

Despite the health and economic burden of RSV, there is currently no vaccine or effective
antiviral treatment against this virus. In contrast, there are several antivirals and vaccines
available for influenza. While mortality associated with influenza has been reduced since the
introduction of influenza vaccine, this virus remains an important cause of ARI [93].

Health surveillance around the world has become a subject of primary concern, due to
the continuous emergence of infectious disease outbreaks, including those associated with
ARI such as pandemic influenza, Severe Acute Respiratory Syndrome (SARS) and, more
recently, SARS-CoV-2 [118]. A detailed understanding of transmissible disease dynamics and
the accurate forecast of disease outbreaks translate in reductions in the loss of human lives and
money savings by avoiding desperate measures during health contingencies [98, 107, 2].

Development of an effective monitoring and response system for infectious diseases is
a challenge, because it requires multiple components, periodical updating, and availability

1Such as pneumonia, influenza, acute bronchitis or any infection affecting lungs or airways.
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to clinicians. As a result, different approaches have been developed to address this problem
[83, 114].

Several systems which collect epidemiological information from informal sources like non-
government reports, news reports and field agents have been proposed as potential Early Warn-
ings Systems (EWS). ProMED [20], GOARN [56], GPHIN [61], Argus [63], BioCaster [24],
EpiSPIDER [43, 50], PREDICT [60] are some examples. ProMED proved the usefulness of
EWS with the early report of the SARS epidemic in 2003 in mainland China. In February
10, 2003, a ProMED report became the earliest public alert of a disease which would later be
known as SARS and which would ultimately affect in excess of 8,000 individuals worldwide
and kill more than 900 [112].

The quick growth in the Internet coverage during the last decade has brought the availability
of an open and direct communication channel for epidemiological surveillance. The wide
availability of Internet access by the general public has led to an increase in the use of online
sites to obtain information concerning diseases as well as seeking medical advice. Patients may
use search engines to look for their symptoms or as a self-diagnosis tool, while physicians may
use web searches for available Internet resources. The use of search engines by the general
public and physicians creates trends of terms, which could match the temporal occurrence
of diseases and allow for potential detection of outbreaks at early stages, before traditional
surveillance methods identify them [113, 55]. In the past years, the use of Internet search
engines and social media platforms for surveillance and forecast of diseases has been widely
studied [31, 36, 89, 96, 111, 100, 85, 116, 101, 109, 110, 94, 19, 74, 110, 31, 29, 85, 100].
Infectious diseases such as dengue [7, 37, 55, 110, 110], Influenza-Like-Illnesses (ILI) [74,
17, 113, 36, 48, 29, 86, 85, 57, 100, 109, 116, 117, 40, 111, 84, 109, 41], tuberculosis [73, 51],
typhoid [115], diarrhea[69], varicella [69, 96], Lyme disease [89], dermatologic diseases[101],
Ebola[107, 30], gonorrhea[47] and Zika [94] are among those that have been studied more
frequently with this approach due to their seasonal and epidemic behaviors.

The most common method used by health authorities to detect outbreaks are the Endemic
Channels (EC). Specifically, endemic channels represent the amount of cases within an expected
normal range, and anything above this moving threshold could point to a developing outbreak
[6]. The EC are calculated using the historic behavior from 5 or more years of an infectious
disease (normally avoiding years affected by an outbreak), it is a simple and fast way to generate
somewhat reliable thresholds allowing to detect a presence/absence of an outbreak. When using
endemic channels there is a risk of not detecting new behaviors in the data, and limitations
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associated with abnormally high historic means and the variation in the seasonal timing that
often lead to inaccurate detections[11].

The related work to this research includes Santillana et al. [85] who, in 2015, used six
different data sources to predict 2013 and 2014 epidemics; the predictions are made by three
different Machine Learning algorithms to perform multivariate regression, including stacked
linear regression, Support Vector Machines (SVM) and AdaBoost with decision tree regression,
and predict one, two and three weeks in the future. This research only reports different data
sources and different regression methods, and the performance is evaluated with Correlation,
RMSE, MAPE and Hit Rate [85]. Additionally, Volkova et al. [100], in 2017, employed only
two data sources from 2011 to 2014. They propose a Long Short-Term Memory (LSTM), which
is a Recurrent Neural Network. They trained the LSTM models on two seasons (2012–2013)
and tested on the 2014 season. They also employed the same metrics used by Santillana et
al. [85], except the hit rate. Their models are capable of predicting weekly ILI dynamics and
forecasting up to several weeks in advance [100].

In 2017, Xu et al. [109] proposed four independent models on ILI data from Hong Kong
and integrate their results. They use three datasets, mentioning that measuring the quality of the
data falls outside the scope of the research. Even though this is a very interesting proposal, the
data and metrics used do not make it possible to compare the proposed methodology with this
research.

Therefore, previous research only report what data has been used and the best regression
models for a specific period of time. Few has been said about data retrieval, data preprocessing
and feature extraction (called data acquisition process). They also do not use endemic channel
information.

The main contribution of this research is a methodology composed of the data acquisition
and the computational model. Other contributions of this research include: i) A method to
automatically select the search terms associated to the data source available; ii) A smoothed
endemic channel calculation; iii) A predictive calculation made by merging the forecasting of
an artificial neural network, the projection of a sum of sines model and the proposed smoothed
endemic channels.

Overall, this research presents a methodology capable of making accurate predictions of ARI
activity with data obtained from epidemiological reports, along with search terms usage derived
from the Google search engine. The combined use of epidemiological, Machine Learning,
and forecasting techniques allowed us to develop a computational model that is capable of
accurately predicting ARI trends. Adaptations of this model might prove useful for timely
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detection of outbreaks at early stages and before they become a major health burden. This
research is part of a bigger project called Mexican Infectious Disease Analysis and Surveillance
mapping application (MIDASmap; http://midasmap.uaslp.mx/) which is under development
and will be available online.

Research question

How accurately can a computational model predict acute respiratory infection (ARI) outbreaks
by using search terms along with Machine Learning algorithms compared with state-of-the-art
outbreak forecasting models?

Objectives

Main objective

To develop a computational model to forecast ARI cases through Machine Learning algorithms
along with statistical techniques and Internet search term trends.

Specific objectives

• To gather and test a set of most used state-of-the-art, specific and general purpose,
forecasting and statistical techniques.

• To define, monitor and analyze most correlated search trend topics with historical infec-
tious disease reported cases.

• To propose a computational model based on Machine Learning algorithms for forecasting.

• To measure the significance of results and compare the model with current methods.

Research methodology

An iterative methodology is proposed in order to achieve these objectives and ensure the
completion of this research (see Figure 1). The initial idea of a forecasting model that uses data
from Internet search engines was first focused on zoonosis, but after the first iterations of the

http://midasmap.uaslp.mx/
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methodology, and as the state of the art was reviewed, the definition started focusing only on
ARI due to several constrains in the availability of the data; then, as the iterations continued,
different ARI datasets were tested until the one defined in Chapter 2 was found to be adequate
for this research. After that, iterations continued, mostly to test each stage and module of the
proposed methodology, until a final structure was found and tested to establish it as the solution.

Figure 1 Research methodology used in this project.

This document presents the process of following the methodology described above, describ-
ing the findings, the difficulties found and the proposals made during the completion of this
research.
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Thesis outline

The first chapter focuses in the state of the art in Epidemiological surveillance systems and the
forecasting methods used for Acute respiratory infections, the second chapter presents the two
main datasets used and their analysis to continue with the chapter 3 where the architecture of
the proposed methodology is introduced, describing all the involved methods and calculations
made to fulfill the specified objectives. The fourth chapter shows the results obtained and a
comparison with the most similar investigations found, finally the fifth chapter contains the
conclusions for this research and the planned future work. It is worth noting the inclusion of
two Appendices, Appendix A focused in concepts and topics related to forecasting infectious
diseases, and Appendix B showing all considered methods and techniques that, for some reason,
were discarded.
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Chapter 1

Epidemiological Surveillance and Acute
Respiratory Infections Forecasting

This chapter focuses on two state-of-the-art branches: epidemiological surveillance and acute
respiratory infections forecasting. The first explores successful epidemiological information
systems, and the latter analyzes forecasting systems used on ARI, along with their approaches
and data sources. The greatest difference with the Epidemiological surveillance systems and
the Acute respiratory infections forecasting is that the former works as an automated collector
of, mostly online, data, and with this information reports and alerts are created to provide an
overview of what is happening in specific regions, some of them are capable of processing
worldwide information and not only focused on ARI, but in a whole set of diseases. the latter,
on the other hand, are researches focused on enhancing the ARI forecasts by exploring different
approaches, many of them with no immediate intention to become an automated system, but to
add knowledge to the solution of the ARI forecasting problem.

1.1 Epidemiological surveillance

The gathering, study and analysis of patterns, causes, and effects of health and disease conditions
in populations, is known as Epidemiology, and it shapes the decision making and evidence-
based practice of health authorities. Epidemiology is the cornerstone of Health Surveillance
Systems (HSS) and outbreak forecasting systems, as it is needed to gather, analyze and process
historical data in order to predict outbreaks with the best accuracy possible. Table 1.1 shows a
quick overview of certain characteristics of the most relevant Early Warnings Systems (EWS)
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that have been developed to provide novel approaches to traditional HSS; a deeper description
is given below, with some other related works that may not be as significant, but are still similar
to what this thesis tries to achieve.

Table 1.1 Comparative table of EWS proposed for health surveillance

Sources

Name Year Public Origin RSS Web
Pages

Official
Re-
ports

Informal
Reports

Written
Media

ProMED 1993 Y US N Y Y Y Y
GPHIN 1994 N CAN Y Y Y N N

EIN 1997 Y US Y Y Y Y N
GOARN 2000 Y WHO N N Y N Y
BioCaster 2006 Y US Y Y N N N
EpiSpider 2006 Y US Y Y Y N N
HealthMap 2006 Y US Y Y Y Y Y
PREDICT 2009 Y US N N Y N Y

1.1.1 Program for Monitoring Emerging Diseases (ProMED)

Created in 1993 by an international group of 35 senior scientist and health experts, the goal of
ProMED is to provide an effective global system of infectious disease surveillance that could
give early warning about outbreaks of new diseases, as well as known ones [20](Figure 1.1
shows the ProMED website screenshot). Until 1996, its most notorious characteristic was its
email network with about 4,500 subscribers from over 100 countries.

Today, ProMED is an Internet-based reporting system focused on rapid diffusion of infor-
mation on outbreaks of infectious diseases and acute exposure to toxic substances that affect
human health, including those in animals and plants grown for human food or animals feed,
providing reliable and constantly updated information about the threats to human, animal, plant
health and food health worldwide. Sources of information include reports in the media, official
reports, online summaries, local observers, among others, with no political restrictions. A
group of experienced experts in the field of human, plant and animal diseases monitors, reviews
and examines reports before they are sent to the network. Reports are distributed by e-mail to
subscribers and published directly on the ProMED website. Currently, ProMED has more than
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70,000 subscribers in at least 185 countries. ProMED has opened way to many other similar
health surveillance systems, and even provides data for some of them.

Figure 1.1 ProMED Home page, June 2020 (https://ProMEDmail.org/) [20]

1.1.2 The Global Public Health Intelligence Network (GPHIN)

GPHIN began in Canada in 1994 as an Internet system for outbreak alerts with restricted access,
which refers to information regarding public health alerts that might be of potential international
importance. Instead of relying on the contribution of subscribers, GPHIN collects information
during disease outbreaks and other public health surveillance resources throughout the world.
The two main sources for its news information are Factiva and Al Bawaba (in Arab language).
GPHIN subscriptions are restricted to organizations with health mandates. It has a restricted
website1 and alerts through e-mail (Figure 1.2). The GPHIN system keeps track of six key areas:
epidemics, biological agents, chemistry, the environment, radioactivity and natural disasters.

GPHIN has shown its significance by making reports that have mobilized other networks
within GOARN in many occasions [61]. It scans items published in the official languages of
the World Health Organization (WHO) and uses automated translation software to translate
non-English articles to English, and English articles into Russian, French, Spanish, Arabic,

1https://gphin.canada.ca/cepr/aboutgphin-rmispenbref.jsp

https://ProMEDmail.org/
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Figure 1.2 GPHIN Homepage, as it has restricted access it is not possible to go any further
without credentials, June 2020 (https://gphin.canada.ca/cepr/aboutgphin-rmispenbref.jsp).

and Chinese. Informal assessments suggest that, on average, GPHIN processes anywhere
from 2,000 to 3,000 updates per day, of which about one-quarter to one-third are discarded as
irrelevant or duplicate. The early warning alerts given by GPHIN help with the challenge of
effectiveness and credibility of global health media on infectious disease epidemics.

1.1.3 Emerging Infections Network (EIN)

Launched by the Infectious Diseases Society of America (IDSA), in cooperation with the Centers
of Disease Control and Prevention. Conceived as a sentinel system to monitor infectious diseases
and complement other public health surveillance efforts [95]. The following five objectives
were defined: (1) identification of new or unusual clinical events, (2) identification of cases
during outbreak investigations; (3) characterization of emerging infections (e.g., diagnostic
methods, treatment methods, and preliminary assessment of morbidity and mortality); (4)
research collaboration; and (5) communication and education. EIN relies on its members to
actively identify new cases during outbreak investigations, and provides a platform for the
exchange of information on emerging infectious diseases among its members. The success of
EIN depends directly on the number of volunteer hospitals and the ongoing commitment of

https://gphin.canada.ca/cepr/aboutgphin-rmispenbref.jsp
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Figure 1.3 Emerging Infections Network (EIN) Homepage, June 2020 (http://ein.idsociety.org/).

infectious diseases physicians to identify and report potential emerging infectious diseases. EIN
has an informational web page; to access the information it is required to create a free account2.

1.1.4 Global Outbreak Alert & Response Network (GOARN)

The decision to establish GOARN was agreed in a WHO meeting in Geneva in April 2000, as a
need to achieve coordinated approaches to address the challenges of disease outbreaks in the
twenty-first century. Defined as a technology network that can contribute to the international
response to infectious diseases outbreak, thus providing technical and multidisciplinary skills
for major projects responsiveness to epidemics. GOARN has grown in technological partners
form multiple countries and regions: Regional Office of the Americas, African Regional Office,
European Regional Office, Eastern Mediterranean Regional Office, South-East Asian Regional
Office, Western Pacific Regional Office. By 2012, GOARN partners had participated in 137
missions, including 1,471 deployments which totalled 31,629 person days. These missions were
carried out in 79 different countries, regions or localities. Rapid support to contain the spread
of viruses is the goal. GOARN has a SharePoint Website3 that displays a warning message,

2http://ein.idsociety.org/
3https://extranet.who.int/goarn/

http://ein.idsociety.org/
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support request, operational updates, technical support, tips, and deployment details (Figure 1.4
shows GOARN website).

Figure 1.4 GOARN Homepage, September 2020 [56] (https://extranet.who.int/goarn/).

1.1.5 BioCaster

BioCaster [25, 24, 49] is a text-based ontological analysis system to identify and monitor the
spread of infectious diseases through language signals in the Web. In operation since 2006, it
ceased operations on 2012, BioCaster was developed to achieve an early detection of infectious
disease outbreaks (Figure 1.5). It is composed by two main components: a web/database
server and a backend computer cluster equipped with text mining technology that continuously
scanned hundreds of RSS newsfeeds from local and national news providers, it specialized in
providing advanced research and analysis, web analytics and scientific literature for employees
of public health agencies and infectious disease investigators. The system captured over 1700
RSS feeds, classified by their relevance, and placed the information on a Google map using
geocoded information. Some of the sources are EurekAlert!, European Media Monitor Alerts
(EMMA), Google, the Morbidity and Mortality Weekly Report (MMWR) from the Centers
for Disease Control and Prevention (CDC), MeltWater, OIE, ProMED, Reuters, WHO (World
Health Organization) and Vetsweb. The BioCaster ontology initially included information
in eight languages focused on the epidemiological role of pathogens and their geographical
locations. This platform was later upgraded to identify information contained in articles written
in Arabic, Chinese, English, French, Japanese, Korean, Portuguese, Russian, Spanish, Thai and
Vietnamese.

https://extranet.who.int/goarn/
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Figure 1.5 BioCaster architecture. Adapted from [49].

1.1.6 EpiSPIDER

EpiSPIDER [43, 50], created on 2006, first conceived as a ProMED-mail visual supplement
report. It now collects information from many sources, such as Daylife, on Google, humanitarian
news, and ProMED, Twitter and WHO. It uses natural language processing on structured
information and stores it in a relational database, generating RSS feeds and data views in
an interactive map (Figure 1.6). EpiSPIDER gets location names from reports and uses
georeferencing services to plot data at a country level in the United States and Canada, and
in some other selected countries. EpiSPIDER shows how the data is distributed, based on the
integration of unstructured sources of media events to complement the awareness of the disease
surveillance situation.
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Figure 1.6 EpiSPIDER architecture. Adapted from [43].

1.1.7 HealthMAP

HealthMap [13, 12] is an automated system for requesting, filtering, integrating and displaying
unstructured reports of illness outbreaks. Designed to collect and display new outbreaks with
geographic location, time, and infectious agent. The system is a starting point for real-time
information service on a wide range of emerging infectious diseases and is designed for public
health officials and international travelers. The system integrates outbreak data from a variety
of electronic sources: Baidu, Eurosurveillance, Google, HealthMap Community News reports,
EIA (Environmental Impact Assessment), ProMED, Soso, Ocular Eye Users account, WDIN
and WHO, and scans for articles in Arabic, Chinese, English, French, Portuguese, Russian and
Spanish (HealthMap architecture is shown in Figure 1.7).
HealthMap uses geo-referral data to show reports on an interactive map4 available for free since
2006. As part of the system evaluation, the system processed 778 reports during one month,

4http://www.healthmap.org/es/
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covering 87 categories of diseases and 89 countries. HealthMAP has a significant utility in
managing large amounts of information, the automated file classifier had an 84% accuracy
(Correctly classifying 655 out of 778 reports) compared with ProMED alerts at 91% (Correctly
classifying 188 out of 207) and Google News reports for which this was 81% (Correctly
classifying 443 out of 547), as ProMED messages follow a more regular structure [33].

Figure 1.7 HealthMap architecture. Adapted from [33].

1.1.8 PREDICT

This system started in 2009 as a project of the Emerging Pandemic Threats program (EPT) of
the U.S. Agency for International Development (USAID) [60]. PREDICT was meant to create
the global capacity for surveillance and risk assessment for emergent and zoonotic infections
with pandemical potential. It uses the One Health approach to encompass and integrate health
surveillance among species, with collaborations with governments and agencies such as CDC,
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FAO, WHO and OIE. Along with other complementary projects: RESPOND, IDENTIFY and
PREVENT, PREDICT focuses on the human-animal interface to understand the pathogen
background agent in other species that come into contact with people and risk factors for
the emergence of new improved zoonoses. Currently, activities are carried out in at least 20
developed countries, work includes field search and collecting samples, as well as searching for
viruses, other pathogens and microbiological test results when available. By the end of 2011,
this project had found almost 100 viruses (in plants, rats and non-humans primates) showing a
span of viral families. A data system is used to keep and correlate data coming from a variety
of sources. Its fieldwork ended in 2019 due to lack of funding, and the program was closed in
March 2020 by the Trump administration.

Figure 1.8 PREDICT site information, September 2020 [60] (http://data.predict.global/).

All of these Health surveillance systems have different approaches and methodologies to
try to keep track of infectious diseases and some of them even to predict outbreaks as early
as possible. The most common source for information they use is ProMED, along with RSS
feeds and medical reports; in no case they use Internet Search terms as their main source of
information. About the most recent event, the COVID-19 outbreak there is no official report
of any of these EWS being the first to detect the outbreak[108, 32, 54, 4], the most plausible
reason could be that the first country affected was China (country known for its isolationism),
according to what is known, the first report was an epidemiologic alert by the local health
authority on December 31, 2019 [108].

http://data.predict.global/
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1.2 Disease dynamics forecasting

This section presents the review of the disease dynamics research focusing on approaches and
datasets used. Figure 1.9 shows a visual representation of the state-of-the-art analysis grouped in
four main subsets: forecasting, Internet search engines, Machine Learning and acute respiratory
infections.

1.2.1 Forecasting techniques

There is a broad set of techniques used in the literature for predicting outbreaks. Because
not all diseases behave similarly, a single forecasting approach might not be applicable in
all circumstances; nevertheless, knowledge of the most common and successful forecasting
techniques is required to propose a new model. An initial subset of relevant studies are selected
exclusively because of their use of forecasting techniques to predict some disease; their analysis
is contained in this subsection, and represented in Figure 1.9 as the grey area of forecasting and
its intersections with the other topics.

ARIMA models

Some of the most common techniques which have been used for outbreak prediction are
the Auto Regressive Integrated Moving Average (ARIMA) [72, 73, 109, 58] and variations:
ARIMA additive and ARIMA multiplicative [3], seasonal ARIMA (SARIMA) [71, 109] and
ARIMA with intervention [3]. From these variations, SARIMA has consistently shown better
results and is one of the most used when the only input available is a single time series.

Regression models

Regression models are a frequent approach in biological and statistical data analysis [7, 30, 109,
14, 107, 51], where the authors focus mainly in calculating and describing the transmission rates,
correlations between relevant variables, statistical properties, and projections of the studied
diseases. A wide variety of models, including linear regression [76, 71, 74], adaptative regres-
sion [14], multivariate regression [110, 113, 107, 86], multiplicative and additive regression [3],
Classification And Regression Trees (CART) [55], generalized linear [109] and linear mixed
model [58], Bayesian space-time regression [58], and auto logistic regression model [52] have
been used.
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Figure 1.9 State-of-the-art summary, grouped in four main topics: Forecasting, Internet search
engines, Machine Learning and Acute respiratory infections. As it can be seen, the intersection
of these subsets is the topic of this thesis, where only few papers are within this category. (*)
Denote surveys.
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Holt-Winters Smoothing (HWS)

HWS is another commonly used technique for outbreak prediction [58] and time series smooth-
ing5, it also has several variations: Holt-Winters Additive [51] and Multiplicative methods [3],
Normalized Holt-Winters [14], Holt-Winters Damped [58]. In most cases where SARIMA and
HWS are used, the SARIMA model outperforms HWS; however, in some instances HWS does
a very good job at adjusting to the time series and forecasting. In the present research HWS was
tested with historical ARI data and was initially used as a projection model, but was discarded
because other methods showed better results (see Appendix B for more information about this
method).

Statistical model: Directional Movement Indicator and Average Directional Index (DMI-
ADX)

Proposed by Wilder [102], the Directional Movement is a system that identifies if the market
is trending before providing signals for trading the trend. It is composed of three variables:
the Average Directional Index (ADX), Plus Directional Indicator (+DI) and Minus Directional
Indicator (-DI); these values are calculated from the time series to be analyzed. The +DI and
-DI are known as the Direct Movement Indicator (DMI). This method was designed originally
for commodities and daily prices; it can also be applied to stocks and to identify trends in the
financial market. It helps in the decision making for financial investments minimizing risks by
identifying trends.

A DMI crossover generates the bullish (tendency to increase) and bearish (tendency to
decrease) signals. When the DMI+ crosses above the DMI-, a bullish signal is identified. When
the DMI- crosses below the DMI+ a bearish signal is identified. The ADX does not identify the
direction of a trend by itself; it only identifies the degree of strength within a trending market.
The ADX measures the strength of the trend over time, regardless of the direction of the trend.
It provides an additional prediction about the intensity and ranges from 0 to 100 where 0 would
mean there is no trend in data, and 100 would be an extremely strong trend.

The ADX, +DI and -DI calculations involve a lot of smoothing, and the calculation starts
with the sum of the first m periods. Together the DMI and ADX can provide the direction
an strength of a trend. Some issues when using this technique are that it is based on Moving
Averages (MA), this means that it reacts slowly to low moving series (it is known as a lagging
indicator), and in some instances crossover between DMI indicators can happen too often,

5Smoothing data removes random variation and shows trends and cyclic components, see Appendix A.
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giving false alerts. It is strongly recommended to use ADX in conjunction with other reliable
indicators to support the signals derived from this model (see Appendix B for more information
about this method).

Other models

There are other models where a threshold is defined by the biological analysis made of the
outbreak [7], and then used as a signal of a possible outbreak when a threshold is crossed.
The decomposition model obtains forecast results by preprocessing time series obtaining some
features such as: trend, seasonality, cyclicity, and irregularity [73] (see Appendix A for time
series concepts). Least Absolute Shrinkage and Selection Operator (LASSO) is a penalization
method used to shrink the estimation of the regression coefficients to prevent overfitting due
to either collinearity of the covariates or high-dimensionality [109, 86], Moving Epidemic
Method (MEM) [97, 41]. The papers using Machine Learning algorithms for forecasting
[115, 74, 64, 75, 35, 85, 100, 109] are detailed in Subsection 1.2.3.

1.2.2 Internet search engines

Represented as a blue circle in Figure 1.9, this subset focuses on research made to analyze the
Internet search engines as tools for health surveillance, real-time surveillance, and their use for
forecasting focused on different diseases. The analyzed research projects focus in three search
engines and one social network: Google [31, 36, 89, 96, 111, 100, 85, 116, 101, 109, 110, 94,
19, 40, 84, 18, 69, 29, 37, 53, 15, 57, 48, 21, 86, 65], Yahoo [74], Baidu [55, 31, 29, 113, 39, 47],
and Twitter [85, 100]. The details of these articles is given in Subsections 1.2.1 and 1.2.3.

1.2.3 Machine Learning

Most of the research using Machine Learning algorithms focuses only in Artificial Neural
Networks (ANN) and its variants. It is worth noting that there is an extremely wide variety of
Machine Learning algorithms, yet the focus is in prediction and in ANN specifically, mostly
because of the capabilities of ANN to adapt and adjust to unknown scenarios. Other Machine
Learning techniques used include Kernel smoothing and Serfling’s higher order models [75], a
Simulation Optimization Model (SIMOP) [64] which uses the Nelder-Mead simplex method
for optimization and an individual-based model for simulations. These models are not widely
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used or cited in the state of the art, thus they are mentioned here for informational purposes and
context.

Artificial Neural Networks (ANN)

In the articles found, the ANN are commonly used to forecast the disease cases time series. For
example, in some reports Multilayer Perceptrons (MLP) are used because they are one of the
most common ANN [73, 109]. A detailed description of ANN is given in Appendix A.

Feedforward Neural Network are used in the study by Xu et al. [109] to forecast influenza,
with several hidden layers; they aim to make predictions for one and two weeks after the most
recent data. The input is divided in three sections: meteorological variables, Google search data,
and previously offline-observed ILI data. The output neurons are one-week-ahead and two-
week-ahead predictions of influenza cases. A comparison of the FFNN, Radial Basis Function
Neural Networks (RBFNN), and Elman Recurrent Neural Networks (ERNN) to forecast typhoid
fever incidence in China [115] showed better results for the RBFNN, which can be defined as a
ANN with Radial basis functions as activation functions in its nodes (neurons).

The Long Short-Term Memory Network (LSTM) is a Recurrent Neural Network (RNN)
with built in memory cells to store information and exploit long range context, surrounded by
gating units that can reset, read, and write information[44]. Known as a Deep Learning 6 neural
network, it has internal feedback connections and is able to process sequences of data, such
as time series, speech or video. It has been reportedly used for ILI forecasting [100], and is
composed of a cell, an input gate, output gate and a forget gate. it was considered in the second
stage of the proposed research.

Reservoir Computing is an extension of ANN in which the input signal is connected to a
fixed and random dynamical system called reservoir, creating a higher dimension representation
(embedding) which is then connected to a desired output via trainable units. The Echo State
Network (ESN) is a RNN part of the so-called Reservoir Computing, it is composed by an input
layer, a reservoir, an embedding of the input and a readout (output) layer [78]. The weights
between the input and the reservoir, as well as the reservoir weights are not trainable. This
model was also studied to be added to our proposed model. In both cases, the LSTM and the
ESN, the conclusion was that a deeper study is needed to include them in the proposed model;
several configurations were tested but none of them yielded better results than the presented for
the FFNN in this thesis.

6Deep learning is a class of machine learning algorithms that uses multiple layers to progressively extract
higher-level features from a raw input[27].
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In all cases, the ANN tend to have good results and good fitting for data prediction, but the
research that has been done so far does not allow to determine the best approach to use these
techniques in the context of infectious disease surveillance, given that there are many variants
of ANN. Nevertheless, in general, a simple ANN can be chosen, since this kind of ANN have
been used and studied profoundly for a long time, and there are many enhancements made to
ANN where their main differences are the modeling of the neurons and their architecture.

1.2.4 Acute Respiratory Infections

Denoted in Figure 1.9 as a yellow circle, papers including data from ARI are mostly on the side
of analyzing whether or not Internet search engines are an accurate resource for ARI predictions,
focusing on correlations and statistical analysis [31, 70, 36, 18, 96, 28, 48, 21, 113, 65, 57,
90, 19]; one paper focused on analyzing the historic behavior and trend of the ARI data [81],
some other papers on predicting the ARI behavior by only using its time series [97, 76, 58, 41],
and only three papers were found that intersect with the four subsets of concepts that we
focus on, where they use Internet search engines and Machine Learning to forecast ARI data
[85, 100, 109], which are described below.

1.2.5 Related work

As mentioned in the Introduction, and although all the reviewed papers provide very important
information that helped shaping this thesis, there are three papers that are most related to this
research, because of the approach, data and metrics used to measure their results.

The related work to this thesis includes Xu et al. [109](2017), who used four individual
models: Generalized Linear Model (GLM), LASSO, ARIMA and a FFNN (which the paper
claims is a deep learning algorithm, and that they are the first to use deep learning for surveillance
and forecasting of infectious diseases) on ILI data from Hong Kong and used a Bayesian Model
Averaging (BMA) to integrate the results. The data used is: Influenza data 7, Google search data
and meteorological data (period 2011 to 2015), mentioning that measuring the quality of the data
falls outside the scope of the research. The metrics used in this research are: RMSE, Correlation,
Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). According to their
analysis there is no clear cyclic behavior for influenza in Hong Kong (2011-2016), in years 2013
and 2014 there is no detectable influenza season and in 2012 and 2015 there are two influenza

7Influenza Like Illness (ILI) data (per 1000 consultations) in General Out-Patient Clinics (GOPC) in Hong
Kong.
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seasons. Also, they state that the Google search data is limited due to the relatively small
population in Hong Kong (of 7 million). This is a very interesting proposal because they fuse
the results of their methods with the BMA, but the lack of cyclicality in the ILI data, the Google
search data limitations and the metrics used make it impossible to have a fair comparison of the
proposed methodology with this thesis.

Another relevant paper was published in 2015 by Santillana et al. [85] who used six
different data sources to predict 2013 and 2014 influenza epidemics: CDC-reported ILI8,
athenahealth9, Google trends, influenza related Twitter microblogging, FluNearYou10 and
Google Flu Trends11(period 2013 to 2015). The predictions are made by three different
Machine Learning algorithms to perform multivariate regression, including stacked linear
regression, Support Vector Machines (SVM) and AdaBoost with decision tree regression. They
report the ability to predict one, two and three weeks in the future. This research only reports
different data sources and different regression methods, and the performance is evaluated with
Correlation, RMSE, RMSPE, Maximum Absolute Percentage Error (MAPE) and Hit Rate [85].

Additionally, Volkova et al. [100], in 2017, employed only two data sources: Defense
Medical Information System (in USA) and Twitter (period 2011 to 2014). They use as baseline
SVM and AdaBoost and they proposed a Long Short-Term Memory (LSTM), which is a
Recurrent Neural Network. They trained the LSTM models on two seasons (2012–2013) and
tested on the 2014 season. They also employed the same metrics used by Santillana et al. [85],
except the hit rate. Their models are capable of predicting weekly ILI dynamics and forecasting
up to several weeks in advance [100].

Their results using the metrics in common are shown in Figure 1.2, while the correlation
could be used to compare different methods the information it provides is very limited, and
comparisons using RMSE across different types of data would be invalid because the measure
is dependent on the scale of the numbers used. Moreover, related research only report what data
has been used and the best regression models for a specific period of time. Few has been said
about data retrieval, data preprocessing and feature extraction (called data acquisition process).
More detailed results and a comparison with the proposed model are shown in Chapter 4.

8Weekly number of people seeking medical attention with ILI symptoms in the United States.
9A medical practices management company providing nearly real-time hospital visit records.

10A participatory surveillance system to self-report ILI.
11Google Flu Trends is Unavailable from 2015.
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Table 1.2 Results reported in the related work, using only the two common metrics reported in
these researches. RMSE is shown not to compare but for informational purposes.

Method Reference Correlation RMSE

GLM [109] 0.65 1.97
ARIMA [109] 0.47 2.14
LASSO [109] 0.57 1.84
FFNN [109] 0.63 1.73
BMA [109] 0.73 1.53
LASSO [85] 0.78 0.76
SVM (RBF) [85] 0.89 0.52
SVM (Linear) [85] 0.79 0.76
AdaBoost [85] 0.92 0.44
AdaBoost [100] 0.87 0.04
SVM [100] 0.90 0.09
LSTM [100] 0.61 0.01
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Chapter 2

Acute Respiratory Infections Dataset and
Internet Search Term Data

This chapter presents two datasets used along this research, and how they were collected, their
setbacks, their analysis, and solutions found to overcome their deficiencies.

2.1 The acute respiratory infections data

The time series for ARI data for Mexico was generated using weekly epidemiological data
reported by the Mexican Health Ministry (Secretaría de Salud), through the General Directorate
of Epidemiology. This dataset is public and includes the weekly number of all medical
encounters reported to the Health Ministry by healthcare facilities throughout the entire country
for which the diagnosis corresponded to any of the following ICD-101 codes: J00-06, J20, J21,
except J02 and J03 published in a weekly epidemiological report [88] (see Table 2.1). Weekly
data for winter seasons included entries reported between epidemiological week 27 of 2002 and
epidemiological week 26 of 20192.

1International Classification of Diseases 10th Revision.
2publicly available at www.genomica.uaslp.mx/Research/Bioinformatics/Bioinformatics.html
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Table 2.1 ICD-10 codes for ARI and their diagnosis.

ICD-10 code Diagnosis

J00 Acute nasopharyngitis [common cold]
J01 Acute sinusitis
J04 Acute laryngitis and tracheitis
J05 Acute obstructive laryngitis [croup] and epiglottitis
J06 Acute upper respiratory infections of multiple and unspecified sites
J20 Acute bronchitis
J21 Acute bronchiolitis

The ARI data, as collected, are composed by year, week number and the ARI reported cases,
the decision to collect the data from week 27th of 2002 to week 26th of 2019 was due to the
training and testing required for the proposed methodology. An excerpt of the data is shown in
Table 2.2 and some statistical properties are shown in Table 2.3.

Table 2.2 Excerpt of the ARI data as collected from the weekly epidemiological data reported
by the Mexican Health Ministry (Secretaría de Salud), through the General Directorate of
Epidemiology. Data is shown in two columns for formatting reasons.

Year Week ARI cases Year Week ARI cases

2017 27 392,149 2018 1 527,679
2017 28 374,615 2018 2 648,268
2017 29 375,169 2018 3 672,728
2017 30 361,262 2018 4 706,863
2017 31 331,413 2018 5 636,584
2017 32 327,292 2018 6 570,324
2017 33 329,959 2018 7 581,180
2017 34 343,683 2018 8 580,628

... ... ... ... ... ...
2017 51 494,346 2018 25 351,992
2017 52 514,992 2018 26 346,265
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Table 2.3 Statistics related to the ARI data 2002–2019.

Minimum Mean Maximum Median Standard deviation Variance

190,665.00 452,223.67 1,184,372.00 452,185.50 123,443.03 15,238,180,975.03

2.1.1 ARI analysis

ARI are known to have seasonality, each year the same pattern is expected, but sometimes when
an outbreak3 occurs, there is an unexpected increase in the number of cases. The analysis of
the ARI data can give some insight of its properties and its behavior in order to find the better
approach for forecasting.

Fourier transform

It is important to define the seasonality of the ARI data and its length, because it will determine
how the data is going to be separated and presented to the forecasting and projection techniques,
the idea is to confirm that ARI data (from 2004 to 2019) has a cyclical yearly pattern the Fourier
transform is used. It transforms the data from time domain to frequency domain, where the
seasonality becomes evident by the accumulation of data. The frequency is defined as 1Hz
equals 52 weeks (the expected seasonality, a year), and the amplitude measures the energy per
unit of bandwidth, in this case NumberO fCases/Hertz (see Figures 2.1 and 2.2).

Autocorrelation

This technique calculates the correlation between a time series (the ARI data) and a delayed
version of itself, to check for instance independence. Its commonly used to decide if a time
series can be modelled and/or used for forecast. It also can be used on the residuals from a fitted
model to see if it can model all the none-random behavior of the data. This technique was used
to ensure the ARI data could be modelled and to confirm the seasonal pattern in it (see Figure
2.3). Both the Fourier transform and autocorrelation analysis confirm the repetitive behavior
of the data every 52 weeks (a year). The fact that the autocorrelation on the ARI data shows a
sinusoidal pattern supports the idea of a cyclical behavior and a high self correlation, meaning
that the time series itself contains a big amount of information that can be used to predict future

3According to the World Health Organization (WHO), a disease outbreak is the occurrence of disease cases in
excess of normal expectancy (see Appendix A).
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Figure 2.1 Fourier transform applied to ARI data (2004-2019) to detect seasonality. Fre-
quency is in Hertz, where 1Hz equals 52 weeks (a year) and the amplitude measures
NumberO fCases/Hertz.

behavior and the lag, measured in weeks, shows a cyclical pattern every 52 weeks confirming
the yearly cyclical behavior of the time series.
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Figure 2.2 Fourier transform applied to ARI data (2004-2019), frequency is converted to
weeks, showing the strength of the repeating pattern every 52 weeks. Amplitude remains
(NumberO fCases)/Hertz.

Figure 2.3 Autocorrelation analysis performed to ARI data from 2004 to 2019. The lag,
measured in weeks, shows the yearly cyclical pattern repeating every 52nd week.
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2.2 Internet search term data

The methodology proposes to use the behavior of online search engines by monitoring specific
keywords, known as search terms, employed by the general public when they search for disease
information to create a cross-sectional data table (see Appendix A). Google Trends4 (GT) is
used to retrieve the required data from the Google search engine. GT is a web service from
Google that enables any user to download historical usage of any search term, given three main
restrictions: Data goes as far as 2004, the data is shown to the user after normalizing its values
between 0 and 100, and Google has privacy thresholds that hide information if the threshold is
not surpassed[91]. The GT uses a webpage as interface, but there are programmatic tools that
allow to automate the requests. In order to make the requests, it is needed to define the terms
of interest, an initial set of terms was created by asking experts in biomedicine, epidemiology,
virology and immunology of respiratory viruses, and computer science to define a set of twenty
five possible words that people could use on the Internet search engines and could be correlated
to the ARI cases (see Table 2.4).

Table 2.4 Initial list of Internet search terms proposed by experts in biomedicine, epidemiology,
virology and immunology of respiratory viruses, and computer science.

Gripa Neumonía Oseltamivir Tamiflu Vacuna
Gripe Porcino Mocos OMS Antibiótico
Flu Porcina Fiebre InDRE Antifludes
Influenza Pandemia La gloria Alerta viajero Gabirol
Catarro H1N1 Antigripal Neumonía atípica Cdc

2.2.1 Internet search term analysis

The first request made to Google Trends (GT) contained the data of the terms listed in Table
2.4. To retrieve data from the GT service, it is required to define the desired range of time,
location, and terms (for better results, it is better to ask for the terms one by one). This first
data set helped to define some rules about the granularity of data but also showed some of the
disadvantages of the GT service. A big setback is that one request to Google Trends is limited
to 5 search terms. Another thing to have in mind is that Google Trends shares data from 2004
to date, and their gather-and-store information algorithms have changed through time [91];

4https://trends.google.com.mx/trends/
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then, it would be expected that old data is less reliable than more recent data. And the most
intriguing factor found yet is that the same request made at several times, may (and often does)
not return the exact same data; for example, a request of the search term ‘Antibiótico’ from
January 2004 to August 2017 made several times during the same day shows slight differences
between requests (see Figure 2.4). This may be due to the algorithm used to fulfill the request,
as GT can not go through all the raw data, it extrapolates from smaller subset to give a fairly
accurate response in an acceptable time, as the problem was analyzed, some interesting facts
emerged: Google Trends had updated its internal algorithms at least two times: once in 2011
and the second in 2016 [91].

Figure 2.4 Same request made at different moments of a day. Each cell contains the normalized
usage value returned for each month-year relation. Red marks show values that are different
from the other request.

A new experiment was proposed: to retrieve the same data many times from the Google
Trends service to check its congruence and reliability, separating it in three subsets: 2004-2010,
2011-2015 and 2016 to date, because of the changes made in the GT internal algorithms were
made live in January 1st of 2011 and January 1st of 2016. It was found that there were many
discrepancies between requests of each single term: many data values changed, which was
more evident in older requests (see Figure 2.5).

At this moment the list of terms had grown to 34 terms, which were requested 21 times each;
the data was gathered and analyzed, confirming that the oldest subset had greater discrepancies.
Since the analysis of this data was first made by hand, watching and comparing the data in
spreadsheets, the process was automated to reduce the processing time of the data. The details
of how this process was automated and what tools were used is described in Subsection 3.1.1.
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Figure 2.5 The same search term (“gripa") requested 21 times and separated in three spans of
time (2004-2010, 2011-2015 and 2016-2018), vertical axis denotes the normalized values for
the search term usage. The variance between requests is clearly higher in the 2004-2010 group.
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The correlation between the same term requested at different times would give an idea of
the similitude of these requests. The Pearson correlation was applied to the 21 requests of each
term individually revealing how correlated is the term with itself on different requests, in many
cases very low values were found (r>0.1) pointing to a clear discrepancy in the GT responses,
thus making them unreliable. Table 2.5 shows an excerpt of the correlation matrices, showing
five of the 21 requests for the term “gripa" on each of the time spans defined.

Table 2.5 An example of the self correlation tests (used term: “gripa"). Each table shows
an excerpt of the correlation matrices (five of the requests) from the different span of years
(2004-2010, 2011-2015 and 2016-2018), the rows and columns show the request number made
for the same term. Each cell represents the correlation between the column request and the row
request.

Correlations: gripa 2004-2010
1 2 3 4 5

1 1 0.5470 0.5305 0.4492 0.4492
2 0.5470 1 0.9059 0.7094 0.7094
3 0.5305 0.9059 1 0.8148 0.8148
4 0.4492 0.7094 0.8148 1 1.0000
5 0.4492 0.7094 0.8148 1.0000 1

Correlations: gripa 2011-2015
1 1 0.4630 0.4737 0.4757 0.4909
2 0.4630 1 0.8247 0.7479 0.7299
3 0.4737 0.8247 1 0.9254 0.9071
4 0.4757 0.7479 0.9254 1 0.9747
5 0.4909 0.7299 0.9071 0.9747 1

Correlations: gripa 2016-2018
1 1 0.5073 0.4974 0.5348 0.5097
2 0.5073 1 0.8250 0.7932 0.7139
3 0.4974 0.8250 1 0.9167 0.8338
4 0.5348 0.7932 0.9167 1 0.9163
5 0.5097 0.7139 0.8338 0.9163 1

After this first approach to try to find the correct and unique value for each term was not
successful by itself, various hypothesis were proposed:

• The terms related to ARI are the only ones with this behavior.
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Table 2.6 List of terms unrelated to ARI data used to analyze Google Trends data.

Seasonal terms Other diseases Random terms

“navidad" “nauseas" “facebook"
“futbol" “diarrea" “biblia"

“nfl" “dolor" “youtube"
“moda" “cancer" “elecciones"

“tendencia" “tumor" “becas"
“concierto" “artritis" “meme"

• It is a problem exclusive to the studied region.

• The time of the day when the requests are made affects the outcome.

• Data from different requests have lag.

• Noise is affecting the data.

To find an answer to each of the possibilities and with the goal of being able to get the most
reliable value, each of the hypothesis was addressed.

The terms related to ARI are the only ones with this behavior

If only the terms related to ARI are affected, then, terms related to other diseases or not related
to any disease would not show this behavior. A new list of terms is proposed containing six
terms with expected seasonal behaviors, six terms related to other diseases, and six random
terms commonly used by people (see Table 2.6). The same behavior was observed, but it was
noted that terms that are greatly used show a little bit more similarities among their requests
(still r>0.1) (see Figure 2.6).

It is a problem exclusive to this region

To address the second hypothesis the requests were made also for another region. For this case
the state of Tamaulipas was chosen, when this analysis was made the original idea was to focus
on the State of San Luis Potosí, after the analysis the decision was to use the data from the
whole country of México. The 32 terms were requested from this region but no meaningful
differences were observed (r>0.2) (see Table 2.7).
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Table 2.7 An example of the self correlation tests but from the Mexican state of Tamaulipas
(used term: “gripa"). Each cell represents the correlation between the column and row of each
pair of requests.

Correlations: gripa 2004-2010 (Tamaulipas)
1 2 3 4 5

1 1 0.5470 0.5305 0.4492 0.4492
2 0.5470 1 0.9059 0.7094 0.7094
3 0.5305 0.9059 1 0.8148 0.8148
4 0.4492 0.7094 0.8148 1 1.0000
5 0.4492 0.7094 0.8148 1.0000 1

Correlations: gripa 2011-2015 (Tamaulipas)
1 1 0.4630 0.4737 0.4757 0.4909
2 0.4630 1 0.8247 0.7479 0.7299
3 0.4737 0.8247 1 0.9254 0.9071
4 0.4757 0.7479 0.9254 1 0.9747
5 0.4909 0.7299 0.9071 0.9747 1

Correlations: gripa 2016-2018 (Tamaulipas)
1 1 0.5073 0.4974 0.5348 0.5097
2 0.5073 1 0.8250 0.7932 0.7139
3 0.4974 0.8250 1 0.9167 0.8338
4 0.5348 0.7932 0.9167 1 0.9163
5 0.5097 0.7139 0.8338 0.9163 1

The time of the day when the requests are made affects the outcome

Assuming the values are affected by time, an automated request was scheduled to run each hour;
only two search terms were requested to avoid exceeding the number of requests allowed by
Google Trends (the quota is estimated in 1,400 requests allowed every 24 hours approximately).

Time seems to affect requests in the way that requests closer in time tend to be more similar
than requests made far in time (see Table 2.8). Higher correlations were obtained with this
approach (r>0.4). Since previous experiments had shown some flaws in the data provided by
Google Trends. It was dimmed important to check if differences in the time of the request are
significant. The same request was performed daily for 5 days. The results show that from 2011
to date the differences are not significant, but it would be better to average those results for
more accurate values.
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Table 2.8 An example of the self correlation tests of requests made every three hours (used term:
“gripa"). Each row shows the correlation of the request made at 12:00 paired with the value of
the request made at the given hour and for the different span of years.

gripa
Hour 2004-2010 2011-2015 2016-2018
12:00 1 1 1
13:00 1 0.8756 0.9093
16:00 0.8400 0.8371 0.9093
19:00 0.8455 0.6872 0.9094
22:00 0.8166 0.6757 0.9139
01:00 0.6743 0.6835 0.9139
04:00 0.5989 0.4559 0.5328
07:00 0.9775 0.8674 0.9265

Data from different requests have lag.

For each term, all requests were plotted in a single graph to help recognize if there are any
visible delays, lags or shifts in the data. This made evident that there is a lot of noise in the
requests, in many of the terms it was impossible to detect a trend or a slope (Figure 2.7). Data
does not seem to be lagged, but it looks like there is a lot of noise in some of the requests,
apparently having many extreme values randomly in the series (0 and 100).

Noise is affecting the data

To overcome the apparent noise in the requested terms, the variance is calculated for each of the
requests for one term, then, only the requests with the lower variances are plotted, this showed a
cleaner graph with clear identifiable trends and slopes (Figure 2.8) clearly enhancing the visual
detection of the behavior and giving the chance to filter the different requests and generating a
single time series for each term.

To resolve the limit of terms for each request, it was decided that each request would ask
for one term at a time, also, the time range for each individual request would be a year, mainly
because GT does not allow to specify the desired granularity, in this case weekly, but the service
decides this depending on the time range you are requesting. Asking data one year at a time
assures the granularity of the response will be weekly, as desired.
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Another possible disadvantage of this service is that the search term usage is normalized
between 0 and 100 for the time range you are asking, meaning that, no matter the time range you
ask for, the maximum value found in this range will be 100 and the minimum 0. In this specific
case this means that every year each term will have a maximum value of 100 and minimum
of 0, no matter how greater or lower the data of one specific year is compared to another they
will both have a maximum of 100 and minimum of 0, this represents losing valuable data of the
behavior of the search term usage through the years.

To prevent this data loss, the best solution is to make one additional request for each search
term, asking for the range from January 2004 to date, this request returns monthly data. With
these monthly values, it is possible to apply the month value as weight for the weeks of that
month to give them a proper global value, meaning that if a month has a value of 50 (out of
100) then, the values of the weeks composing that month should be multiplied by the monthly
value as a percentage (0.50 in this case), as the monthly data is according to the most global
time range (the normalization is applied to the whole range from January 2004 to date) the
result will be a weekly value that is also according to this normalization, giving to each week
the proper weight compared to the rest of the time series.

The GT data was deeply analyzed and many tests were made to the requested search terms
to determinate its reliability, since several changes have been made to the internal mechanisms
of the service, and Google has kept the details of these changes private, along with their security
threshold[91]. It was then determined that the records from 2004 to 2010 are unreliable, mostly
because their responses have very high variances and when requested several times the data
is no consistent. Data from 2011 to 2015 are more reliable, data shows consistency but high
variances in some terms, but the best records are found from 2016 to date, where data is more
consistent and populated in comparison to the previous years. The idea of using these data to
forecast the 2009 influenza outbreak is discarded to avoid, as much as possible, using search
term data from before 2010. As the proposal started developing and, because it included an
automated search term removing method, the list of terms escalated to 168 search terms. The
decision then is to request the data, from Mexico, of the 168 search terms from the 27th week of
2008 to the 26th week of 2019 discarding the 2009 because it was affected by the outbreak.
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Figure 2.6 Example of ARI unrelated search term request (“náuseas") separated in three spans
of time (2004-2010, 2011-2015 and 2016-2018), vertical axis denotes the normalized values for
the search term usage.



39

Figure 2.7 Example of data returned by Google Trends tool, no lag is detectable between
requests. Term used: “frío", vertical axis denotes the normalized values for the search term
usage.
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Figure 2.8 Search terms filtered requests, only 5 with the smallest variances are plotted, term
used: “frío". As it can be more clearly seen in the 2016-2018 plot, the requests with the smallest
variances show better quality in their data, vertical axis denotes the normalized values for the
search term usage
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Chapter 3

Forecasting Method using Artificial
Neural Networks and Search Terms

After understanding and defining the two main datasets for the research, it is possible to
continue with the study, definition and testing of the architecture for the proposed methodology.
This chapter addresses the proposed methods and architecture of this research, defining each
technique used and its role in the methodology. The methodology is divided in two stages: data
acquisition and computational model, as shown in Figure 3.1. Data acquisition is divided in
three modules: data retrieval, data preprocessing and feature extraction. On the other hand,
the computational model has two modules: merge prediction and ARI forecast. Every module
contains several tasks.

3.1 Data acquisition

The data acquisition stage involves three modules: data retrieval, data preprocessing and feature
extraction (the data science processes) [16, 35]. A detailed diagram of this stage is shown in
Figure 3.2.

3.1.1 Data retrieval

ARI raw dataset

The time series for ARI from Mexico were generated based on weekly epidemiological data
reported by the Mexican Health Ministry (Secretaría de Salud), and includes the weekly number
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Figure 3.1 The proposed architecture is composed of two stages: the data acquisition and the
computational model.

of all medical encounters reported to the Health Ministry by healthcare facilities throughout
the whole country as mentioned earlier. This dataset is conformed by weekly data between
epidemiological week 27 of 2008 and epidemiological week 26 of 2019 (The range between
week 27 of current year to week 26 of the next year is known as winter season).
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Figure 3.2 The data acquisition stage is composed by three modules: Data retrieval, data
preprocessing and feature extraction.
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Find correlated search terms

The search terms needed to be a set of words that could be used on the Internet search engines and
could be correlated to the ARI cases but also search terms defined by experts in epidemiology,
virology and respiratory infections. As the proposed model is enabled to remove the non-
significant terms, hence, a list of 168 terms is defined, composed by possible terms related to
ARI data (see Subsection 2.2).

Obtain historical terms behavior

With the list of terms defined above, the historical usage of the terms was requested to Google
Trends; the data was structured weekly, and focused on Mexico. Using the same time window
as ARI raw dataset, the terms were retrieved from Google Trends services using a NodeJS
Software Development Kit (SDK) called “google-trends-api"1, created by Patrick Trasborg in
2016 under the MIT License2 (A very open and permissive software license). The script deals
with the request and retrieve functionalities of the service. For each request, the service returns
a JSON3 file (A versatile structured file similar to XML files) with the response. If no data is
available, the JSON structure returned is empty. At the end of this procedure there is time series
for each search term requested.

3.1.2 Data preprocessing

Data cleaning and formatting

In the data preprocessing stage the JSON files are parsed and used to populate tables. The
tables are then cleaned from missing values, filling empty ones with zeros. The missing values
appeared with the tag "<Missing>", this occurred with the 53rd week when years only had 52
weeks, or when a term was not used during a whole requested year the value for the weeks was
a missing tag. For the historical usage of search terms and ARI raw data, the 53rd week was
eliminated for those years that have an additional epidemiological week (Normally when a year
ends in the middle of a week, that week is assigned to the ending year, this situation generates
scenarios where most years have 52 weeks but some have 53 weeks), to ensure a constant size
of 52 weeks for all the years.

1https://www.programmableweb.com/sdk/google-trends-nodejs-sdk-patrick-trasborg
2https://opensource.org/licenses/MIT
3https://www.json.org/json-en.html
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Pearson correlation analysis

The data is analyzed to remove the terms least correlated with the ARI dataset by using the
Pearson Correlation. The Correlation between ARI data and each of the search terms is
calculated and stored for future analysis, then the search terms time series is paired with the
ARI dataset into one single data table.

Search term removing

During this process, terms with a correlation coefficient below 0.75 are removed, reducing the
list of terms from 168 to 28. No negative correlations are expected, because that would mean
that there could be a relation between the increase in ARI cases and the reduction of searches of
some term, where the terms selected are expected to have a positive correlation with the ARI
data.

3.1.3 Feature extraction

In this module, the ARI dataset is analyzed to extract relevant information such as the endemic
channel calculation and the proposed sum-of-sines endemic channel calculation. On the other
hand, the search terms are tested with a greedy algorithm to select only the most relevant search
terms.

Endemic Channel (EC)

Many countries use a version of the endemic channels for visualising the expected case levels,
based on the weekly (or monthly) average number of cases over the preceding 5 years [6]. As
such, endemic channels represent the boundaries for the expected number of cases at a given
time; the occurrence of cases above this moving threshold would be considered as an outbreak
of a disease [45] (Detailed information about endemic channels in Appendix A).

Commonly, an endemic channel is obtained by calculating the 5th, 50th and 85th percentiles
of a disease for each week from the 5 previous years (ignoring years affected by outbreaks); the
5th percentile (lower endemic channel) represents the minimum number of cases expected or
the area of success, the 50th percentile is the expected behavior (the median or secure area), and
the 85th percentile (upper endemic channel) is the risk area or area of alert, surpassing these
values points to possible outbreaks[10]. When using EC there is a risk of not detecting new
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behaviors in the data, and limitations associated with abnormally high historic means and the
variation in the seasonal timing that often lead to inaccurate detections[11].

As part of these research, the use of a smoothing function applied to the endemic channels is
proposed. The idea is to apply a smoothing algorithm to define the endemic channels of the ARI
data and overcome some of the EC deficiencies. In order to achieve this and after testing the
endemic channels need to be calculated using the lowest value for each week (1st percentile), the
median (50th percentile), and the maximum value (100th percentile), this enables the smoothing
algorithm to better detect the behavior of the ARI data and helps to reduce trend and seasonality
data loss.

Sum of sines function (SoS): Endemic Channel Smoothing

As the commonly used endemic channels have many sudden variations in their behavior, this
makes them prone to false positives, i.e. if there is a sudden drop in values in the endemic
channel but the current number of ARI cases has just a slight increase that makes it above
the endemic channel threshold. After exploring different possible curve fitting and smoothing
methods [5, 87], it was decided to propose a smoothed endemic channel by using the sum of
sines function as a signal smoothing method. This method was applied to the 1st , 50th and 100th

percentiles of the ARI time series, resulting in a set of smoothed endemic channels (Lower,
median and upper endemic channels) (see Figure 3.3).

The sum of sines function can be used to model time series with historical data and project
its possible future behavior. Depending on such behavior, the function may be composed by
sum of several sinusoidal functions in order to fit it. A generalization is shown in the following
equation:

y = a1sin(b1x+ c1)+a2sin(b2x+ c2)+ ...+ansin(bnx+ cn) (3.1)

Where ai, bi, ci are unknown parameters that are needed to be fitted to the data; x represents
the week number (time); y represents the output, i.e. the smoothed endemic channel. A non
linear least squares method can be used to find values for these parameters, the fit function in
MATLAB® from Curve Fitting Toolbox™ is used for this purpose, after several tests, the best
found values of the involved parameters were defined as shown in Table 3.1, and an example of
the obtained results is shown in Figure 3.3.
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Table 3.1 Parameters for the fit function used to smooth the endemic channels.

Parameters Values

Model type to fit Sum of sines function (5 Sines)
Algorithm options Non linear least squares
Maximum evaluations allowed 110
Maximum iterations 400
Termination tolerance on model value 10−6

Termination tolerance on coefficient values 10−6

Robust linear least-squares fitting method Least absolute residual method

Greedy Search Term Removing

The goal of this task is to reduce the list of search terms, because the removal of irrelevant terms
helps to minimize the input noise going into the forecasting models. Brute force algorithms test
all possible combinations of search terms, but these algorithms are computationally expensive
and time consuming. Instead, the selection of terms is carried out using a Greedy method that
iterates choosing the best option available at the moment [26, 67] by using an Artificial Neural
Network (ANN). The greedy algorithm is defined as follows:

• An initial list of inputs including only the week number

• Each term is used as input for the ANN and tested 300 times

• If there is an improvement in the results:

• The term with the lowest averaged RMSE is added to the list of inputs and removed from
the list of terms

• The process is repeated until no improvement is found

• The final list of inputs contains the best inputs

The ANN used is a Feed Forward Neural Network (FFNN), The input layer starts with
only the week number and one term. The best option is evaluated with the Root Mean Squared
Error (RMSE) between the ARI cleaned data (hereafter ARI data, cleaned at the preprocessing
module) and the output of an ANN (see Figure 3.4), after the greedy approach, the list of inputs
was reduced to only 6 terms.
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Figure 3.3 Smoothed Endemic Channels using sum of sines (SoS). At the top are the 100th

percentiles, at the middle are the 50th percentiles and at the bottom the 1st percentiles. The
thick green lines show the smoothed channels (SoS, lower, median and upper), and the dotted
line the ARI data.

Feed Forward Neural Network

This kind of neural network is also known as backpropagation network [82, 8, 42]. They are
composed of an input layer, one or more hidden layers, and an output layer. Each layer has
a set of nodes, artificial neurons, and each layer is connected to the next by weights and the
neurons of a layer are connected to all the neurons on the next layer. The neurons in the hidden
layers have an activation function which is applied to the inputs received from the previous
layer each one multiplied by its respective weight (see Appendix A for more details on the
FFNN). The number of hidden layers and neurons on each of them was estimated by a grid
search algorithm that tested all configurations for one and two layers with 10 to 100 neurons
on each. The best configuration found (see Table 3.2), lowest RMSE in the testing stage, is a
two hidden layer architecture with 60 and 20 neurons respectively (see Figure 3.5). By using
the fitnet function in MATLAB® from the Deep Learning Toolbox™, a neural network was
trained and tested 300 times using as input the week number and each of the terms and the
average RMSE for every term was recorded. Subsequently the RMSE was compared between
search terms, and the term with the lowest RMSE is kept. The test is repeated adding another
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Figure 3.4 Greedy search term removing process.

term, until minimal or no improvement is found. Using this approach, the list of search terms
was reduced to six keywords: asthma, bronchitis, what is flu, respiratory, cough, and respiratory
tract (in Spanish correspond to ‘asma’, ‘bronquitis’, ‘que es la gripe’, ‘respiratorias’, ‘tos’ and
‘vias respiratorias’, respectively), these terms together showed the lowest RMSE with ARI data.

3.2 Computational model

The second stage of the proposal (see Figure 3.1), the computational model, has one module,
Merge prediction, divided in three tasks: a) a forecasting model built with FFNN, b) a projection
model based on SoS; and c) the merge prediction, which integrates both previous components
besides the smoothed endemic channels as inputs, see Figure 3.6. The forecasting model makes
its predictions based on the search terms behavior, while the projection model works in parallel
with ARI data and the smoothed endemic channel, and both making a one-week projection of
its expected behavior.
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Table 3.2 Parameters used for the ANN and the f itnet function.

Parameters Values

Training function Conjugate gradient backpropagation with Fletcher-Reeves updates
Hidden layers [ 60 , 20 ]
Input/output processing Normalize inputs/targets to fall in the range [-1,1]
Input/output processing Remove rows with constant values
Train epochs 1,000
Train test data division Divide up every sample
Validation and testing [ 52 weeks, 52 weeks ]
Training Remaining weeks
Performance function Mean square error

...

Input Layer

term_6

week_num

term_1

term_5

First hidden

layer

Second

hidden layer

60 neurons7 inputs 20 neurons

Output Layer

ARI cases

1 output

... ...

Figure 3.5 Feedforward Neural Network (FFNN) architecture

3.2.1 Forecasting Model: FFNN

The FFNN is used to make predictions of the expected number of ARI cases for the next weeks
by receiving the recent usage of the list of search terms. This type of network is composed of
an input layer, one or more hidden layers, and an output layer each composed by a set of nodes,
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Figure 3.6 The computational model, which receives the ARI data, the search terms data and
the smoothed endemic channel data as inputs, and is composed by a Forecasting model working
in parallel with a Projection model to feed the third module of this stage, the Merge prediction.

called neurons. The number of hidden layers, their number of neurons and the parameters used
are described in Subsubsection 3.1.3. The lowest averaged RMSE in the testing stage resulted
in a two hidden layer configuration with 60 and 20 neurons respectively. The FFNN receives
as input the current week number (1-52) and internet usage for each of the six search terms
during that week, and it is trained to predict the ARI data for the next week. An example of the
response of the FFNN for the 2017-2018 winter season is shown in Figure 3.7.

3.2.2 Projection Model: SoS

After studying and testing the SoS function to calculate the endemic channels, it was found that
it could be fitted to project its behavior, tests showed that it could make reasonable predictions
when projecting the function for several months, the only thing found that could be a restriction
is that the function required 9 or more years of history to make the best predictions, for this
case there is enough historical data available, a sum of sines function was used to model the
behaviour of the ARI cases throughout the years.
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Figure 3.7 ARI data and FFNN response forecasting one week in advance for the 2017–2018
winter season.

More specifically, a sum of five sines function was used, as denoted in Equation 3.1, selected
for this task because of the results obtained in section 3.2.2). The resulting parameters obtained
by the fit function are shown in Table 3.3. The fitted model is then used to project its behavior.
Several tests were performed in order to define the time span that resulted in the best prediction,
and in order to simplify the comparison with the related work [85, 100], it was decided to adopt
a one-week forward setup for our projections. The resulting fitted model for the ARI data is
shown in Figure 3.8 and the one-week projection for the winter season 2017-2018 in Figure 3.9.

Table 3.3 Values of the adjusted parameters using the non linear least squares fitting method.
Each row i represents the parameters affecting the ith sine

i a b c

1 2.168e+04 0.002802 0.316
2 8886 0.004113 2.828
3 4021 0.1207 1.491
4 746.3 0.02359 1.264
5 1155 0.3624 -0.6893

The purpose of these two models (Forecast and projection) is that the forecasting model
would predict unexpected increases in ARI cases because it is fed by the search term usage, and
the projection model would show the expected behavior of the ARI cases, assuming no unusual
behavior. The idea is to join these two models and the boundaries given by the Smoothed
endemic channels (lower and upper) to generate an accurate prediction as described below.



53

 2008  2009  2010  2011  2012  2013  2014  2015  2016  2017

Year

200,000

300,000

400,000

500,000

600,000

700,000

800,000

N
u

m
b

e
r 

o
f 

c
a

s
e

s
SoS smoothing

SoS projection

ARI data

Figure 3.8 ARI data and sum of sines (SoS) fitted model.

3.2.3 Merge Prediction

For the merge prediction, a linear equation was used. This equation involves the results from the
forecasting model and the projection model along with the lower and upper smoothed endemic
channels, as a weighted sum.

ŷt = w1x1t +w2x2t +w3x3t +w4x4t (3.2)

where, xnt is each of the responses, forecasting model, projection model, lower endemic
channel value and upper endemic channel value, respectively. Parameters w1 to w4 are the
weights given to each response and they are calculated fitting the equation to minimize its
RMSE using the responses and the ARI data from the immediate previous year; the resulting
values are shown in Table 3.4.

The resulting parameters in Table 3.4 show the percentage of participation of each of the
responses, the reason behind these values, specifically the low value on the projection model, is
that it is not desired that the output remains in the center of the endemic channels, but rather that
the changes detected by the forecasting model force the output to increase, but in a controlled
manner, which is the participation of the endemic channels, to control the output in these sudden
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Figure 3.9 ARI data and sum of sines one-week projection for 2017–2018 winter season.

Table 3.4 Response variables and parameter values using responses from the 27th week of 2017
to 26th week of 2018

Variable Response Parameter Value

x1 Forecasting model w1 0.37
x2 Projection model w2 0.045
x3 lower endemic channel w3 0.38
x4 upper endemic channel w4 0.205

changes of the forecasting model. The following chapter will discuss these and other details on
the results.
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Chapter 4

Results

This chapter presents the results from the proposed methodology fed with ARI data and Internet
search terms. The recorded results are focused on the last stage of the methodology, the
computational model (Section 3.2), i.e. forecasting model, projection model and the merge
prediction. The metrics used are described below, followed by the definition of the experiments
and results from the forecasting model and the merge prediction. In order to measure and
compare the performance and accuracy of the proposed methods, four metrics have been chosen:
Pearson correlation coefficient (r), Root Mean Square Error (RMSE), Root Mean Squared
Percent Error (RMSPE), and the Maximum Absolute Percentage Error (MAPE) (the discarded
metrics tested are detailed in Appendix B).

4.1 Accuracy metrics

Metrics that have been reported previously in similar applications were used in order to measure
the results of the computational model [85, 100], including the RMSE, RMSPE, Pearson
correlation and MAPE. Each of which are described below.

4.1.1 Pearson correlation

Also known as bi-variate correlation, it is widely used to measure the linear correlation between
two variables. The result obtained in the computational model for each week was paired with
the ARI data to measure their correlation as a metric to measure the accuracy of the forecasting
model.
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4.1.2 Root Mean Square Error (RMSE)

RMSE is a measure of the distribution of residuals and reflects how data concentrates around
the predicted model. This metric is also used to choose the best fitting network in our proposed
model. It is worth noting that the RMSE is not a normalized metric, because it depends on the
units of measurement, and therefore it cannot be used to compare with models using a different
dataset.

RMSE =

√
1
n ∑(yi − xi)2 (4.1)

4.1.3 Root Mean Squared Percent Error (RMSPE)

RMSPE measures the difference between predicted and real values as a percentage, the advan-
tage against the common RMSE is that the RMSPE is not bound to the units of measurement,
meaning that RMSE is not recommended to compare models using different input data, while
the RMSPE is always represented as a percentage, allowing comparisons.

RMSPE =

√
1
n ∑

(
yi − xi

yi

)2

×100 (4.2)

4.1.4 Maximum Absolute Percent Error (MAPE)

MAPE is most commonly used to evaluate forecasts. It has valuable statistical properties. It
makes use of all observations and has the smallest variability from sample to sample. MAPE is
also often useful for purposes of reporting, because it is expressed in generic percentage terms.
It has some setbacks with outliers, but it is still a common metric for forecasting models [92].

MAPE =

(
max

i

|yi − xi|
yi

)
×100 (4.3)

Unusually large errors can affect MAPE and RMSPE. However, they share some useful charac-
teristics, since the denominator is the real expected value, the result is not affected by the unit of
measurement of the series. This makes the MAPE and RMSPE a good metric for comparing the
performance of a forecasting method on different series or the performance of many methods
on one series. The RMSE was used to compare the method within the methodology but, as
this metric is bound to the unit of measurements, it could not be used to compare with other
reported models.
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4.2 Forecasting Model

The FFNN was tested to assess one-week-in-advance forecasting of the ARI data for the winter
seasons encompassed between 2015 and 2019 in a yearly fashion. Where data from 2008 to
2018 was used in order to train the models and 2015 to 2019 to test them, i.e. data from winter
seasons between 2008 and 2015 were used as training data to forecast the 2015-2016 winter
season (see Tables 4.1 and 4.2).

To evaluate the accuracy of the forecasting model, several experiments (Exp1 to Exp6) were
performed. These included assessment of the training window size, and the evaluation of the
FFNN with and without retraining of the network every 13 weeks (a quarter of a year, denoted
as Q1, Q2, Q3 and Q4 in Figures). This means that for each Experiment two kinds of training
will be tested: 1)Training once for the whole year (Exp No retrain) and 2)Once a quarter has
been evaluated, retrain the network with the new information available (Exp Retrain).

Tables 4.1 and 4.2 show the details of the training and testing sets for all experiments to
define the best window length. Since the initial weights of the FFNN (parameters) are initialized
randomly, each experiment was executed one thousand times creating the same number of
networks, then each FFNN was tested with data from the 1st week of the starting year to the
26th week of ending year. The training concluded when the best FFNN was selected (the one
with the lowest RMSE) to be used in the final testing. It is worth noting that the year 2009 was
omitted from these tests because of the Influenza A(H1N1) pandemic.

Table 4.1 Training sets. Each test consisted of twelve experiments, six with retraining and six
without retraining the network.

FFNN Start year (on week one) End year (on week 26) Window (years)

Exp1 {2008,2010,2011,2012} {2015,2016,2017,2018} 6.5
Exp2 {2010,2011,2012,2013} {2015,2016,2017,2018} 5.5
Exp3 {2011,2012,2013,2014} {2015,2016,2017,2018} 4.5
Exp4 {2012,2013,2014,2015} {2015,2016,2017,2018} 3.5
Exp5 {2013,2014,2015,2016} {2015,2016,2017,2018} 2.5
Exp6 {2014,2015,2016,2017} {2015,2016,2017,2018} 1.5

The final testing was divided in quarters, each of them composed of 13 weeks, but the
results are grouped by year. On the retrained version of the tests, the network was retrained
by adding the most recent data along with part of the previous training data (When retraining
a network it is recommended to present some previous data to the network in order to avoid
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Table 4.2 Testing sets. Each test consisted of twelve experiments, six with retraining and six
without retraining the network.

FFNN Start year (on week one) End year (on week 26)

Exp1 {2015,2016,2017,2018} {2016,2017,2018,2019}
Exp2 {2015,2016,2017,2018} {2016,2017,2018,2019}
Exp3 {2015,2016,2017,2018} {2016,2017,2018,2019}
Exp4 {2015,2016,2017,2018} {2016,2017,2018,2019}
Exp5 {2015,2016,2017,2018} {2016,2017,2018,2019}
Exp6 {2015,2016,2017,2018} {2016,2017,2018,2019}

overfitting1 with the new presented data). The version without retraining used the same network
during the four quarters of each winter season test.

The metrics of the results are shown in Table 4.3, where the best three results for each
of them are in bold fonts. An example of the results for the retrained FFNN are shown in
Figures 4.1, and without retraining in Figure 4.2, where it is visually clear that the Exp6 No
retrain consistently keeps close to the ARI data, compared to the other Experiments, the reduced
error-based metrics (RMSE, RMSPE and MAPE) shown in Table 4.3 also confirm its accuracy.
These results show that Exp6 No retrain have consistently more accurate results compared to the
other experiments (Exp1–5). For this reason the Exp6 No retrain is selected as our forecasting
model.

4.3 Merge Prediction

The merge prediction is composed of the forecasting model (FFNN), the projection model (SoS),
and the endemic channels merged in a linear equation that reduces the error-based metrics.
Results of this prediction for the 2017–2018 season are shown in Figure 4.3. The results of all
seasons involved in the study are shown in Figures 4.4–4.7, were results from the FFNN model,
the SoS model, and the smoothed endemic channels can be compared for each season, metrics
of each season can be seen in Table 4.4. In these figures it is possible to see the SoS projection
constantly following the trend of the ARI data, with no seasonality generating sudden changes;
the Exp6 No retrain, shows a constant variation going above and below the ARI data, but being
good at detecting its sudden increases; the endemic channels (lower and upper) simulate a
threshold where the ARI data mostly keeps inside; finally, the merge prediction combines the

1See Appendix A.
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Figure 4.1 Example of results for retrained networks for the 2017-2018 winter season compared
with ARI data.
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Figure 4.2 Example of results for networks without retraining for the 2017-2018 winter season
compared with ARI data.
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Table 4.3 Averaged metrics for all experiments with and without retraining. Best values are in
bold fonts.

FFNN RMSE CORR RMSPE MAPE

Exp1 Retrain 86139.27 0.72 19.76% 54.09%
Exp2 Retrain 89181.04 0.72 19.35% 49.98%
Exp3 Retrain 86744.66 0.70 19.46% 54.73%
Exp4 Retrain 80932.07 0.77 18.60% 51.83%
Exp5 Retrain 80915.79 0.77 18.56% 49.91%
Exp6 Retrain 74482.54 0.79 17.42% 45.50%
Exp1 No retrain 86875.26 0.94 20.07% 52.46%
Exp2 No retrain 87912.19 0.93 19.68% 50.91%
Exp3 No retrain 90353.82 0.90 20.55% 55.80%
Exp4 No retrain 82922.59 0.92 19.20% 47.68%
Exp5 No retrain 80360.40 0.76 18.49% 47.43%
Exp6 No retrain 74169.01 0.82 17.35% 42.38%

qualities of all the previous signals following closely the ARI data even when it has sudden
changes. The results show the capability of the model to predict the ARI data one week in
advance.
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Figure 4.3 Example of results for the merge prediction for the 2017–2018 winter season
compared with ARI data.
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Figure 4.4 Results from the model for the year 2015–2016 compared with the real values for
ARI cases.
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Figure 4.5 Results from the model for the year 2016–2017 compared with the real values for
ARI cases.
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Figure 4.6 Example of all results from the model for the year 2017–2018 compared with the
real values for ARI cases.
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Figure 4.7 Results from the model for the year 2018–2019 compared with the real values for
ARI cases.
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Table 4.4 Detailed metrics for each season from 2015 to 2016.

RMSE CORR RMSPE MAPE

2015–2016

Exp6 No retrain 90666.4436 0.78 20.1% 52.0%
SoS Projection 87711.5075 0.85 12.5% 31.0%

Merge 70084.2756 0.84 13.5% 35.0%

2016–2017

Exp6 No retrain 69404.4634 0.82 16.1% 39.0%
SoS Projection 67787.1978 0.84 12.1% 25.0%

Merge 67205.4062 0.82 12.9% 30.0%

2017–2018

Exp6 No retrain 60084.4026 0.86 11.2% 28.0%
SoS Projection 42529.7762 0.91 8.8% 15.0%

Merge 38142.7486 0.93 7.8% 17.0%

2018–2019

Exp6 No retrain 83400.9898 0.75 18.4% 81.0%
SoS Projection 45056.3245 0.92 10.1% 16.0%

Merge 42022.3458 0.94 10.7% 42.0%

Averaged

Exp6 No retrain 75889.0749 0.80 16.4% 50.0%
SoS Projection 60771.2015 0.88 10.9% 21.7%

Merge 54363.694 0.88 11.2% 30.9%

This merged result has a reduced RMSE, RMSPE, and MAPE and a higher correlation
coefficient (CORR) compared with FFNN and SoS individually. The average results for these
metrics obtained with the three methods during the four study seasons are shown on Table 4.5.
This proposal is also compared with similar models found in the state of the art, using data from
Google searches [85] and Twitter [85, 100] for Influenza surveillance and ILI forecasting with
Machine Learning algorithms, such as, AdaBoost, Support Vector Machines (SVM), with linear
and Radial Basis Functions (RBF), and Long Short-Term Memory networks (LSTM), the best
one-week forecast results were selected to compare with this methodology, as shown in Table
4.5, where the correlation (CORR) of the SoS projection and Merge prediction falls lower than
the SVM, AdaBoost from [85], and the SVM reported by [100], mainly because this metric



64

reflects only the coincidences in the direction were the original data is moving at each moment
compared to the predicted data, but it does not measure the distance between the two signals
nor the differences in their magnitudes, hence this metric gives limited information of what is
going on with the data; RMSPE and MAPE give more information about the accuracy of the
prediction. The best RMSPE value is achieved by the SVM from [85] followed by the SoS
projection and the Merge prediction, something to keep in mind is that the SoS projection and
Merge prediction are tested for 5 years while the SVM from [85] uses only 4 years of testing,
meaning that the proposed models is tested for a bigger span of time. The most accurate MAPE
metric is achieved by the SoS projection showing a 9% more accurate forecasting than the
Merge prediction and 10% better than the SVM reported in [85] and after that it goes close to
20% better than the rest of the forecasting models [85, 100]. The model shows very competitive
results which provide an insight of the scope of the proposed model.

Table 4.5 Comparing the merge prediction with other methods. Metrics are calculated averaging
consecutive testing seasons.

Model Reference CORR RMSPE(%) MAPE(%) Averaged Seasons

Exp6 No retrain This model 0.80 16.48% 50.10% 2015–2019
SoS Projection This model 0.88 10.92% 21.70% 2015–2019

Merge This model 0.88 11.27% 30.90% 2015–2019

SVM (RBF) [85] 0.89 26.90% 137.00% 2013–2015
AdaBoost [85] 0.92 16.10% 40.90% 2013–2015

SVM [100] 0.90 10.43% 31.84% 2011–2014
AdaBoost [100] 0.87 13.35% 43.61% 2011–2014

LSTM [100] 0.61 15.46% 46.67% 2011–2014
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Conclusions and Future Work

Over the last century the availability of vaccines and antibiotics has resulted in a significant
reduction of the impact of infectious diseases in the human population worldwide. Nevertheless,
infectious diseases continue to cause significant morbidity and mortality. Of special importance,
the occurrence of epidemics and pandemics has resulted in major loss of life, health system
saturation, and economic burdens. Early identification of outbreaks and epidemics is considered
essential in order to limit the spread and effects of an infection within a community or country.
Epidemiological surveillance systems are essential tools to identify the onset of outbreaks.
Surveillance systems can rely on information that is obtained actively or passively. Active
surveillance systems require that epidemiological information be obtained based on case finding
activities which may require identifying individuals that fulfill certain case definitions or
carrying out laboratory tests to detect a specific pathogen. In contrast, passive surveillance may
use routinely gathered information for analysis. As a result, active surveillance systems tend to
be more complete but more expensive than passive systems [99]. In both instances, analysis of
the information that has been gathered is a key element in order to identify changes in disease
occurrence that indicate the onset of an epidemic in comparison to fluctuations that may be
considered as normal. Of interest, current computing power allows the analysis of large data
sets and with the use of diverse algorithms it is possible to identify signal changes that under
traditional epidemiological analyses might be difficult to observe. In addition, the expanding
use of the internet has resulted in the potential use of temporal and geographic query patterns for
infectious disease surveillance [1]. As a result, over the last decade there has been an increasing
interest in the development of internet usage patterns to analyze infectious diseases dynamics
and forecast expected behaviors and the occurrence of epidemics [22].
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Conclusions

In the present work we describe a computational model for ARI (Acute Respiratory Infections)
surveillance that might allow for early detection of outbreaks. Our model is based on ARI
data reported on a weekly basis to the Health Ministry in Mexico as well as the number of
internet searches of a set of terms by Mexican Google users. The model has been tested with
historical data, and proved to predict the behavior of ARI data for four successive winter seasons
(2015–2019); the best MAPE (Maximum Average Percentage Error) results being obtained with
the SoS (Sum of Sines) Projection and the merge prediction with 21.7% and 30.9%, respectively.
In order to assess these results, we contrasted several metrics (Pearson correlation, RMSPE, and
MAPE) with those reported with the use of other methodologies that have analyzed the behavior
of respiratory infectious diseases. Unfortunately, there are no previous studies that have focused
on ARI which provide similar metrics to assess the accuracy of forecasting, nor encompassing
the same geographical and temporal boundaries of our study. Therefore, we included studies
that have assessed specific respiratory infections (such as influenza or influenza-like illness)
which have shown very good results [100, 85]. The performance of this methodology was
competitive in comparison to results reported in those studies with the use of other forecasting
methodologies.

The main advantage of the proposed model is the use of data that is readily available, such as
Internet search terms and routine disease surveillance data (ARI data) to predict an infectious
disease. Some of the previous reports that describe forecasting of respiratory infections (such
as influenza infections) rely on samples obtained for virological testing rather than syndromic
clinical reports [23], this means that our model does not need laboratory tests but focuses
on reported symptoms. While our model could be limited when assessing the behavior of
a specific microorganisms (such as influenza), it could allow for the timely identification of
outbreaks when the etiological agent is unknown, such as the appearance of unusual cases of
pneumonia late in 2019 in Wuhan, China, which were subsequently identified as caused by
a novel viral strain (SARS-CoV-2) [118], the only restriction for this model to detect such an
outbreak is the models needs to be established in the region of interest. In addition, because
our system is based on routinely obtained information and does not require specific laboratory
tests, it is expected to allow for surveillance of wide geographical areas, even in regions where
laboratory facilities are not available. This could have immediate application in epidemiological
surveillance, as a complementary methodology to already established strategies (for example,
in the current SARS-CoV-2 pandemic) [105, 106]. This methodology could be adapted for use
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at a subnational level (such as at regional or state level). Overall, the expected usefulness of
ARI analysis using this methodology includes the timely identification of an increase in the
number of ill persons. The inclusion of an automatic strategy for search terms removing is also
an advantage, since this allows to update the search term list and allows for inclusion of many
additional terms, as the number of terms in the initial list does not matter because the model will
reduce it to the minimum required for predicting results, eliminating subjectivity; nevertheless,
to collect and analyze a long list of new search terms would require additional time. During
the first stage of the development of our model, Google Correlate was used to obtain the initial
list of potential search terms analyzing their correlation with ARI data; unfortunately, this tool
was discontinued at the end of 2019. Nevertheless, potential search terms can be assessed
with the use of correlation tests, such as Pearson’s correlation. For the feature extraction stage,
we assessed several approaches for endemic channel smoothing, including polynomial, splines,
Fourier, among others [5]. In addition, several techniques to model the cyclic behavior of time
series on ARI data were explored, and found that SoS is simple, and resulted in improved data
fitting. Moreover, other techniques were explored to model the cyclic behavior, such as the
Holt–Winters method which is used in economy; however, they are more complex and did not
improve the model. This work introduces a new methodology for infectious disease forecasting
using ARI data and Internet search terms. The results show that the combination of different
data analysis techniques (FFNN, SoS, and smoothed endemic channels) can provide an accurate
prediction for ARI data one week in advance. It is worth noting that the results obtained by
this proposal are published in the International Journal of Environmental Research and Public
Health (IJERPH) of the MDPI after being peer reviewed[38].

Future work

The modular structure of the proposed model enables to change the forecasting or projection
model to enhance the results. In addition, a decision-making stage is planned to be added
in which the predictions are analyzed to detect and send alerts when a potential outbreak
is identified. It is worth noting that the FFNN response forecasting (Exp6 No retrain) performed
well forecasting peaks in ARI cases, this presents an opportunity of research in how to use
this capability while avoiding false positives. A limitation to this observation is that our study
included forecasting only for four winter seasons to be certain that this finding is reproducible
in all seasons. We expect to enhance the results once there is more quality data available,
this is, when the quality limitations found in the Google Trends data before 2010 pose no
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problem for our predictions as time passes. Appropriate interventions when outbreak signals are
identified by this methodology could include targeted laboratory testing, institution of outbreak
assessment and control measures, as well as mobilization of health-care supplies (such as
medications or vaccines, when available). In addition, it can be adapted to be used in other
countries or regions, this may be of particular use in regions where surveillance systems require
strengthening. Furthermore, we plan to use this proposal for assessment of other infectious
diseases that show seasonal patterns, such as gastrointestinal infections, dengue, and varicella.
The final model could be used along with the endemic channels to detect possible outbreaks.
The methodology can be expanded to work by regions (or states), to analyze data from other
countries, or to assess the behavior of other seasonal infectious diseases. In addition, this
proposal could allow the Mexican health authorities to complement traditional surveillance
methods for the timely identification of ARI outbreaks. This would be a relevant application of
this model, since early detection and response to an outbreak can decrease the costs and the
impact associated with it.
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Appendix A

Forecasting infectious diseases: Related
topics and concepts

A.1 Data analysis

Forecasting is about predicting the future as accurately as possible, given all the known and
available information, including historical data and knowledge of any future events that might
impact the forecasts[46]. This appendix focuses in describing topics, terms and concepts used
throughout this document.

A.1.1 Time series

Time series is a type of panel data, a multidimensional data set, whereas a time series data set is
a one-dimensional panel, the panel data is the general class. As a definition a time series is a
collection of observations of well-defined data items obtained through repeated measurements
over time1. These measurements could have been gathered at a regular time intervals (such as
the ARI data from this research, measured in weeks), or at irregular times. Time series can be
decomposed into three components, each expressing a particular aspect of the movement of the
values of the time series2. The components are:

1https://www.abs.gov.au/websitedbs/d3310114.nsf/home/time+series+analysis:+the+basics
2https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-32833-1_401
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• Trend-cycle. A general systematic linear or (most often) nonlinear component that
changes over time and does not repeat3.

• Seasonality. A seasonal pattern occurs when a time series is affected by seasonal factors
such as the time of the year or the day of the week. Seasonality is always of a fixed and
known frequency[46].

• Irregular variations. A non-systematic component that is nor Trend/Seasonality within
the data, also known as the remainder.

Decomposition

Refers to separating a time series into trend, seasonal effects, and remaining variability. When
there is a need to extract any of these components from a time series, one possible solution
is to use a method known as data smoothing. Smoothing data removes random variation and
shows trends and cyclic components4, it is even possible to extract the irregular variations when
removing the smoothed signal from the original time series (see Figure A.1).

Smoothing a time series

As seen in Figure 2.7, the trend signal would be a smoothed version of the original data. The
smoothing of a signal implies the removing of the seasonal and irregular components of the
data and keeping only the trend [46]. Generally smooth out the irregular roughness to see a
clearer signal. For seasonal data, we might smooth out the seasonality so that we can identify
the trend5.

Cross-sectional data

When data of one or more variables is collected at the same point in time, it is known as Cross-
sectional data 6, in this research the Internet search terms data is collected as a Cross-sectional
data.

3https://towardsdatascience.com/trend-seasonality-moving-average-auto-regressive-model-my-journey-to-
time-series-data-with-edc4c0c8284b

4https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc42.htm
5https://online.stat.psu.edu/stat510/lesson/5/5.2
6https://www.statisticssolutions.com/time-series-analysis/
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Figure A.1 An example of a decomposed time series. On top, the original data, below the
extracted trend of the original data, the seasonal component, and at the bottom the remainder of
the signal decomposition[46]. The addition of the three components result in the original data.
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Curve fitting in time series analysis

Curve fitting regression is used when data is in a non-linear relationship. The sum of sines
function, used in this research to calculate the smoothed endemic channels and as the projection
model, shows this non-linear behavior.

Overfitting

Overfitting occurs when a statistical model or machine learning algorithm captures the noise of
the data as part of the modeled behavior. In other words, overfitting occurs when the model
or the algorithm fits the training data too well, so that it does not perform well on previously
unpresented data.

Data preprocessing

Data, when initially obtained, must be processed or organized for analysis. For instance, these
may involve placing data into rows and columns in a table format (known as structured data)
for further analysis[66].

Data cleaning

Once organized, the data may be incomplete, contain duplicates or errors. Data cleaning is
the process of preventing and correcting these errors. Common tasks include record matching,
identifying inaccuracy of data, overall quality of existing data, deduplication, and column
segmentation7. There are several types of data cleaning, that are dependent upon the type of
data in the set, quantitative data methods for outlier detection, can be used to get rid of data that
appears to have a higher likelihood of being input incorrectly. In these research the methodology
proposed dealt with missing values and empty values in the search terms data, and in formatting
the ARI data.

Disease outbreak

According to the World Health Organization8 (WHO), a disease outbreak is the occurrence
of disease cases in excess of normal expectancy. The number of cases varies according to the

7https://www.microsoft.com/en-us/research/project/data-cleaning/
8https://www.who.int/environmentalhealthemergencies/diseaseoutbreaks/en/
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disease-causing agent, and the size and type of previous and existing exposure to the infectious
agent.

A.1.2 Endemic Channel

Endemic channels are used to identify the presence of outbreaks, by the observation of a larger
number of cases in excess of what would be expected from historical time series9. The can be
defined as a moving threshold used to survey the amount of cases within an expected normal
range, where anything above this threshold could point to a developing outbreak [6]. The EC are
calculated using the historic behavior from 5 or more years of an infectious disease (normally
avoiding years affected by an outbreak), it is a simple and fast way to generate somewhat
reliable thresholds allowing to detect a presence/absence of an outbreak. When using endemic
channels there is a risk of not detecting new behaviors in the data, and limitations associated
with abnormally high historic means and the variation in the seasonal timing that often lead to
inaccurate detections[11].

Many countries use a version of the endemic channels for visualising the expected case
levels, based on the weekly (or monthly) average number of cases over the preceding 5 years
[6]. The endemic channels are used to identify the presence of outbreaks, by the observation of
a larger number of cases in excess of what would be expected from historical time series9. As
such, endemic channels represent the boundaries for the expected number of cases at a given
time; the occurrence of cases above this moving threshold would be considered as an outbreak
of a disease [45].

Commonly, an endemic channel is obtained by calculating the 5th, 50th and 85th percentiles
of a disease for each week from the 5 previous years (ignoring years affected by outbreaks); the
5th percentile (lower endemic channel) represents the minimum number of cases expected or
the area of success, the 50th percentile is the expected behavior (the median or secure area), and
the 85th percentile (upper endemic channel) is the risk area or area of alert, surpassing these
values points to possible outbreaks[10].

There are a set of steps to calculate the kth percentile values (where 0 < k < 100) for a time
series:

1. For each week of every year we are interested in.

2. Create an array with the historic values for that week in the past five years (a =

(a1,a2, ...,an) where n = 5), ignoring values from years affected by an outbreak.
9http://www.searo.who.int/topics/disease_outbreaks/en/



84

3. Order the values in the array from smallest to largest.

4. To get the index of the kth percentile (ik), multiply k by n, the total of numbers in the
array, ik = (kn) and if:

• The number is not an integer, it needs to be rounded to the closest integer, ik =
round(kn), then the kth percentile = aik for that week.

• The number is an integer, then the kth percentile is the average of the elements ik
and ik +1 from the array. kth percentile = aikaik+1 for that week.

Some reported disadvantages on using endemic channels are: a) Interpreting the crossing of
area of alert line as a “warning sign” of an outbreak (rather than as an indicator that an outbreak
is effectively already underway) and initiate a delayed emergency response; b) According to
Rigau-Perez et al. [77], the risk area has limited sensitivity (only 40% of such events when
case numbers crossed this threshold were followed by a “massive” increase of cases in their
research; using a similar predictor, Barbazan et al. [7] found a sensitivity of 66%) c) Outbreaks
in previous years can result in thresholds that are too high; d) The seasonal increase in cases
may come earlier than in the 5 preceding years providing the impression of an outbreak.

A.2 Artificial neural networks

Since the first artificial neural network (ANN) models emerged [59], they have been the target of
rigorous scientific scrutiny [79], due to their properties, constraints and their need to be trained
with some data set, where, under some circumstances, considerable information or training
time is required. Nevertheless, ANN have shown their high capabilities in a great number of
everyday problems. ANN has been widely used for pattern recognition, function approximation,
prediction/forecast, optimization among other applications [42, 8].

A.2.1 Feedforward neural network

A feedforward neural network is a biologically inspired classification algorithm. It consists of a
number of simple neuron-like processing units, organized in layers10. Every unit in a layer is
connected with all the units in the previous layer. These connections are not all equal: each
connection may have a different strength or weight and a bias. The weights on these connections

10https://www.fon.hum.uva.nl/praat/manual/Feedforward_neural_networks_1__What_is_a_feedforward_ne.html
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encode the knowledge of a network, often the units in a neural network are also called nodes
or neurons. The first layer has a connection from the network input. Each subsequent layer
has a connection from the previous layer. The final layer produces the output. Feedforward
networks can be used for any kind of input to output mapping. A feedforward network with one
hidden layer and enough neurons in the hidden layers, can fit any finite input-output mapping
problem. The neurons are arranged in layers, with the first layer taking in inputs and the last
layer producing outputs. The middle layers have no connection with the external world, and
hence are called hidden layers. Each neuron in one layer is connected to every neuron on
the next layer. Hence information is constantly "fed forward" from one layer to the next, this
explains why these networks are called feedforward networks. There is no connection among
neurons in the same layer.

Training algorithm

In order to work properly, the weights and biases of each connection between two neurons need
to be adjusted in FFNN, this could be a massive task given that any slight change in one of
these weights modifies the behavior of the connected neurons and, as a consequence, of the
whole network and its outputs. The process of adjusting the weights of each connection within
a network is known as the learning phase (or training algorithm). Depending on the problem to
resolve the network could be used for classification or regression, in this research we are using
the network to predict the behavior of a time series (ARI data) this means we are using it to
resolve a regression problem. The FFNNs use a supervised learning algorithm, meaning that,
to be trained, the network needs the inputs and the corresponding correct (or expected) values
for the outputs. There are several training algorithms, but for this case the Backpropagation
training algorithm is used to effectively train a neural network through a method called chain
rule. In simple terms, after each forward pass through a network, backpropagation performs a
backward pass while adjusting the model’s parameters (weights and biases).

An example of a FFNN with four inputs, two hidden layers, and one output is shown in
Figure A.2. The inputs can be seen as simple scalars or complex structures as vectors or
matrices, the equation A.1 shows the behavior of the input neurons, where the set of activations
(a) is equal to the input values.

xi = a(1)i , i ∈ 1,2,3,4 (A.1)



86

Figure A.2 An example of an FFNN architecture. Composed by an input layer (purple nodes),
two hidden layers (green nodes) and one input (blue). The arrows between nodes represent the
weights.

The final values at the hidden neurons are computed using zl (the weighted inputs in layer l),
and al (activations in layer l)( see Equations A.2 and A.3. W 2 and W 3 are the weights in layers
2 and 3 while b2 and b3 are the biases in those layers. Activations a2 and a3 are computed using
an activation function f . Function f normally is a non-linear function, and allows the network
to learn complex patterns in data??.

• l=2

z(2) =W (1)x+b(1)

a(2) = f (z(2)) (A.2)

• l=3

z(3) =W (2)a(2)+b(2)

a(3) = f (z(3)) (A.3)

The final part of the neural network is the output layer which produces the response of the
network and it is supposed to be the expected value, in Figure A.2 it is represented as a single
neuron and it is calculated as shown in Equation A.4
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s =W (3)a(3) (A.4)

The last step in a forward pass is to evaluate the response of the output s, comparing
against the expected value output y. This output y is part of the training set (x,y) where x is
the input. This evaluation between s and y is done using a cost function (MSE, RMSE, AIC,
Cross-entropy)(See Equation A.5.

C = cost(s,y) (A.5)

Based on the resulting C, the model can adjust its parameters in order to get closer to the
expected output y. This is when the backpropagation algorithm starts.

The backpropagation algorithm aims to minimize the cost function by adjusting the weights
and biases of the network. The level of adjustment is determined by the gradients of the cost
function with respect to those parameters. The gradient calculation shows how much parameter
x needs to change to minimize C.

The gradient used for a single weight (w jk)
l is shown in Equation A.6, similarly the gradient

for the bias b is shown in Equation A.7.

∂C
∂wl

jk
=

∂C
∂ zl

j
al−1

k (A.6)

∂C
∂bl

j
=

∂C
∂ zl

j
1 (A.7)

The gradients provide information to optimize the weights and bias of the network, by using
the gradient descent algorithm, which backpropagates the adjustments through the network.

while (termination condition not met)

w := w− ε
∂C
∂w

b := b− ε
∂C
∂b (A.8)

end

Where:

• Initial values of w and b are randomly generated.
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• Epsilon (ε) is the learning rate. It determines the gradient’s influence.

• w and b are matrix representations of the weights and biases.

• Derivative of C in w or b can be calculated using partial derivatives of C in the individual
weights or biases.

• Termination condition is met once the cost function is minimized.

This description tries to give a general idea of the composition of FFNNs, their internal
parts and interactions, for a deeper understanding other sources should be reviewed.
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Appendix B

Discarded Methods and Metrics

B.1 Smoothing techniques

B.1.1 Moving averages (MA)

Widely used as smoothing techniques of signals and time series, the moving averages are known
as trend-following or lagging indicators because they are based on past values of the variables.
There are several variations for this technique: Simple moving average, exponential moving
average, triangular moving average, weighted moving average and modified moving average.
Mostly, the difference relies in the weight coefficients given to most recent values. MAs can
predict or estimate the immediate next value from a series.

Simple moving averages (SMA)

This is the simplest form of the moving averages technique, and it works by calculating the
average of the n last points of the series. These n last values are known as sliding window of
size n, the value of n can be selected to enhance the fitting of the SMA. Let St : t = 1, . . .m, so

SMA(S,n) =
n

∑
i=1

Sm−i

n
(B.1)

where (t ≥ n) and (n ≤ m).
The main disadvantage with the simple moving average is that the previous values used for

the average are considered equally weighted, giving the same weight to the oldest used value
and the most recent used value. It tends to behave better with small window sizes.
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Weighted moving averages (WMA)

This variation, uses the same idea of the simple MA but adds a vector of weights of the same
size than the window used, meaning that a weight will be applied to each value of the window
depending on its position (See Equation B.2), normally, most recent values should have bigger
weight than older values in the window. The sum of weights should add up to 1. By defining
St : t = 1, . . . ,m and Wi : i = 1, . . . ,n, we have:

WMA(S,W ) =
n

∑
i=1

Sm−i ∗Wn−i

n
(B.2)

where (t ≥ n) , ∑
n
i=1Wi = 1 , Wi ≥ 0 , (n < m) and (n > 0)

There are two parameters to adjust in this method, the window size n and the array of
weights W , depending on the problem to be solved they should be properly adjusted. By adding
weights to the averages there is more control over the influence of older and newer values for
the estimation.

Triangular moving averages(TMA)

The TMA is a double-smoothed SMA. It is an average of data calculated over a window of
time, where the central values have more weight (See Equation B.3). it is commonly used with
prices, but can also be used in any time series. TMA smoothes data series, which is useful in
very irregular data sets. This method will react to fluctuations in the time series even slower
than the SMA, this could be problematic if the intention is to quickly adapt to data changes. It
is beneficial in specific cases, if the data moves back and forth in a range, the TMA will not
respond immediately to the variations, thus giving a more stable signal, that points to a not
changed trend. It would take a more sustained move in data to cause TMA to change directions.
Let {St : t = 1, . . . ,m} and l = ⌈n+1

2 ⌉, then:

TMA(S, l) = SMA(SMA(S, l), l) (B.3)

where (t ≥ n) and (n < m) and (n > 0)

Exponential moving averages (EMA)

The EMA is similar to the SMA and the WMA, it uses weights to accent most recent data, the
difference is that it automatically adjusts the smoothing constant, EMA is able to adjust its
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sensitivity, allowing it to adjust better in more variating series. Nevertheless, as EMA responds
so quickly to changes in the series it could point to a new trend forming in the series when in
reality there is just a spike in data, and could be affected significantly by outliers in most recent
values. Let {St : t = 1, . . . ,m and k = 2

n+1 , then

EMAt(S,n) = kSt +((1− k)EMAt−1(S,n)) (B.4)

where (t > n) and (n < m) and (n > 0)
As it can be seen in the Equation B.4 the previous EMA is needed to calculate the new one,

in this case, we need to calculate the first EMA (See Equation B.5 ), the most used way to
calculate the first value is to make use of the SMA, as shown below:

EMAt(S,n) = SMAt(S,n) (B.5)

where (t = n)

Modified moving averages (MMA)

Also known as Running Moving Average (RMA) or Smoothed Moving Average (SMMA), it is
another variant of the SMA, where the new values are calculated by adding the new price, and
then subtracting the last average from the resulting sum, the difference is the new point. As the
previous value of the MMA is needed to estimate the most recent, the first value is calculated
using the SMA, just as in the EMA. As St : t = 1, . . . ,m and k = 2

n+1

MMAt(S,n) = MMAt−1(S,n)+
St −MMAt−1(S,n)

n
(B.6)

where (t > n) , (n < m) and (n > 0)

B.1.2 Exponentially Weighted Moving Averages

Exponentially Weighted Moving Averages (EWMA), also known as Exponential Smoothing
(ES), is a common way to produce smoothed time series. ES focuses in exponentially decrease
the weight of observations as they get older. There are different variations of ES where various
smoothing parameters must be estimated to better fit the smoothing of the time series. ES is
commonly used in the analysis of financial time series or signal processing.
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Single exponential smoothing (SES)

The simplest case of exponential smoothing. This method is better when using data with no
seasonal or trend pattern. The idea is to give greater weights to more recent observations than
older ones. The forecasts are calculated using weighted averages that decrease exponentially
as observations come from further in the past. The difference between some MAs that also
use weights and the ES is that the latter uses exponential weights in their calculations. The
calculations for the SES are shown below: let St : t = 1, . . . ,m, so

SESt(S,α) = αSESt(S,α)+(1−α)SESt−1(S,α) (B.7)

where (0 < α ≤ 1)
The α value is a parameter to be set, and as shown in Equation B.7 its value must be between 0
and 1. α is known as the smoothing constant. Single exponential smoothing, by definition, has
problems to follow data when a trend is present.

Double exponential smoothing (DES)

To improve the behavior of the SES, a second constant is added. The constant β is the second
constant, which should be chosen in conjunction with α . The use of these two constants and
their two equations is known as the Double exponential smoothing or Exponential trend method.
β is known as the level constant. These two equations are to calculate trend (or slope) and level.
The slope is the well known algebraic slope m = ∆y

∆x . The level is the same value that was used
in the SES equation, but this time it is just part of the whole calculation, as shown below

ℓt = αSt +(1−α)(ℓt−1 +bt−1) level
bt = β (ℓt − ℓt−1)+(1−β )bt−1 trend
DESt+1(S,α,β ) = ℓt +bt f orecast (B.8)

where (0 < α ≤ 1) and (0 < β ≤ 1) As with simple exponential smoothing, the level equation
in Equation B.8 shows that ℓt is a weighted average of observation yt and the within-sample
one-step-ahead forecast for time t, here given by (ℓt−1 +bt−1).The trend equation shows that bt

is a weighted average of the estimated trend at time t based on (ℓt −ℓt−1) and bt−1, the previous
estimate of the trend.
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The Equation B.8 can estimate not only the immediate next value but h steps ahead, as
shown in Equation B.9.

DESt+h(S,α,β ) = ℓt +hbt (B.9)

Equations B.8 and B.9 show the additive method of the DES, the multiplicative is very similar,
but uses multiplication instead of addition for the calculations, as shown below

ℓt = αSt +(1−α)(ℓt−1bt−1) level
bt = β

ℓt
ℓt−1

+(1−β )bt−1 trend

DESt+1(S,α,β ) = ℓtbt f orecast (B.10)

where (0 < α ≤ 1) and (0 < β ≤ 1)

Triple exponential smoothing (Holt-Winters seasonal method)

Between 1957 and 1960, Holt and Winters enhanced the DES method to capture seasonality. The
Holt-Winters seasonal method comprises the forecast equation and three smoothing equations;
one for the level ℓt , one for trend bt , and one for the seasonal component denoted by ς , with
smoothing parameters α , β and γ .

L will denote the period of the seasonality, the number of seasons in a year, for example.
For example, for quarterly data L = 4, and for monthly data L = 12. The seasonal component
(ς ) is an additional deviation from level + trend that repeats itself at the same offset time into
the season (See Equation). There is a seasonal component for every point in a season, if L = 12,
there are 12 seasonal components.

As mentioned in the previous methods, there is an additive and a multiplicative version of
the method. Both variations are shown below.

Holt-Winters additive:

ℓt = α(St − ςt−L)+(1−α)(ℓt−1 +bt−1) level
bt = β (ℓt − ℓt−1)+(1−β )bt−1 trend
ςt = γ(St − ℓt)+(1− γ)ςt−L seasonal
DESt+h(S,α,β ,γ) = ℓt +hbt + ςt−L+1+(m−1)%L f orecast (B.11)

where (0 < α ≤ 1) , (0 < β ≤ 1) and (0 ≤ γ ≤ 1)
Holt-Winters multiplicative:
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ℓt = α
St

ςt−L
+(1−α)(ℓt−1 +bt−1) level

bt = β (ℓt − ℓt−1)+(1−β )bt−1 trend
ςt = γ

St
ℓt−1+bt−1

+(1− γ)ςt−L seasonal

DESt+h(S,α,β ,γ) = (ℓt +hbt)ςt−L+1+(m−1)%L f orecast (B.12)

where (0 < α ≤ 1) , (0 < β ≤ 1) and (0 ≤ γ ≤ 1)
The multiplicative method is recommended for situations where the time series shows a

trend, a tendency to repeat its behavior increasing its values by some factor. Whereas, the
additive version is suitable for time series with no detectable trend, as the ARI data. This
method was tested in several scenarios and even gave good results but it was surpassed by the
sum of sines smoothing technique. An example of the results obtained with this method are
shown in Figure B.1.

Figure B.1 Example of the test made using the Holt-Winters smoothing
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B.2 Stock market technique: Directional Movement Indica-
tor and Average Directional Index (DMI-ADX)

This method was designed originally for commodities and daily prices; it can also be applied to
stocks and to identify trends in the financial market. It helps in the decision making for financial
investments minimizing risks by identifying trends.

Proposed by Wilder [102], the Directional Movement is a system that identifies if the market
is trending before providing signals for trading the trend. It is composed by three variables the
ADX, +DI and -DI, these values are calculated from the time series to be analyzed. The Plus
Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed
averages of these differences, and measure trend direction over time. Together, they are known
as the Direct Movement Indicator (DMI).

A DMI crossover generates the bullish (tendency to increase) and bearish (tendency to
decrease) signals. When the DMI+ crosses above the DMI-, a bullish signal is identified. When
the DMI- crosses below the DMI+ a bearish signal is identified. The ADX does not identify the
direction of a trend by itself; it only identifies the degree of strength within a trending market.
Initially, DMI assumes that the positive trend (+DI) is basically defined by the maximum price,
when the actual maximum price is greater than the previous one, and the negative trend (-DI)
is calculated by the minimum price. The average that predicts a positive or negative trend is
defined by normalizing all the average values, higher and lower of the actual measurement
(True Range, also developed by Wilder)(see EquationB.13). Three price values are required for
each period measured, a maximum value of the period, a minimum value and a close value of
the period.

+DI = +DMn
T Rn

−DI = +DMn
T Rn

+DM = Ht −Ht−1 −DM = Lt −Lt−1

CL =Ct −Ct−1 TR = Th −Tl

(B.13)

Where:

+DI = Positive DI

−DI = Negative DI

+DMn = Current updated mobile average of +DM

−DMn = Current updated mobile average of -DM
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+DM = Current value of the +DI

Ht = Current maximum value

Ht−1 = Previous maximum value

TRn = Current modified mobile average of TR

TR = True Range

Th = Highest price compared to the maximum current value or the previous value

Tl = Lowest current value or previous value

The Average Directional Index (ADX) is derived from the smoothed averages of the
difference between +DI and -DI, and measures the strength of the trend over time, regardless of
the direction of the trend. It provides an additional prediction about the intensity by evaluating
the normalized difference between +DI and -DI. It is obtained by calculating the average of m
days for +DI and -DI (Equation B.14). ADX values range from 0 to 100 where 0 would mean
there is no trend in data, and 100 would be an extremely strong trend (See Table B.1).

ADX = 100× (+DI −−DI)
(+DI +−DI)

(B.14)

The ADX, +DI and -DI calculations involve a lot of smoothing, consequently it takes around
150 periods of data to get true ADX values, one of the techniques used is the exponential
moving average, the calculation starts with the sum of the first m periods Together the DMI and
ADX can provide the direction an strength of a trend.

Some issues when using this technique are that it is based on Moving Averages (MA), this
means that it reacts slowly to low moving series, it is known as a lagging indicator. Some
crossover between DMI indicators can happen too often, giving false indications. It is strongly
recommended to use ADX when other reliable indicators are supporting them.

The algorithm has been enhanced to adjust itself to the ranges of the input data, meaning
that the algorithms needs to define what range of values are low, medium and high to work
properly and be sensitive to the input data. After preparing the algorithm, and after some tests
and tuning the algorithm with the ARI data, it showed to be a good predictor of the increasing
and decreasing tendencies of the ARI totals series, and particularly it became a good predictor
of start of the end of the infection season (see Figure B.2).
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Table B.1 Definition of trend strengths by ADX range of values in finances

ADX value Trend Strength
0 - 25 Absent or weak trend
25 - 50 Strong trend
50 - 75 Very strong trend
75 - 100 Extremely strong trend

B.3 Accuracy Metrics

B.3.1 Spearman Correlation

In statistics, the Spearman Correlation (Rank-Order Correlation), is a non-parametric measure
for ranked monotonic correlation between two variables, different to the Pearson Correlation
which assesses linear relationships. Basically it consists in calculating the Pearson Correlation
to the ranking of the variables. This correlation was considered because of the less restrictive
nature of the monotonicity, and was discarded after finding the values of the correlation did not
reflected the behavior of the data as well as the Pearson Correlation.

B.3.2 Mean Absolute Error (MAE)

MAE is a measure of errors of two observations expressing the same phenomenon, including
predicted versus observed. It is the arithmetic average of the absolute errors. It is scale
dependant and can not be used to compare series with different scales. This metric does not
pose any enhancement to other similar metrics, its scale dependency makes it difficult to use it
to compare with other solutions proposed in the state of the art.

B.3.3 Mean Square Error (MSE)

The MSE of an estimator is a very common statistical measure of the quality of an estimator.
By definition, it is always non-negative, and closer to zero values are desired. Compared to the
Root Mean Squared Error (RMSE) the MSE has several disadvantages, i.e. it does not make
difference between small or big errors, while the RMSE gives higher weights to bigger errors.
The MSE was replaced by the RMSE as it has many other desirable properties.
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Figure B.2 Use of the DMI-ADX indicators on the ARI data, for 2017 and 2018.

B.3.4 Normalized Mean Square Error (NMSE)

Used as a function to determinate the goodness of fit of an estimator, the NMSE is the MSE
normalized by signal power. After several tests this metric was replaced by the RMSPE to
facilitate result comparisons with other methods.

B.3.5 Coefficient of determination (R2)

R2 is defined as the proportion of the variance in the dependent variable that is predictable from
the independent variables. Used commonly in statistical models prediction of future outcomes.
It gives a measure of how well observed outcomes are replicated by the model, based on the
proportion of total variation of outcomes explained by the model.This metric should not be
used to validate a model but rather after the model is validated and to compare it with another
validated model.
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B.3.6 Aikaike Information Criterion (AIC)

AIC is used to measure quality of statistical models for a given dataset. AIC provides a means
for model selection by estimating the relative amount of information lost by a given model:
the less information lost the higher quality of the model. This metric was used in many test
performed but it was visually clear that the best results of the AIC where not better than the
other metrics used in this research.
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