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Abstract

Security concerns about the vulnerability of deep convolutional neural networks to adversarial attacks
in slight modifications to the input image almost invisible to human vision make their predictions un-
trustworthy. Therefore, it is necessary to provide robustness to adversarial examples with an accurate
score when developing a new classifier. In this thesis, we perform a comparative study of the effects
of these attacks on two computer vision tasks: 1) art media categorization, which involves a sophis-
ticated analysis of features to classify a fine collection of artworks, and 2) face recognition, which
is the most popular biometric among others to recognize persons. We tested a prevailing bag of vi-
sual words approach from computer vision, four deep convolutional neural networks (AlexNet, VGG,
ResNet, ResNet101), and brain programming for the art media categorization. The results showed that
brain programming predictions’ change in accuracy was below 2% using adversarial examples from the
Fast Gradient Sign Method attack. With a multiple-pixel attack, Brain Programming obtained four out
of seven classes without changes and the rest with a maximum error of 4%. Finally, Brain Programming
got four categories without changes using adversarial patches and for the remaining three classes with
an accuracy variation of 1%. The statistical analysis confirmed that Brain Programming predictions’
confidence was not significantly different for each pair of clean and adversarial examples in every ex-
periment. Lastly, adversarial training demonstrated diminishing the effect of the Fast Gradient Sign
Method on deep convolutional neural networks but without providing any defense to the rest of the
attacks. These results prove brain programming’s robustness against adversarial examples compared to
deep convolutional neural networks and the computer vision method for the art media categorization
problem. For face recognition, we compare brain programming against a deep convolutional neural
network (ResNet) using the facial accessories perturbations attack. In the experiments, brain program-
ming could compete with ResNet without any influence on predictions when the adversarial attack was
present. The brain programming accuracy change was below 3% compared to ResNet, which obtained
up to 98.56% of accuracy change. A two-sample Kolmogorov-Smirnov test confirmed that ResNet and
Brain Programming predictions confidences do not come from populations with the same distribution.
Brain Programming’s immunity to adversarial attacks demonstrated in this thesis is a significant break-
through to the evolutionary computation community where this feature could be an edge compared to
deep learning techniques. This example could be just the beginning of the secure era of evolutionary
computation techniques.
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Resumen

Las preocupaciones de seguridad sobre la vulnerabilidad de las redes neuronales convolucionales pro-
fundas a los ataques adversarios con pequeñas modificaciones hechas a la imagen de entrada casi in-
visibles para la visión humana hacen que sus predicciones no sean confiables. Por lo tanto, cuando se
desarrolla un clasificador nuevo es necesario tener en mente la robustez a los ataques adversarios asi
como un resultado preciso en la clasificación. En esta tesis, realizamos un estudio comparativo de los
efectos de estos ataques en dos tareas de visión por computadora: 1) categorización de medios artísti-
cos, que involucra un sofisticado análisis de características para clasificar una colección fina de obras
de arte, y 2) reconocimiento facial, que es el biométrico más popular para reconocer personas. Para la
categorización de medios artísticos probamos un enfoque tradicional del área de visión por computa-
dora llamado bolsa de palabras visuales, cuatro redes neuronales convolucionales profundas (AlexNet,
VGG, ResNet, ResNet101) y el algoritmo del programador de cerebros (por su nombre en inglés, brain
programming). Los resultados mostraron que el cambio en la precisión de las predicciones de progra-
mador de cerebros estaba por debajo del 2% usando ejemplos contradictorios del ataque Fast Gradient
Sign Method. Con un ataque multipíxel, el programador de cerebros obtuvo cuatro de siete clases sin
cambios y el resto con un error máximo del 4%. Finalmente, el programador de cerebros obtuvo cuatro
categorías sin cambios usando los parches adversarios y para las tres clases restantes con una variación
de precisión del 1%. En el análisis estadístico el programador de cerebros mostró que la distribución
en la confianza de las predicciones no fue significativamente diferente entre las imagenes limpias y
los ejemplos adversarios de cada experimento. Por último, el entrenamiento adversario demostró dis-
minuir el efecto del Fast Gradient Sign Method en las redes neuronales convolucionales profundas pero
sin proporcionar ninguna defensa contra el resto de los ataques. Estos resultados demuestran la ro-
bustez del programador de cerebros frente a los ejemplos adversarios en comparación con las redes
neuronales convolucionales profundas y el método de visión por computadora en el problema de cate-
gorización de medios artísticos. En el reconocimiento facial, comparamos el programador de cerebros
con una red neuronal convolucional profunda (ResNet) utilizando el ataque de accesorios faciales. En
los experimentos, el programador de cerebros pudo competir con ResNet sin la influencia en las predic-
ciones del ataque adversario. El cambio en la precisión del programador de cerebros estuvo por debajo
del 3% en comparación con ResNet, que obtuvo hasta un 98,56% de cambio de precisión. La prueba de
Kolmogorov-Smirnov de dos muestras confirmó que las confianzas en las predicciones de ResNet y el
programador de cerebros no provienen de poblaciones con la misma distribución. La inmunidad del
programador de cerebros a los ataques adversarios demostrada en esta tesis es un avance significativo
para la comunidad de computación evolutiva donde esta característica podría ser una ventaja en com-
paración con las técnicas de aprendizaje profundo. Este ejemplo podría ser solo el comienzo de la era
segura de las técnicas de computación evolutiva.
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Introduction

Image Classification is a current working area in Computer Vision (CV) applications. The objective is
to analyze the contextual information or visual content of an image and assign the class or category
to which the image belongs [4]. In other words, it is basically to build a computational classification
method to predict the class with an associated probability that refers to the trustworthiness from the
forecast, which requires sets of images for training, validation, and testing where the performance is
measured through the accuracy metric [5]. Although outstanding results have been obtained in image
classification, this problem still has challenges. Firstly, as the number of classes grows, the problem
becomes more complex to build the model that generalizes each category. Secondly, when different
classes appear in the same image. In that case, it is difficult to isolate one class in the image to train and
validate the model and determine whether the image belongs to one class or another when the model
is tested.

Two predominant methods have been among the most popular and successful approaches for solv-
ing image classification problems: 1) Bag-of-Visual words (BoV) [6] and 2) Deep Convolutional Neural
Networks (DCNN), also known as Deep Learning (DL), a subdivision of Machine Learning (ML) [7, 8].
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is one of the main benchmarks for
image classification. In 2011, a CV method based on BoV won the classification task at the ILSVRC.
This method constructed a vector of occurrence counts of a vocabulary of local image features like
dense Scale Invariant Feature Transform (SIFT) [9] extracted from the training images. These vectors
were used to train a linear classifier such as Support Vector Machines (SVMs) [10] to predict the class
over new vectors. The advantage of BoV is that it does not require labeled data to learn the dictionary.
However, the process to learn the dictionary demands a high computational cost, and their complexity
also limits the local image feature extraction.

Therefore, in 2012 a DCNN named AlexNet [1] demonstrated better performance on the classi-
fication task by bringing down the error rate by half, beating the predecessor CV approach. Since
then, deep learning has achieved outstanding performance in different CV areas. For example, in 2014,
a DCNN model named VGG increased the architecture deep and obtained with only 1-network 7.0%
error rate, which is better than GoogLeNet, which has a 7.9% error rate with the same number of net-
works. However, at the submission of ILSVRC 2014, VGG has a 7.3% error rate only, and GoogLeNet
with 7-networks obtained 6.7% which got the first runner-up at the moment. Also, VGG won the local-
ization task in ILSVRC 2014. In 2015, the model named ResNet won the image classification task with
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a 152-layer architecture with 3.57% error rate. These DCNN architectures are explained in Section 2.2.
At the exact moment in 2014, intriguing properties about these models were found by Szegedy et

al. [11]. The authors discovered a rare weakness about DCNN, in which the models can be fooled
with small modifications almost imperceptible to the human vision on the input pixels. Also, these
perturbations reported high confidence in the wrong prediction, and even worse, multiple networks
were affected using the same modified image. In 2015, Goodfellow et al. [12] designed a method named
Fast Gradient Sign Method (FGSM), which enables efficiently compute perturbations for a given image.
Since then, these intentionally created perturbations have been named Adversarial Attacks (AA). At
that moment, AA were not considered a serious threat since few works existed about these attacks.

Nowadays, there is a big concern about the security of DCNN, which has opened a new research
area in charge of dealing with AA because they are generated through various forms, including making
minor modifications to the input pixels, using spatial transformations, among others complex modifi-
cations [13, 14, 15, 16, 17, 18]. Some of these perturbations have been adapted to be imperceptible to
human vision and can completely change the DCNN’s prediction to drop its performance. In addition,
there have been immense efforts to develop defense mechanisms to mitigate AA. Still, the perturbations
have become more complex and highly efficient in fooling DCNN. The adversary attack’s problem is
covered in detail in Chapter 3.

Meanwhile, Evolutionary Computation (EC) and Swarm Intelligence (SI) have mainly contributed
in two manners in image classification: 1) optimizing feature selection and 2) optimizing DCNN ar-
chitectures. Genetic Programming (GP) has been one of EC’s principal tools to optimize the selection
of features and automatically extract the best characteristics to approach image classification tasks.
However, the approaches made in this area work with outdated datasets with small images, and their
comparison is made with non-state-of-the-art methods. In addition to optimizing feature selection, EC
and SI have developed strategies to search for meaningful DCNN architectures for image classification
[19]. Recent approaches such as [20, 21], which are summarized in [22], explore hybridization of swarm
and evolutionary computation algorithms by aggregating hyper-parameters optimization during train-
ing. Despite the effort and interest made by the EC and SI communities to tackle image classification,
they still are dealing with outdated problems using non-standard datasets while making comparisons
against obsolete DCNN models. EC and SI have fallen short to be on par with DCNN models with
minor works that do not exceed hand-crafted DCNN architectures. Therefore, to be competitive with
state-of-the-art DCNN models the EC and SI community should propose innovative ways to solve the
image classification problem.

Contrary to the approaches made by EC and SI, there is a Deep Genetic Programming Method-
ology called Brain Programming [23, 24] which has shown promising results in image classification,
especially considering the robustness measures shown in this thesis. Brain programming is inspired
by neuroscience knowledge that uses symbolic representations and incorporates rules from expert sys-
tems with a hierarchical structure inspired by the human visual cortex, which has achieved comparable
performance with the renowned DCNN named AlexNet using high definition art images [25].
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However, despite the progress made to build better image classifiers, a research opportunity not
considered by this research community is the classifier’s predictions’ robustness. This thesis employs
statistical strategies to measure robustness against AA beyond DL models. We evaluate classification
approaches from three research areas to contrast performance and robustness to perturbations to guar-
antee predictions’ trustworthiness while not focusing only on accuracy.

Research Question

Based on the previous problem statement and motivated by the emerging challenges on the image
classification methods, this thesis proposes the following research question:

• How other image classification methods beyond deep learning respond to adversarial attacks?

Thesis Objectives

Based on the research question presented before, this thesis has the following general objective:

General Objective

• Evaluate the ability of an evolutionary computing method to resist several kinds of adversarial
attacks

• Propose a methodology to measure robustness against adversarial examples to ensure the pre-
dictions’ trustworthiness in image classification methods

Main Objectives

Derived from the stated general objective, the following specific objectives are presented:

1. Analyze the problem of adversarial attacks and the implication to the trustworthiness of image
classification methods

2. Analyze the performance of image classification methods and their vulnerability to adversarial
attacks using standard models

3. Propose a novel methodology that evaluate the robustness to adversarial examples from different
classification algorithms

4. Test the methodology with two different image classification tasks (art media classification and
face recognition)

3



Thesis Outline

Chapter 1 presents a literature review of image classification approaches and adversarial attacks. It
reports the state of the art in image classification, where the most popular and successful approaches
are highlighted to understand the progress conceived in this research area. It also presents the con-
cerns about AAs and the research opportunity to study the classifier’s predictions’ robustness through
different approaches to contrast between performance and robustness to adversarial examples to guar-
antee predictions’ trustworthiness while not focusing only on accuracy. In Chapter 2, the mathematical
modeling of the leading approaches in image classification is explained. Each approach’s attributes are
outlined to understand the main contribution, the techniques, and methods employed to contrast them.
Chapter 3 presents the severe problem in the DCNN structure to AA, and the mathematical explanation
from this dilemma is deeply explained. Examples of AA are illustrated in this chapter to understand the
concerns about the security of the DCNN predictions and the implications of this vulnerability using
different attack designs. Chapter 4 presents the novel methodology where it is proposed the robustness
evaluation to adversarial examples to measure the classifier prediction’s trustworthiness, allowing the
analysis of distinct image classification approaches in complex and real-world applications. In Chapter
5, the details about the usage of the robustness evaluation in two experimental case studies (Art Media
Classification and Face Recognition) are presented. The results obtained are accurately estimated under
the assumption of different attempts to fool the systems, and they highlight the differences between
the approaches by considering performance and robustness against adversarial examples.
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1
State of the Art in Image Classification and

Adversarial Attacks

There have been significant efforts to tackle the image classification problem in many research areas
such as Computer Vision (CV), Machine Learning (ML), Evolutionary Computation (EC), and Swarm
Intelligence (SI) [26, 27, 19]. Two predominantmethods have been among themost popular and success-
ful approaches for solving image classification problems. On the one hand, Bag of Visual words (BoV)
from CV, and on the other hand, Deep Convolutional Neural Networks (DCNN), a mainstream from
Deep Learning (DL), a subdivision of ML [7, 8]. EC and SI have mainly contributed in two manners: 1)
optimizing feature selection via symbolic learning, and 2) optimizing DCNN architectures. In Figure 1.1
is shown a fishbone diagram, where contributions from these research areas to image classification are
presented.

1.1 Computer Vision

The most popular approach for image classification used by CV was the BoV, which is explained in
Section 2.1, it is inspired by the bag-of-words method [6]. Several variants of this framework have been
tested. For example, the ones who use better coding techniques based on soft assignment [28, 29, 30],
the ones that take into account spatial layout with spatial pyramids [31] and sparse coding [32, 33, 34].
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Sparse coding is one of the most advanced methods from the BoV’s frameworks [32]. The idea of
sparse coding is to represent the description of the image, such as dense SIFT description [9, 35], HOG
description [36], among others, approximately as a weighted linear combination of a small number of
unknown basis vectors. These basis vectors capture the high-level patterns in the image description.

Figure 1.1: General overview of contributions to image classification from computer vision, deep learning,
evolutionary computation, and swarm intelligence.

However, the sparse coding’s performance relied principally on the hand-engineered features, and
the CV target was to design better hand-engineering features. Over time, the complexity of these
features started to become more challenging to design better features. In addition to the designing
process, CV also focused on learning algorithm design, a completely independent research area. The
advantage of using sparse coding is that is not require labeled data to learn the dictionary. So, it can
work on limited labeled data situations. Also, the dictionary learning process can improve features
quality by providing additional information of them [37, 38]. However, sparse coding is not capable of
building features hierarchies, and the process is not simply stacked one method on top of another, even
there have been attempts to make it deep [39, 40, 35]. Figure 1.1 shows the contributions to the image
classification problem from CV.

1.2 Deep Learning

ML community was working in another direction by designing deep learning models (i.e., the neu-
ral network architecture) that build features from images. LeCun et al. [41] introduced the modern
framework of Convolutional Neural Networks, which is explained in Section 2.2 and Figure 1.1 shows
the general overview of contributions from Deep Learning. However, the first time that they started
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attracting attention was with the development of the AlexNet model [1] for the ILSVRC 2012. It could
reduce by half the error rate on the image classification task.

Figure 1.2: General overview of AlexNet architecture. The figure was extracted from the original article [1].

AlexNet layer architecture consists of 5 convolutional, three max-pooling, two normalizations,
three fully connected layers (the last with 1000 softmax output), 60 Million parameters, and 500,000
neurons. Figure 1.2 illustrates the general overview of AlexNet architecture. Additionally, Alex et al.
[1] introduced the use of ReLU (Rectified Linear Unit) Nonlinearity as an activation function with the
benefits of much faster training than using tanh or sigmoid functions. To prevent overfitting, they also
introduced the dropout method and data augmentation.

Another deep learning model that brought contributions to the state-of-the-art was the VGG net-
work from the Visual Geometry Group of the University of Oxford [2]. VGG network increased the
deep of these models by creating VGG-16 with 13 convolutional layers and three fully connected layers,
and VGG-19 with additional three convolutional layers than VGG-16. In Figure 1.3 is observed all the
configurations made from VGG architecture, the most used are VGG-16 and VGG19. They reduced the
size of the filters to the smallest size to capture the notion of up/down, left/right, and center that is a
3x3 filter. VGG was distinguished for its state-of-the-art recognition and localization tasks on ILSVRC
and other image recognition datasets.

ResNet [3] (Deep Residual Learning for Image Recognition) also contributed to redefining the layer
as a residual learning function on the architecture. Figure 1.4 presents an overview of ResNet architec-
ture and compare the 34-layer residual against 34-layer plain and VGG-19 architectures. This function
helps mitigate the bottleneck problem of the training phase on DCNNs. ResNet showed its capacity
to train its architecture with a depth of up to 152 layers and lower complexity than GoogLeNet. Also,
ResNet won the ILSVRC 2015 on the classification task achieving for the first time the error rate to
3.57%.
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Figure 1.3: General overview of VGG architectures. The figure was extracted from the original article [2].

1.3 Evolutionary Computation and Swarm Intelligence

Genetic Programming (GP) has been one of EC’s principal tools to optimize the selection of features
and automatically extract the best characteristics to approach image classification tasks. For example,
in 2018, authors of [42] proposed a GP method that achieved simultaneously global and local feature
extraction for image classification using the JAFFE (1998), YALE (1997), FLOWER (2007), and TEX-
TURE (2006) datasets. As can be seen, all datasets are outdated nowadays since no one uses them to
test algorithms. Moreover, their approach is compared to standard hand-engineered features from CV
like SIFT (Scale-Invariant Feature Transform), an image processing technique that follows the local
feature paradigm. SIFT does not behave well for image categorization problems since different images
with multiple attributes represent an object category. The solution demands a consensus of distinct
characteristics in the form of a set of features. In 2019, the article [43] proposed a GP approach to
automatically generate discriminative rich features for image classification using the MIT urban and
nature scene datasets (2003). These image databases are also outdated, and the comparison is made
with traditional CV classification methods like Histogram of Oriented Gradients (HOG) and Support
Vector Machine (SVM), similarly to the previous work.

In 2019, Iqbal et al. [44] proposed a method for employing transfer learning in GP to extract and
transfer knowledge to classify complex texture images. The proposed methodology uses the following
texture datasets Kylberg (2011), Brodatz (1999), and Outex (2002), and all images are resized to 115×115

pixels to perform their experiments to avoid the computational cost and simplify the problem. In 2020,
the article [45] proposed a GP-based feature learning approach to select and combine five methods
automatically: Hist (Histogram features), DIF (Domain-Independent Features), SIFT, HOG, and LBP
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Figure 1.4: General overview of ResNet architecture, where its compared the 34-layer residual against 34-
layer plain and VGG-19 architectures. The figure was extracted from the original article [3].
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(Local Binary Patterns). The technique generates a compound solution that extracts high-level features
to classify images from classical problems with low-resolution datasets–about 100 × 100 pixels up to
200×200 pixels. Authors compared their approach with other GP-based methods and DL methods like
LeNet-5 (a CNN model with an input of grayscale images of 32× 32 pixels, toy-method in comparison
with the state-of-the-art) and two handcraft CNNs models of five- and eight-layers without providing
the network parameters’ information. Hence, it is not easy to judge the performance.

In 2021, authors from [46] proposed an instance selection-based surrogate-assisted GP for fast fea-
ture learning. They used 11 datasets FEI_1(2012), FEI_2(2012), KTH(2006), FS(2005), MB(2007), MRD(2007),
MBR(2007), MBI(2007), Rectangle(2007), RI(2007), and Convex(2007) from 28×28 to up to 60×40 pixels.
They compared their method with 32× 32 input images DCNN such as evoCNN and two handcrafted
CNNs models of five- and eight-layers among other non-state-of-the-art DCNN. Also, in 2021, the re-
search work [47] proposes a GP-based approach with a dual-tree representation to learn image features
for few-shot models. In this work, the methods and datasets used for comparison were not from the
state-of-the-art of few-shot image classification.

Besides optimizing feature selection, EC and SI have developed strategies to search for meaningful
DCNN architectures for image classification [19]. Also, recent approaches, summarized in [22], explore
hybridization of the swarm and evolutionary computation algorithms by aggregating hyper-parameters
optimization during training. To give an example, in 2019, authors from [20] proposed a novel method
named evoCNN, which uses genetic algorithms for evolving DCNN architectures and connection val-
ues to address image classification problems. They based the experiments on nine datasets that use
grayscale images of 28 × 28 pixels: MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD + BI, Rect-
angles, Rectangles-I, Convex, and MNIST-Fashion. However, in 2019, authors from [48] proposed a
novel algorithm based on particle swarm optimization (PSO) named psoCNN, capable of automatically
searching DCNN architectures for image classification with fast convergence when compared with oth-
ers evolutionary approaches like evoCNN, IPPSO, among others. The proposed experiments used the
same nine datasets mentioned above. In 2021, the research article [49] proposed an evolutionary algo-
rithm for searching DCNN architectures under multiple objectives, such as classification performance
and floating-point operations (FLOPs). They find optimized DCNN architectures for CIFAR-10(2009),
CIFAR-100(2009), and ImageNet(2009) datasets, but they still do not surpass state-of-the-art handcrafted
DCNN. Table 1.1 shows that even recent works from the journal swarm and evolutionary computation
optimize renowned DCNN models while excluding the best state-of-the-art methods for the studied
datasets, denoting the relation with the latest approaches reached by the EC and SI research area.
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Reference DCNN models employed in the research work Datasets used
He et al. [50] AlexNet, VGG16, GoogleNet, SqueezeNet, ResNet-

50, Inception-v3, DenseNet121, EvoCNN, among
others

MB, MBI, MRB, MRD,
MRDBI, RECT, RI, CS,
FASHION, Real-World
Xiangya-Derm

Singh et al.
[51]

AlexNet, EvoCNN, IPPSO, among others MNIST, CIFAR10, CI-
FAR100, CS, MDRBI

Darwish et al.
[52]

VGG16, VGG19, Inception-v3, Xception Subset of Plant Dis-
eases

Wang et al.
[53]

AlexNet, VGG16, VGG19, GoogleNet, ResNet52,
ResNet101, DenseNet121

CIFAR10

Table 1.1: Recent works from the journal Swarm and Evolutionary Computation. For each work, it is pre-
sented the DCNN models employed and the datasets used.

Despite the effort and interest made by the EC and SI communities to tackle image classification,
they still are dealing with outdated problems using classical datasets while making comparisons against
obsolete DCNNmodels to the proposed problems. As a result, EC and SI have fallen short of being on par
with DCNN models with minor works that do not exceed handcraft DCNN architectures. Nonetheless,
a Deep Genetic Programming Methodology called Brain Programming (BP), inspired by neuroscience
knowledge that uses symbolic representations and incorporates rules from expert systems with a hier-
archical structure inspired by the human visual cortex was developed by the EvoVision research team.
In Figure 1.1, we illustrate the general overview of contributions from EC and SI to image classification.

In 2016, EvoVision started evolving an Artificial Visual Cortex (AVC) for image classification and
object detection. Hernández et al. used realistic images of medium size (VGA) using GRAZ-01 (2003),
and GRAZ-02 (2004) datasets, which are the base for the Visual Object Challenge (VOC challenge)–
both still relevant in CV literature–[23]. Authors compared the results with several feature extraction
methods: Basic Moments (2006), Hierarchical MAX - Genetic Algorithm–HMAX-GA (2012), Enhanced
Biologically Inspired Model–EBIM (2011), SIFT (2006), Similarity Measure Segmentation–SM (2006),
and Moment Invariants (2006); most from CV and one including EC. In 2017, Hernández et al. [54]
implemented a CUDA version of BP to speed up the original system’s processing time. The experiment
analyzed the performance using different image sizes, which started with 256 × 256 pixels, doubling
the sizes to up to 4096 × 4096 pixels, demonstrating the possibility of real-time functionality and the
application to high-definition images. Additionally, the authors compared the method regarding time
performancewith a CUDA implementation of HMAX and the CUDAversion of a CNNwith outstanding
results.
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In 2019, the article [24] proposes a random search to find best-fit programs for the AVC in image
classification. The experiment found great individuals to classify GRAZ-01, GRAZ-02, and Caltech-101
(2004) datasets. GRAZ datasets have image sizes of 640 × 480 pixels, and Caltech-101 has images of
300 × 200 pixels. GRAZ images present a significant challenge due to the short object occurrence
in the whole picture, becoming challenging to resize images for processing. In contrast, Caltech-101
presents a truly image recognition dataset. In 2020, BP was proposed as a technique to approach the
complex problem of Art Media Categorization (AMC) [25]. The experiment consists of classifying high-
resolution art datasets such as WikiArt (2016) and Kaggle Art Images (2018). Moreover, BP results were
compared with a renowned DCNN model named AlexNet, obtaining a competitive outcome. Also, the
authors evaluated BP on real-world problems of object tracking using standard datasets and algorithms
like FRAGtrack and MILtrack. While also achieving outstanding results in real-working conditions
compared to the method of Region-based Convolutional Neural Networks (R-CNN) [55, 56].

1.4 Adversarial Attacks

Despite the progress made to build better image classifiers, the study of the performance through vul-
nerabilities on the systems is a featured not considered in EC and SI. Nowadays, there is a big concern
about the performance of DCNN, which has opened a new research area in charge of dealing with
Adversarial Attacks (AA) that intentionally create small perturbations in the input image to mislead
the model to predict the wrong class [13, 14, 15, 16, 17, 18]. Although, AA are a part of DL research
area, they have contributed to the image classification problem as shown in Figure 1.1. Some of these
perturbations are invisible to human vision and can completely change the DCNN’s prediction to drop
its performance. Researchers generate attacks through various forms, including making slight modi-
fications to the input pixels, using spatial transformations, among others. In addition to the analysis
of DCNN vulnerabilities, there have been immense efforts to develop defense mechanisms to mitigate
AA. Still, the perturbations have become more complex and highly efficient in fooling DCNN. Further
explanation about the behavior, use, and implementation of AA is made in Chapter 3.

Szegedy et al. [11] were the first who discovered a rare weakness of DCNN which with small per-
turbations almost imperceptible to the human vision on the input pixels can fool a convolutional neural
network. Also, these attacks reported high confidence in the wrong prediction of the model and even
worse, multiple networks were affected using the same perturbed image. Moosavi-Dezfooli et al. [57]
discovered peculiar perturbations that can misclassify any image, they called it “universal perturba-
tions”. However, Szegedy et al. [22] found that the robustness of a DCNN against these adversarial
attacks could be improved using these images in the training phase. So, Goodfellow et al. [12] design a
method named Fast Gradient Sign Method (FGSM) which enables efficiently to compute perturbations
for a given image.
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Although there has been much progress in making defense methods against adversarial attacks by
modifying its training process or modifying the input image during testing [12, 58, 59], or modifying
the structure of the networks [60, 61, 62] or using external models to classify unseen examples [63, 13],
the attacks have become more and more complex with high efficiency on the attacks . For example,
Sarkar et al. [64] designed the Universal Perturbations for Steering to Exact Targets (UPSET) and the
Antagonistic Network for Generating Rogue Images (ANGRI) for targeted attacks of CNNs. Baluja and
Fischer [65] designed the Adversarial Transformation Networks (ATNs) which are feed-forward neural
networks trained to generate perturbed images against other targeted CNN or set of CNNs. Even, Su et
al. [66] designed an extreme case of an adversarial attack on which with the modification of one pixel
in the image can make a CNN to misclassify an image. They obtained a 67.97% of success on the attacks
using three different network models. Also, it was reported an average of 97.47% on the confidence of
the misclassified images.

Table 1.2 shows that despite existing newer DCNN architectures, recent works still use renowned
state-of-the-art models to find a solution to the problem of AA. The reason is that these models have
been publicly available for research. They have been well studied and validated in different areas. In
this way, it is easier to determine what happened experimentally due to the difficulty of obtaining a
complete theoretical analysis to generate a general solution for all the attacks. These empirical studies
are popular in the state of the art [67, 68, 69, 70, 71, 72].

AA is a hot topic regarding ML and DL since such algorithms suffer from this kind of perturbations.
Figure 1.1 shows the contributions from AA and the connection to the three research areas mentioned
above to the image classification problem. However, this vulnerability has not been proved that affect
algorithms beyond these research areas. Hence, the evaluation of robustness to perturbations that
guarantee predictions’ trustworthiness while not focusing only on accuracy is of great importance for
the research community. Mainly, there are two ways to tackle this problem: 1) solve the vulnerability
from DCNN (which has not been elucidated yet), 2) find an alternative to DCNN that is not susceptible
to these perturbations.
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Reference DCNN models employed in the research work Datasets used
Chen et al.
[67]

AlexNet, VGG16, ResNet50, Inception v4,
Inception-ResNet, ResNeXt, DenseNet-121, PNAS-
Net

AID, UC, NWPU,
EuroSat-MS, MSTAR,
SEN1-2(SAR-Summer)

Pestana et al.
[73]

VGG, ResNet, DenseNet,Inception, Mobilenet,
ShuffleNet, MnasNet

ImageNet-R

Duan et al.
[74]

Inception v3, Inception v4,InceptionResNet v2,
ResNet152, Inception v3ens3, Inception v3ens4, In-
ceptionResNet v2ens

1000 images from NIPS
2017: Defense Against
Adversarial Attack

Hirano et al.
[75]

Inception V3, VGG16, VGG19, ResNet50, Inception
ResNet v2, DenseNet121, DenseNet169

Skin lesions, OCT,
Chest X-ray

Lee et al. [76] WideResNet-34-10, ResNet50 CIFAR10, CIFAR100,
SVHN, Restricted
ImageNet

Xie et al. [77] ResNet50,EfficientNet B0-B7 ImageNet-C,
ImageNet-A,Stylized-
ImageNet

Zhang et al.
[78]

AlexNet,GoogleNet,VGG16, VGG19, ResNet152 ImageNet, COCO,
VOC, Places365

Kim et al.[79] ResNet50 1000 random images
from ImageNet

Oregi et al.
[80]

Custom 3-layers CNN MNIST, SVHN, GTSRB

Table 1.2: Recent works in adversarial examples. For each work, it is presented the DCNN models employed
and the datasets used.
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2
Data Modeling of Main Approaches in

Image Classification

This chapter describes the datamodeling of eachmethod used in this work. However, here we explained
the general modeling in image classification, which represents the data by fitting it into a model that
establishes a relationship between the image x and the label y provided by a dataset as follows:

y = f(x), (2.1)

where the function f() is the model that depends on adjustable parameters[81].
The following sections detail the SIFT + Fisher Vectors modeling as the last BoV method that won

the image classification task on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
2011 before DL models arose. Additionally, we describe the general overview of DCNN’s architecture
and its datamodeling. Finally, we present the theory behind BP to introduce function-symbolic learning
for data modeling and the system’s workflow.

2.1 SIFT + Fisher Vectors

Fisher Vector (FV) is a vectorial representation of the gradient of the sample log-likelihood concerning
a generative model of the data [82]. There are many advantages to the FV against the BoV. Sánchez et
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al. in [82] proved that BoV is a particular case of the FV where is restricted the gradient computation
to the mixture weight parameters of the Gaussian Mixture Model (GMM) [83]. GMM is a probabilistic
visual vocabulary, while FV incorporates additional gradients that improve accuracy. Also, it needs
fewer vocabularies with lower computational costs than BoV, and it is easy to achieve good perfor-
mance with simple linear classifiers. BoV is relatively sparse while the FV is almost dense, making FV
impractical for large-scale applications due to storage problems. Nonetheless, researchers apply large-
scale nearest neighbor search to mitigate this problem using a popular computer vision method named
product quantization [84]. In practice, SIFT descriptors are used on a dense multi-scale grid to compute
the FV image representation [82].

In order to construct the FV image representation, it is defined a set of D-dimensional descriptors
extracted from an image X = {xt, t = 1, . . . , T}, a set of SIFT descriptors. FV is a sum of nor-
malized gradient statistics δXλ =

∑T
t=1 Lλ∇λ log uλ(xt) with the assumption that all descriptors are

independent. Where Lλ∇λ log uλ(xt) is the normalized gradient statistics computed for each descrip-
tor. It can be understood that this operation is an embedding of the local descriptors xt → ϕFK(xt) =

Lλ∇λ log uλ(xt) in a higher-dimensional space which helps a linear classifier to model the data easier
as in Equation (2.1).

In Figure 2.1, we illustrate the workflow overview of the SIFT+FV method. At the top, it is shown
the dictionary learning procedure, where SIFT descriptors are extracted for all training images to learn
the dictionary. In the middle, the training procedure is described, where for each image in the training
dataset, SIFT descriptors are obtained to encode them into the FV with the dictionary. After all images
are encoded into FVs, the SVM is trained. When testing, SIFT descriptors are extracted from the input
image to encode them into the FV and send it to the SVM for the forecast.

Figure 2.1: Workflow overview of SIFT+FV method. The top of the image shows the dictionary learning pro-
cedure. In the middle is illustrated the training procedure. The bottom of the image displays the testing proce-
dure.
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These algorithms’ advantage is that they do not require labeled data to learn the dictionary. BoV al-
gorithms can work on cases with limited labeled data. The dictionary learning process can also improve
feature quality by providing additional information of them [37, 38]. However, they are not capable of
building feature hierarchies, and the process is not merely stacked one method on top of another even
there have been attempts to make it deep [39, 40, 35].

2.2 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks is a deep learning architecture inspired by biological animal
visual perception [85]. The DCNN architecture is divided into multiple learning stages comprised of
convolutional layers, activation functions, sub-sampling or pooling layers, and fully-connected layers
[86, 87]. Convolution layers help extract valuable features from the input image and are composed of
several convolution kernels used to compute different feature maps. Activation functions help to learn
abstractions and integrate non-linearities in the feature space. The non-linearities facilitate learning
semantic differences in the images by generating different activation patterns for different responses.
Sub-sampling or pooling layers help to get shift invariance by reducing the resolution of the feature
maps. Fully-connected layers are found at the end of the architecture. These layers perform high-level
reasoning to generate global semantic information. The DCNN’s output layer for the classification task
is commonly a softmax function that performs the forecast.

DCNN models the data using Equation (2.1) employing fDNN () as a particular form of a nested
function, and each one called a layer [81].

y = fDNN (x) = f3(f2(f1(x))) , (2.2)

in such a way that f1 and f2 are vector functions of the following form:

fl(z) = gl(Wlz+ bl) , (2.3)

with l denoting the index of the layer. gl is the activation function that usually is a nonlinear function,
and the model parameters consist of Wl the weights matrix and bl the bias vector. Hence, the min-
imization problem is defined by the loss function J(θ,x, y) where the goal is to find the best model
parameters for all the layers Θ that fits the data x to the label y.

2.3 Brain Programming

Before we explain the algorithm of BP, we make a brief introduction to GP algorithms since this is the
core of the search process for the models created by BP. GP is an evolutionary computation technique
inspired by biological evolution principles [88]. It is considered a derivative of genetic algorithms that
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evolve individuals’ populations in a tree or computer program (formulas or mathematical expressions).
Each computer program is generated depending on the terminal and function sets established by the
user. First, the system evaluates programs in terms of how well it performs in a particular problem.
Then, using the Darwinian principle of reproduction and survival of the fittest and the genetic operators
of crossover and mutation, individuals are evolved to find a better fit solution to the problem.

BP is an evolutionary paradigm for solving CV problems∗. This methodology extracts character-
istics from images through a hierarchical structure inspired by the brain’s functioning. BP proposes
a GP-like method, using a multi-tree representation for individuals. The main goal is to obtain a set
of evolutionary visual operators (EV Os), also called visual operators (V Os), embedded within a hi-
erarchical structure called the artificial visual cortex. The AVC is based primarily on two models: a
psychological model called feature integration theory [89] and a neurophysiological model called the
two pathway cortical model [90]. According to the brain’s neurological ventral-dorsal model, the AVC
attempts to emulate the natural process along the visual cortex. This two-stream model states that the
process of acquiring visual information in the brain follows two main pathways.

The dorsal stream is known as the “where” or “how” stream. This pathway is where actions and
recognizing objects’ location in space are involved and where visual attention occurs. BP follows the
most popular theory of feature integration for the dorsal stream from [89], whose principles of the first
computational model for visual attention are in [91]. The theory states that visual attention in human
beings proceeds in two stages. The first one is called the preattentive stage, where the natural system
computes visual information processing in parallel over different feature dimensions that compose the
scene: shape, color, orientation, spatial frequency, brightness, and motion direction. The second stage,
called focal attention, integrates the extracted features from the previous stage to highlight a region of
the scene. In the computational model, the image is decomposed into several dimensions to obtain a set
of conspicuity maps, and finally, a single map called the saliency map integrating the four dimensions.

The ventral stream is known as the “what” stream. This pathway is mostly associated with object
recognition and shape representation tasks. Proposed ventral stream models like neocognitron system
[92], convolutional neural networks [41], and HMAX model [93] (the Max principle is used in BP),
start by decomposing the image into a set of alternating “S” and “C” layers. The “S” or simple layers
define a set of local filters applied to find higher-order features, and the “C” complex layers increase
the features’ invariance by combining units of the same kind. However, BP follows a function-driven
approach instead of a data-driven paradigm. In the function-driven process, a set of visual operators–
fused by synthesis–describe the image’s properties. Through a set of experiments, we will show that
the discovered solutions do not rely directly on the data but on specific characteristics; hence, making
the solutions reliable.

BP consists of two steps: first, the evolutionary process, whose primary purpose is to discover
functions to optimize complex models by adjusting its operations. Second, the AVC, a hierarchical

∗For more details about the inspiration of Brain Programming, please consult the following research works
[23, 24, 56].
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structure inspired by the human visual cortex, uses the concept of function composition to extract
features from images. Themodel can be adapted depending on the task, whether it is trying to solve the
focus of attention for saliency problems or the complete AVC for categorization/classification problems.
BP differs from the data-driven models using a function-driven approach to extract and combine the
relevant information that solves a specific visual task. The overall function-driven process requires the
input in a suitable representation; thus, we define in the mathematical form below an image I as the
graph-of-a-function, which refers to the graph as the triplet values of x-coordinate, y-coordinate, and
the pixel value at x, y coordinates.

Definition 1. Image as the graph of a function. Let f be a function f : U ⊂ R2 → R. The graph

or image I of f is the subset ofR3 that consist of the points (x, y, f(x, y)), in which the ordered pair (x, y)

is a point in U and f(x, y) is the value at that point. Symbolically, the image I = {(x, y, f(x, y)) ∈
R3|(x, y) ∈ U}.

This definition highlights that images result from the impression of variations in light intensity
along the two-dimensional plane. Therefore, functions are optimized to imitate the functionality of
specialized areas of the brain through a set of operators.

2.3.1 Data Modeling with BP

BP proposes to solve the problem of image classification from the standpoint of data modeling through
GP. Therefore, to understand the learning process of BP, we start defining the minimization problem,
which requires finding a solution Pmin ∈ S such that:

∀Pmin ∈ S : f(Pmin) ≤ f(P) . (2.4)

The strategy takes several steps because the direct mapping between the domain and codomain is
unknown or not well defined. Hence, instead of conventional approaches to finding best-fit parameters,
we would like to fit the data by discovering functions that perform a classification task in BP. In this
manner, the solution to the image classification problem through BP requires to define the following
equation:

min(y − f(x,F,T,a)) , (2.5)

where (y,x) are the label and the image respectively, given by the dataset; f(·) represents the classifier,
F and T represents the function and terminal sets respectively from the feature extraction, and a are
the parameters controlling the evolutionary process. Therefore, BP is the algorithm in charge of tuning
(F,T) looking for optimal feature extraction from the input images using the visual operators embed-
ded into the artificial visual cortex (AVC). The feature selection process works as a wrapper method
based on the BP algorithm for fitting the whole AVC to the dataset. The criterion for minimization in
terms of a classification task helps discover an optimal solution to the problem. In this particular case,
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we use an SVM to learn a mapping f(·) that associates descriptors di created by the AVC to labels yi.
Here, we define the BP algorithm in terms of a binary classification task, whose primary purpose is to
find a boundary that best separates the class elements.

Evolving an Artificial Visual Cortex (AVC)

Each individual consists of syntactic trees defining the V Os that constructs the AVC structure to ex-
tract features from color images. In this procedure, the AVC designs a descriptor vector that encodes
salient characteristics from the image. The descriptor concatenates the information from the four di-
mensions, resulting in a n global maxima vector. Then, an SVM performs the image classification that
addresses individual fitness by calculating the accuracy of a given training image database. BP uses
an evolutionary loop presented in Algorithm 1 to evolve the entire population represented by a set of
AVCs. In Figure 2.2 we illustrate the AVC model that is optimized in the evolutionary loop through GP
to find the best individual (best AVC model) for the image classification task. The AVC model follows a
procedure that is detailed next to extract the features to build the image descriptor to be classified.

Figure 2.2: Brain Programming workflow. The left side shows the genetic operations; in the middle, we ob-
serve the BP’s flow diagram, and the right side illustrates the individual representation.

Structure Representation and Genetic Operations

In BP, an individual is a computer program represented by syntactic trees embedded into a hierarchical
structure. Individuals within the population contain a variable number of syntactic trees, ranging from
four to 12, one for each evolutionary visual operator (V OO , V OC , V OS , V OI ) regarding orientation,
color, shape, and intensity; and at least one tree to merge the resulting Visual Maps, and finally, gener-
ate the Mental Maps (MM). All functions within each V O are defined according to expert knowledge
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Algorithm 1: BP evolutionary process
Input : Training images, Algorithm parameters (see Table 2.5)
Output: The updated population AVCs

1 Generate a random initial population P0;
2 i = 0;
3 while the termination criterion is not satisfied do
4 Evaluate each individual fitness (AVC) in Pi ;
5 Selection using lexicographic parsimony pressure;
6 Generate offspring by crossover and mutation;
7 i = i+ 1;
8 return The updated population Pfinal

to highlight characteristics related to the respective feature dimension and updated through genetic
operations.

• Visual Maps

Each input image is transformed to build the set Icolor = {Ir , Ig , Ib, Ic, Im, Iy , Ik, Ih, Is, Iv},
where each element corresponds to the color components of the RGB (red, green, blue), CMYK (Cyan,
Magenta, Yellow, and black) and HSV (Hue, Saturation, and Value) color spaces. Elements on Icolor

are the inputs to four V Os defined by each individual. Each V O is a mapping function applied to the
input image to extract specific features from it, along with information streams of color, orientation,
shape, and intensity; each of these properties is called a dimension. The output from the V O is an image
called Visual Map (VM ) for each dimension. It is important to note that each solution in the population
represents a complete system and not only a list of tree-based programs. Individuals represent a possible
configuration for feature extraction describing input images and optimized through the evolutionary
process. Next, we explain the process of V Os to extract features on each dimension to obtain a resulting
VM .

The first tree of the individual mimics the orientation. We evolve this visual operator (V OO)
through a set of specially selected elements to highlight edges, corners, and other orientation-related
features using the set of terminals and functions provided in Table 2.1. The input for the functions can
be any of the terminals, and the composition among the functions; Gσ are Gaussian smoothing filters
with σ = 1, 2; and Du represents the image derivatives along the direction u ∈ {x, y, xx, yy, xy}.
Finally, Dx represents an approximation to the discrete derivative of image A in the direction of the x
axis. We calculate these operations with a convolution between a kernel and an image. The convolution
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kernel results from deriving the Gaussian function along x:

Dx(A) =A ⋆
∂Gσ(x)

∂x

=A ⋆

(
−x

σ2
∗ e

x2

2σ2

)
,

(2.6)

where σ = 1. The objective of this operation is to highlight changes in intensity along the x-axis,
which emphasizes vertical edges. On the other hand, Dy uses ∂Gσ(y)

∂y as the convolution kernel, which
makes it possible to highlight horizontal edges. Applying Dx and Dy recursively, we obtain Dxx, Dyy

and Dxy . These operators emulate the functionality of the V1 region presented in the primary visual
cortex.

Functions Description Terminals Description
Element-wise operators
A + B, A− B, A× B,
A/B, k + A, k − A,
k × A, A/k, |A|, |A +
B|, |A − B|, log(A),
(A)2,

√
A, round(A),

⌊A⌋, ⌈A⌉, inf(A,B),
sup(A,B) , thr(A)

Arithmetic functions be-
tween images or constants
k, absolute values, trascen-
dental functions, square,
square root, rounding func-
tions, infimum, supremum,
and threshold applied to
images A and/or B

Ir, Ig, Ib, Ic,
Im, Iy, Ik, Ih,
Is, Iv, Dx(Ix),
Dxx(Ix),
Dy(Ix),
Dyy(Ix),
Dxy(Ix)

Elements of
Icolor and its
derivatives

Convolution operators
Gσ=1(A), Gσ=2(A),
Dx(A), Dy(A)

Convolution with a Gaus-
sian filter, and derivatives
applied to image A

Table 2.1: Functions and terminal list for the visual operator V OO .

The second operator encodes the color dimension emulating the color-sensitive cells in the visual
cortex. The visual operator of color(V OC ) reproduces the color perception process to find prominent
regions with color properties in the image. Note that some functions of V OC are the same as those in
V OO plus the function complement() that provides a negative image that complements an intensity
or RGB value (see Table 2.2). Regarding the output image, dark areas become lighter, and light areas
become dark. Opponent terminals perform a fixed operation between the color bands that build a new
image with maximum values. For example,Op r,g accentuates the difference between the red and green
bands.
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Functions Description Terminals Description

Element-wise operators

A + B, A− B, A× B,
A/B, k + A, k − A,
k × A, A/k, log(A),
exp(A), (A)2,

√
A,

(A)c, round(A), ⌊A⌋,
⌈A⌉, thr(A)

Arithmetic functions be-
tween images or constants
k, trascendental functions,
square, square root, image
complement, rounding
functions and threshold
applied to images A and/or
B

Ir, Ig, Ib, Ic,
Im, Iy, Ik,
Ih, Is, Iv,
Opr−g(I),
Opb−y(I)

Elements of
Icolor and color
opponencies:
red-green and
blue-yellow

Table 2.2: Functions and terminal list for the visual operator V OC .

The third tree is the visual operator of shape. The method that extracts visual information from
the object’s shape employing V OS from Table 2.3 utilizes the artifacts’ morphological information
in the image. BP proposes to create compound operators by the composition of basic morphological
operators such as dilation, erosion, open, close with disk, square, and diamond structural elements.
Indeed, it is possible to create more complex operators from these operators. The goal of extracting
shape information is to highlight valuable information for object recognition.

Functions Description Terminals Description
Element-wise operators
A + B, A− B, A× B,
A/B, k + A, k − A,
k ×A, A/k, round(A),
⌊A⌋, ⌈A⌉, thr(A)

Arithmetic functions be-
tween images or constants
k, rounding functions, and
threshold

Ir, Ig, Ib, Ic,
Im, Iy, Ik, Ih,
Is, Iv

Elements of
Icolor

Morphological operators
A⊕SEd,A⊕SEs,A⊕
SEdm, A ⊖ SEd, A ⊖
SEs, A ⊖ SEdm, A ⊚
SEs, A ⊙ SEs, Sk(A),
Perim(A), A ⊛ SEd,
A ⊛ SEs, A ⊛ SEdm,
That(A), Bhat(A)

Dilation, erosion, open,
close with disk, square,
and diamond structural ele-
ment; skeleton, hit or miss,
bottom-hat, and top-hat

Table 2.3: Functions and terminal list for the visual operator V OS .

Finally, the intensity measure corresponds to the amount of light perceived by a photosensitive
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device. In humans, specialized ganglion cells in the retina measure the intensity. Then, the following
formula is applied to compute the visual map of intensity.

VMInt =
Ir + Ig + Ib

3
. (2.7)

• Conspicuity Maps

The following procedure is the center-surround process; it efficiently combines the VMs and helps
detect scale invariance in each of the dimensions. This process applies a Gaussian smoothing over its
corresponding VMd at nine scales P σ

d = {P σ=0
d , P σ=1

d , ..., P σ=7
d , P σ=8

d }; this processing reduces the
visual map’s size by half on each level forming a pyramid. Subsequently, the six levels of the pyramid
are extracted and combined.

Qj
d = P

σ=⌊ j+9
2

⌋+1

d − P
σ=⌊ j+2

2
⌋+1

d , (2.8)

where j = 1, 2, ..., 6. Since the levels P σ
d have different sizes, each level is normalized and scaled

to the visual map’s dimension using polynomial interpolation. This technique emulates the center-
surround process of the biological system. After extracting features, the brain receives stimuli from
the vision center and compares it with the receptive field’s surrounding information. The goal is to
process the images so that the results are independent of scale changes. The entire process ensures
that the image regions are responding to the indicated area. The algorithm computes this process for
each characteristic dimension (VMd); the results are the Conspicuity Maps (CM ), focusing only on
the searched object by highlighting the most salient features. This early stage of the system follows the
psychological model of visual attention, which involves the objects’ location in space as the artificial
dorsal stream pathway.

• Mental Maps

After obtaining the most saliency features, the next stage along the AVC is to compute the Mental
Maps (MMs) to define a compound descriptor vector used as input to a classifier for categorization
purposes. This procedure is analogous to the artificial ventral stream pathway. The synthesized infor-
mation from CMs enters the set of MMs, which discriminates against unwanted information. The
AVC model uses a set-of-functions to extract the images’ discriminant characteristics (see Table 2.4); it
uses a functional approach. The algorithm applies a set of k V Os to theCMs for the construction of the
MMs. These V Os correlate with the remaining trees of the individual representation corresponding
to the last step in the feature descriptor construction.

Unlike the specialized V Os used to obtain the CMs, the algorithm’s next step is to simulate the
ventral stream known as the “what” stream, which is mainly associated with object recognition and
shape representation. The idea is to concatenate the highest values per dimension (four) into a single
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vector of n global maxima using Equation (2.9), where d is the dimension, and k represents the cardi-
nality of the set of V OMMk

. Therefore, MMs uses the same V Os set in all dimensions to gather the
salience information obtained from the CMs to construct the descriptor that characterizes the object
of interest.

MMd =

k∑
i=1

V OMMi (CMd) (2.9)

Functions Description Terminals Description

Element-wise operators

A + B, A− B, A× B,
A/B, |A+B|, |A−B|,
log(A), (A)2,

√
A

Arithmetic functions be-
tween images or constants
k, absolute values, transcen-
dental functions, square,
and square root

CMd,
Dx(CMd),
Dxx(CMd),
Dy(CMd),
Dyy(CMd),
Dxy(CMd)

Conspicuity
Maps and its
derivatives

Convolution operators

Gσ=1(A), Gσ=2(A),
Dx(A), Dy(A)

Convolution with a Gaus-
sian filter, and derivatives
applied to image A

Table 2.4: Functions and terminal list for the set V OMM .

• Genetic Operations

The imitation of Darwin’s natural selection consists of assigning to each solution a selection prob-
ability proportional to their fitness value while preferring smaller trees when fitness is equal. Individu-
als are selected from the population using a tournament with lexicographic parsimony pressure [94] to
participate in the genetic recombination from the individuals’ multi-tree representation. The algorithm
retains the best individuals after applying genetic operators to create the new offspring.

Like genetic algorithms, BP executes the crossover between two selected parents at the chromo-
some level using a “cut-and-splice” crossover. We consider the entire individual, the array of EV Os,
similar to a chromosome. Each operator within the chromosome is a gene. Each function or terminal is
analogous to the nucleotides from the gene anatomy. The algorithm swaps all data beyond the selected
crossover point between both parents A and B. The result of applying a crossover at the gene level
is performed by randomly selecting two subtree crossover points between both parents. The selected
genes match with the corresponding subtree in the other parent. The chromosome level mutation leads
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to selecting a given parent’s random gene to replace such substructure with a new randomly mutated
gene. The algorithm calculates the mutation at the gene level by applying a subtree mutation to a
probabilistically selected gene; the subtree after that point is removed and replaced with a new subtree.
These genetic operators allow the variation of the genetic material while promoting individuals’ genetic
innovation through all levels and maintaining the diversity of the population.

Fitness Function

The following stage in the model is the construction of the image descriptor vector (DV ). The system
concatenates the fourMMs and uses a max operation to extract the n highest values; these values are
used to construct the DV . Once we get the DV s from images in the database, a classifier associates
the domain given by the descriptors to the labels’ codomain. In this work, we use an SVM working
with the discriminate hyperplane defined by:

f (x) =
l∑

i=1

αiyiK (xi, x) + b, (2.10)

where the given training data is (xi, yi), i = 1, . . . , l, yi ∈ {−1, 1}, xi ∈ Rp andK(xi,x) is the kernel
function. The sign of the output indicates the class membership of x. Thus, finding the best hyperplane
is performed through an optimization process that locates the margin between the class and non-class
as the search criteria. The accuracy obtained by the SVM indicates the fitness of the individual, which
minimize the learning problem from Equation (2.5) †.

Initialization, GP parameters, and Solution Designation

Once we define the AVC structure from each individual, we set the parameters of the BP evolutionary
process (see Table 2.5) and establish the image database. Next, the algorithm creates a random ini-
tial population using a ramped half-and-half technique, selecting half of the individuals with the grow
method and half with the full method. According to the maximum initial depth, the full method makes
balanced trees, while the grow method makes unbalanced trees allowing branches of varying lengths.
Here we set a limit of maximum depth to avoid uncontrolled growth of trees over time. The algorithm
dynamically sets the tree depth using twomaximum values to limit the individual’s size within the pop-
ulation. The dynamic max depth is a maximum value that may not be surpassed unless the individual’s
fitness is better than the best solution found so far. If it occurs, the dynamic max depth value is updated
to the new fittest individual. The real max depth is a hard limit that no individual may surpass under
any circumstances. Selection uses a tournament with lexicographic parsimony pressure for keeping
the best individual. Finally, the algorithm terminates the evolutionary process when it reaches one of

†In this section, The meaning of accuracy has the purpose of optimizing BP; nevertheless, the accuracy indi-
cated in Section 4.1 refers to the metric to measure the attack responses.

26



these two conditions: 1) an acceptable classification rate or 2) the total number of generations. Thus,
the evolutionary process reaches an optimum population that contains the best solution to the problem.

Parameters Description
Generations 30
Initial Population 30
Crossover at chromosome level 0.4
Crossover at gene level 0.4
Mutation at chromosome level 0.1
Mutation at gene level 0.1
Tree depth Dynamic depth selection
Dynamic max depth 7 levels
Real max depth 9 levels
Selection Tournament with lexicographic

parsimony pressure
Survival Elitism

Table 2.5: Initialization parameters for each GP applied in the BP algorithm.

2.3.2 Hands-on Artificial Evolution

The use of random principles is overused in evolutionary computation. Thus, Olague and Chan-Ley
adopted amethodology to avoid the unnecessary application of arbitrary or unplanned solutions within
an algorithm to advance towards a more goal-oriented methodology [95]. It is not feasible to leave a
methodology to discover the best solution when they have complex structures, but helping it with
previous discoveries will guide the search in a better direction. Hence, the idea was to use the best
solutions discovered during previous searches as the initial population to set a new experiment to find
a better solution. Most of the time, this strategy improves the performance of an algorithm to be
competitive in a task. In this research work, it is employed in Section 5.2.4.

Brain programming is a highly demanding computational paradigm. A balance should be found to
create programs that can solve non-trivial problems within the state-of-the-art in a reasonable amount
of time. The idea is to continue the evolution from the best local minimum discovered so far. The
proposed technique significantly improves the performance of previous results. The idea of hands-on
evolution works for computationally demanding problems. It is a simple strategy that saves compu-
tational time because this kind of results cannot be obtained by simply continuing the random initial
population’s approach.
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3
Adversarial Attacks

Adversarial attacks are a severe threat to the exemplar performance of DCNN. Therefore, we outlined
the explanation of how these attacks works. First, given an input image x in an input subspaceX such
that x ∈ X and its corresponding label y, DCNNmodel establishes a relationship within the data using
the following equation:

y = f(x) = A(w⊺x) , (3.1)

where function f(·) is the DCNNmodel, whose associated weights parameters arew andA(·) is an
activation function. However, an erroneous behavior is notable when the input image suffers a small
change in its pixels xρ = x+ ρ such that:

f(x) ̸= f(xρ) s.t. ||x− xρ||p< α (3.2)

where p ∈ N | p ≥ 0, α ∈ R | α ≥ 0, ||·||p denotes the lp-norm, which the most commonly
used are ||·||0 , ||·||2 and ||·||∞. The scalar value α limits the image modification depending on the
lp-norm and the design of the attack. For example, Fast Gradient Sign Method [12] limits the intensity
of the attack by using standard ϵ values that restricts the image’s modification to do not overpass the
norm. In the predecessor of the adversarial patch attack [57] uses α = 2000 for l2-norm and α = 10

for l∞-norm. So, it can be defined an Adversarial Example (AE) as an intentionally modified input xρ
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that is classified differently than x by the DCNN model, with a limited level of change in the pixels of
||x− xρ||p< α, so that it may be imperceptible to a human eye.

The simplest explanation of howAEswork to attack aDCNN is thatmost digital images use 8‑bit per
channel per pixel. So, each step of 1/255 limits the data representation; thus, information in between is
unused. Therefore, if every element of a perturbation ρ is smaller than the data resolution, it is coherent
for the linear model to predict distinct given an input x than to an adversarial input xρ = x + ρ. We
assume that forasmuch as ||ρ||∞< α, where α is too small to be discarded, the classifiers should predict
the same class to x and xρ.

Nonetheless, after applying the weight matrix w ∈ RM×N to the AE, we obtain the dot product
defined byw⊺xρ = w⊺x+w⊺ρ. The AEwill grow the activation byw⊺ρ. Note that the dimensionality
of the problem does not grow with ||ρ||∞; thus, the activation change caused by perturbation ρ can
grow linearly with n. In high dimensional problems, the numerous imperceptible changes to the input
sum to obtain immense output changes.

The linear interpretation of AEs implies easyways to generate them. Authors from [12] hypothesize
that neural networks are too linear to resist linear perturbations. Networks such as long short-term
memory, ReLUs, and maxout are intentionally designed to perform linearly so that they are easier to
optimize. Moreover, nonlinear models such as sigmoid networks work in the non-saturating state,
becoming more like a linear model. Hence, every perturbation as challenging or straightforward to
compute of a linear model should affect DCNNs. Therefore, when a model is affected by an AE, this
image often affects another model, whether the two models have different architectures or were trained
with other databases. Then, they only have to be set up for the same task to change the result [12].

In this manner, the AE generation finds an imagexρ in the input subspaceX′ such thatxρ ∈ X′ and
f(x) ̸= f(xρ). Nevertheless, we denote robustness in terms of function continuity. Given a model’s
function f() in an image input subspaceX is said to be robust at x ∈ X, if xk → x then f(xk) → f(x).
Equivalently, f(x) is robust at x, for all y ∈ X, if given a ϵ > 0, there is a δ > 0 such that ||y− x||< δ

implies |f(y)− f(x)|< ϵ. Hence, if f(x) is robust for every x, then f(x) is said to be robust on X.
Adversarial attacks are usually established as constraint optimization problems. The objective is to

find a perturbation ϵ such that f(x + ϵ) predicts yt ̸= yoriginal, where x is the input image which is
classified as f(x), and f is the target image classifier. The perturbation ϵ is limited to be as imperceptible
as possible with maximum modification constraint L measured by the length of vector ϵ. For targeted
attack, yt is an specified target class, and for non targeted attack, yt is not specified, as long as it is not
the correct label. Therefore, targeted attacks find an optimal solution ϵ∗ for the following equation:

min
ϵ∗

J(f(x+ ϵ), yt)

s.t. ||ϵ||≤ L .
(3.3)

It minimizes the cost function J over the target class yt. In a non-targeted attack, the goal is to find
a perturbation ϵ∗ that maximizes the cost function’s values J over the original predicted class yoriginal.
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That means to minimize the probability of the class yoriginal, and the optimization is defined as follows:

max
ϵ∗

J(f(x+ ϵ), yoriginal)

s.t. ||ϵ||≤ L .
(3.4)

Adversarial attacks are classified according to the model’s available information and the desired
attack to predict a specific class. The literature [13] divides attacks into targeted and untargeted ap-
proaches. Targeted attacks refer to the ability to fool a model with a specific label, while untargeted
attacks induce an error without a precise label. Also, the literature refers towhite-box attackswhere it is
assumed complete knowledge of the model, including parameter values, architecture, training method,
and sometimes training data. Finally, a black-box attack feeds a targeted model with adversarial exam-
ples without the model’s knowledge.

This thesis analyzes in Section 3.1 a white box untargeted attack (Fast Gradient Sign Method) to
determine the impact of an easy and direct threat to DCNN by knowing its parameters. We study the
AE transferability property, which means generating AEs and performing an attack with the misclas-
sification on DL systems with no access to the model, extending the analysis to different architectures
like BP and SIFT+FV. In Section 3.2, a black box untargeted attack (multiple pixel attack) analyzes the
hazard from an attack that tries to find locations and pixel values to build a perturbation that changes
the model’s prediction from an artwork image. In Section 3.3 a targeted attack is analyzed, which uses
an adversarial patch to challenge the robustness of such modified image patches, which can be rotated,
put on random locations, and printed to appear in real-world conditions in the artwork to cause a mis-
leading prediction of the target class. We also analyze the AE transferability of such patches through
all models. In Section 3.4, a white box untargeted attack (facial accessories perturbations) that utilizes a
physically realizable and inconspicuous pair of eyeglass frames to evade recognition is detailed. Lastly,
in Section 3.5 we include an analysis of a DCNN defense mechanism to test a solution proposed to the
AA problem. We verify the feasibility of using a defense mechanism in the real world to make DCNN
secure. We detailed each of the adversarial attacks and the defense mechanism mentioned above in the
following sections.

3.1 Fast Gradient Sign Method

The Fast Gradient Sign Method proposed in [12] is the most widely used method for computing AEs
due to its easy implementation. The FGSM exploits the gradient, which is the weights correction in
the backpropagation process of a neural network to build an adversarial example. FGSM computes
the gradient of a loss function with respect to the input image and then uses the sign of the gradient
to create the image that maximizes the loss. FGSM proposes to increase the loss of the classifier by
solving the following equation: ρ = ϵ sign(∇J(θ,x, yl)), where ∇J() computes the gradient of the
cost function around the current value of the model parameters θ with the respect to the image x, and
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the target label yl. sign() denotes the sign function, which maximizes the magnitude of the loss and ϵ

is a small scalar value that restricts the norm L∞ of the perturbation.
The perturbations generated by FGSM take advantage of the linearity of the DLmodels in the higher

dimensional space to make the model misclassify the image. The linearity of DL models discovered by
FSGM implies the transferability between models. Authors in [96] reported that with the ImageNet
dataset, the top-1 error rate using the perturbations generated by FGSM is around 63-69% for ϵ ∈ [2, 32].
Figure 3.1 illustrates AEs from the FGSM where the intensity of the perturbation is controlled with ϵ.
We observed that even for the largest ϵ value is difficult to notice the perturbation.
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Figure 3.1: Example images of computing the FGSM using ResNet101 from each class with a scale factor of
ϵ = 2, 4, 8, 16, 32.

3.2 One Pixel Attack

The one-pixel attack considers a minimal scenario where only one pixel is changed in the image to
fool the DL models using images of a reduced size of 32 × 32 pixels. With these limitations, Su et al.
successfully fool three different CNN models on 67.97% of the testing images with the modification of
just one pixel per image [66]. Furthermore, the authors reported that the average confidence of the
CNNs on the wrong prediction on the pictures was 97.47%.

The one-pixel adversarial perturbations are black-box attacks since they do not require knowledge
of the model. The attack uses a population-based optimization algorithm for solving complex multi-
modal optimization problems named Differential Evolution [97] to generate the damage. First, the
method searches a solution from a vector space R5 that contains (x,y) coordinates limited by the image
size and the three bands of the RGB color values. Then, within a population, it randomly modifies the
five-dimensional individuals’ elements to create new offspring such that they compete in the current
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iteration to obtain better fitness. For example, in the case of two pixels, an individual has a vector space
R10 that contains a pair of (x,y) coordinates and a pair of RGB colors values, and so on for individuals
with more pixels. During the run, the algorithm used the probability of the predicted label to compute
the fitness criterion. Finally, the last surviving individual is used to modify the pixels in the image.

In summary, let the vector x = (x1, . . . , xn) be a n-dimensional image, which is the input of the
target classifier f that predict correctly the class t from the image. The probability of x associated to
the class t is ft(x). It builds an additive adversarial perturbation vector e(x) = (e1, . . . , en) according
to x and the limitation of maximum modifications d, a small number that express the dimensions that
are modified while other dimensions of e(x) left as zeros. For untargeted attacks, the main purpose is
to find the optimal solution e(x)∗ that solves the following equation:

min
e(x)∗

ft(x+ e(x))

s.t. ||e(x)||0≤ d .

(3.5)

The case of a one-pixel attack is d = 1, and it is possible to extend it to multiple pixels by increasing
d. Note that the one-pixel attack was tested initially on DL models with inputs from CIFAR 10 dataset.
So, it represents a considerable modification of such tiny images; nevertheless, it is insignificant with
the databases studied in the present work. Therefore, we use a multiple-pixel attack d >> 1 in order
to work with real-size images. Notice that increasing the number of pixels in this attack will raise the
perturbation risk to be noticeable. In Figure 3.2, we illustrate AEs from the multiple-pixel attack where
the perturbation can be noticeable.
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Figure 3.2: Example images of the multiple pixel attack using d = 10, 000 for each class. Each column shows
three sample images from the Wikiart database.
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3.3 Adversarial Patch

The adversarial patch, in contrast to the traditional strategy (FGSM), is a method to replace a per-
turbation on the whole image with a patch, see Figure 3.3. The adversarial patch consists of creat-
ing universal, robust, targeted adversarial image patches by finding a perturbation p̂ that maximizes
ftarget(x + p̂)). The robustness of these patches resides on the wide variety of transformations on
which they can attack any image and target the classifier prediction to the desired class. Also, they
work in real work environments where they can be printed, photographed, or even when the patch is
too small; they can ignore the whole scene to predict the target class.

The method builds a patch p̂, using a variant of the Expectation over Transformation (EOT) frame-
work, for which the algorithm trains the patch to optimize the following equation:

p̂ = argmax
p̂

Ex∈X.t∈T.l∈L[log f(ytarget, A(p,x, l, t))] , (3.6)

where X is a training set of images, T is a distribution over transformations of the patch, L is a distri-
bution over locations in the image, ytarget is the target label, and x the image vector. The expectation
over the training images improves the patch’s effectiveness, regardless of the background. It was proved
by [98] the patch’s universality using several images with different backgrounds. A variation of this
method is to add a constraint of the form ||p−porig||∞< ϵ to the patch objective in order to camouflage
it. The constraint enforces the final patch to be within ϵ in the L∞ norm of some starting patch porig .
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Figure 3.3: Example images of the adversarial patch. Each column represents the classes from the Wikiart
database, and the rows show the adversarial patches obtained with the corresponding DCNN models.
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3.4 Facial Accessories Perturbations

The Facial Accessories Perturbations infer that the attack is made with the targeted model’s knowledge
to evade the recognition [99]. In this manner, facial accessories are used to perform the attacks, which in
this case are eyeglasses frames. The advantage of facial accessories is that they can be easily realizable
in real-world conditions. Furthermore, eyeglasses are an everyday facial accessory that is natural for
people to wear, helping the attacks be feasible.

Hence, a set of eyeglasses frames is employed to physically realize the attack, ensuring that the
perturbation effectivelymisclassifiesmore than one image. In order to find a perturbation that performs
the attack, the following optimization problem needs a solution:

min
ρ

∑
x∈X

−softmaxloss(f(x+ ρ), cx), (3.7)

where the perturbation ρwould maximize the softmaxloss(f(x+ρ), cx) value to minimize the proba-
bility of the class cx. To guarantee the generality of perturbations, we need to look for complex models
that can cause any image in a set of inputs to be misclassified. Hence, the attack requires a set of im-
ages,X , and finds a single perturbation that optimizes her objective for every image x ∈ X . Figure 3.4
shows example images from the eyeglasses frame perturbation.

Figure 3.4: These images illustrate adversarial examples computed with the facial accessories perturbations.
The first column shows the clean face images, the second column presents the precomputed ResNet glasses
frame, and the third column shows the resulting adversarial examples.
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3.5 Defense Mechanisms

Currently, the defenses against the adversarial attacks are being developed along with three main di-
rections [13]:

• Modifying the training process during learning or the input during testing.

• Changing the structure of the networks, e.g., by adding more layers/subnetworks, changing
loss/activation functions, and so on.

• Employing external resources as network add-on when classifying unseen examples.

Adversarial training is the process of explicitly training a model on adversarial examples to make
it more robust to attack or reduce its test error on clean inputs (See Algorithm 2). The most common
method used is to modify the training process during learning because there has been a consensus in
the literature that the robustness of neural networks is improved against adversarial examples with
adversarial training. For example, in the research works [11, 12] besides the introduction of new AAs,
they propose using AEs generated by these methods in the learning process as the first line of defense
against those attacks.

Although adversarial training helps make a network robust to AAs, it is a non-adaptive strategy
requiring training to be performed using solid attacks. The results from the adversarial training have
been commonly observed in the literature [12, 100] in regularizing the network to reduce over-fitting,
which improves the robustness against the AAs. Even though few works mention that AAs may not
be a serious concern on DL, a large number of research works indicates otherwise [13].

The profound implications of the vulnerability of deep neural networks to adversarial perturbations
have made a highly active research area in AAs and their defenses. For example, Authors from [101]
demonstrated that ten different defenses against AEs could be defeated by new attacks designed using
different loss functions. At the same time, techniques are being proposed to defend deep neural net-
works against the known AA, but more complex and compelling attacks are being designed. Therefore,
it is definitely that the problem of AAs has not been solved yet to became DL a secure method. We need
to verify if the solutions provided to solve the problem of AAs make a real difference to make DCNN
trustworthy.

In this Chapter, we have presented the security concerns about DCNNmodels that their predictions
can be manipulated with small perturbations to the image to change their behavior. Also, we show
how these attacks work to fool the DCNN models and the transferability effect that causes to different
architectures to be affected by these perturbations. Four kind of attacks were detailed in this Chapter:
1) FGSM (white-box untargeted), 2) Multiple-pixel attack (black-box untargeted), 3) Adversarial patch
(white-box targeted), and 4) Facial accessories perturbations (white-box targeted). Finally, the defense
mechanisms that the research community has developed were explained to notice that the problem of
adversarial attacks is still unsolvable.
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Algorithm 2: Adversarial training for network N
Size of the training minibatch is m. Number of adversarial images in the minibatch
is k. Procedure extracted from [96]
1 Randomly initialize network N
2 repeat
3 Read minibatch B = {X1, . . . , Xm} from training set
4 Generate k adversarial examples {X1

adv, . . . , X
k
adv} from corresponding clean

examples {X1, ..., Xk} using current state of the network N
5 Make new minibatch B0 = {X1

adv, . . . , X
k
adv, X

k+1, . . . , Xm}
6 Do one training step of network N using minibatch B0

7 until training converged;
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4
Robustness Evaluation to Adversarial

Examples

This chapter presents the novel robustness evaluation methodology proposed in this thesis. Figure 4.1
illustrates at the top of the image the traditional methodology to evaluate robustness against adversar-
ial attacks, which is limited to deep learning models because this vulnerability has been studied only
in the context of these approaches. In this methodology, several models are selected to be competitive
in a task. After that, different attacks are considered to evaluate the robustness through metrics that
quantify the performance’s change. However, the proposed methodology extends the robustness eval-
uation beyond the deep learning systems (see Figure 4.1 at the bottom of the image). We consider to
submit a competitive method against deep learning in a defined task in the first steps. Consequently,
we contemplate the threats generalization by choosing contrasting attack strategies (e.g., white-box,
black-box, targeted, and untargeted). Standard metrics to rate the performance’s change are used to
determine the attack’s damage, but we add a new step to measure collateral effects through a statistical
analysis that measures the prediction’s confidence variation.

Evaluation metrics play a crucial role in assessing the performance of classification models to
demonstrate competence in a task. Typically the performance measure involves training a model on
a dataset, using the model to make predictions on a different dataset not used during training, then
comparing the predictions to the expected values in this separate dataset.
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Figure 4.1: Comparative of the traditional methodology to evaluate robustness against adversarial attacks in
deep learning at the top of the image, and the proposed methodology that extends the robustness evaluation
beyond deep learning systems at the bottom of the image.

Choosing an appropriate metric is generally challenging in computer vision tasks but is particularly
difficult for classification problems when adversarial attacks are present because most of the standard
metrics that are widely used assume no intentions to fool the system. For classification problems, met-
rics involve comparing the expected class label to the predicted class label or interpreting the predicted
confidence for the class labels for the problem. The most commonly used measure for this purpose is
accuracy.

We analyze the algorithms’ performance using standard metrics such as accuracy and the ratio
between adversarial examples and clean images to quantify robustness. These metrics measure im-
mediate changes in the algorithms’ predicted labels. However, these measures do not consider the
change in the predicted confidence for the class labels, which determines the foresee label. Therefore,
we propose to use a series of statistical tests to measure significant differences in each classifier’s pre-
dictions’ confidence, which we considered an effect of the adversarial attack. Additionally, we use
multiple comparisons of group means with the Bonferroni method between the performances from all
the algorithms.

4.1 Standard Metrics

We employ classification accuracy as a measure of performance for the classifiers, which is simply the
rate of correct classifications given by the following formula:

Accuracy =
1

N

N∑
n=1

d(y′n, yn) , (4.1)

where N is the total of test images, y′n is the predicted label for the image n, yn is the original label
for the image n, and d(x, y) = 1 if x = y and 0 otherwise. Additionally, as a robustness measure,
we used the accuracy ratio between adversarial examples and clean images implemented by [96] (see
eq. 4.2). This metric means that if the ratio reaches one, the accuracy of AEs and the clean images is
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the same. Nevertheless, if it tends to zero, that means that the AA worked to fool the classifier. If this
ratio exceeds 1, it implies that the AA is helping to correct misclassified images. The following equation
calculates the ratio:

Ratio =
accadv
accclean

, (4.2)

where accadv is the classification accuracy on AEs, and accclean is the classification accuracy on the
clean images

4.2 Statistical Analysis of Robustness

We see that differences among experiments seem striking, particularly when images suffer a subtle
perturbation. Nevertheless, statistical analysis allows us to be more confident regarding the robustness
of each method’s predictions. Nowadays, the nonparametric statistical analysis is bringing researchers’
attention to measure the performance through a rigorous comparison among algorithms, considering
independence, normality, and homoscedasticity [102, 103]. Such procedures perform both pairwise
and multiple comparisons for multiple-problem analysis. In our case, we apply pairwise statistical
procedures to perform individual comparisons between each method’s predictions’ confidence from
clean and attacked images based on the statistical procedure described in [104].

When the designed algorithms’ results for the same problem achieved the conditions expressed
before, the most common test is the ANOVA. In case that the distributions are not normal, we must
use a nonparametric test like Kruskal-Wallis. If the distributions are normal but do not achieve the
property of homoscedasticity, the analysis required is the Welch test. The statistical tests enable com-
parisons of the sample distributions, attending to the required conditions, and applying a suitable as-
sessment a posteriori to contrast the results. As a result, we have first studied data normality (Lilliefors,
Kolmogorov-Smirnov) and homoscedasticity (Levene test); then, according to the results, we have ap-
plied the appropriate statistical test (Kruskal-Wallis, Welch, Anova) to determine if the differences are
significant, using a p-value < 0.05. Therefore, if the predictions’ confidence is statistically different,
it will illustrate the rejection of the null hypothesis Ho. If the statistical analysis accepts Ho, it will
define that the predictions’ confidence from the pair of clean and perturbed images is not significantly
different; hence we can conclude that the method is robust to the AEs.

The Bonferroni method [105] can be used to compare different groups at the baseline, study the
relationship between variables, or examine one or more endpoints in experiments. It is applied as a
post-hoc test inmany statistical procedures [106, 107]. TheBonferronimethod ismore rigorous than the
Tukey test [108], which tolerates type I errors, and more generous than the very conservative Scheffé’s
method[109]. A simple main effect analysis between all classifiers using the Bonferroni method as a
post-hoc test from the previous procedure considerations was employed with the FGSM testing data.
Then, we use multiple comparisons to determine which group means are different from others using
the Bonferroni method.
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5
Experimental Results

In this chapter, we present the results from the evaluation to adversarial perturbations to determine
the image classification models’ robustness beyond machine learning systems. We explore to study
robustness to adversarial attacks through the challenging image classification task of art media cate-
gorization and a first proposal to solve the face recognition task. We want to determine whether the
hypothesis that the vulnerability of adversarial attacks is also affecting image classification methods
beyond machine learning is valid. In this manner, we made an empirical study on the image classifica-
tion robustness intersecting the state-of-the-art of image classification, adversarial attacks, art media
categorization, and face recognition.

5.1 Art Media Categorization Problem

The Art Media Categorization (AMC) problem in CV has arisen from the increasing volumes of art
databases publicly available to have automatic systems for identifying valuable artwork pieces. There-
fore, recognizing art media from digital images has several important purposes. Its primary insight is to
understand artworks through the analysis of complex features that can not be subjective as humans are
prone to be [110]. For example, classifying fine art pieces involves a sophisticated selection of features
that distinguish each medium, which is extremely difficult to find where usually an art expert ana-
lyzes the style, genre, and media from artworks to identify the artist and detect forgeries [111, 112, 25].
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Furthermore, researchers use extracted features from art media to generate synthetic artistic effects in
digital images [113, 114]. Therefore, the development of automated systems that makes an accurate and
robust analysis of features to recognize artworks is a critical issue. In this manner, to make a complete
analysis of art media, high-resolution images must provide enough information to maximize careful-
ness based on the artwork details. The art style, usually associated with the author’s school, describes
the artists’ distinctive artifacts, visual elements, techniques, and methods. The form is related to the
localization of features at different levels. For example, the classical hierarchy of genres ranks history-
painting and portrait as high, while landscapes and still-life are classified as low because they did not
contain persons.

Researchers studied AMC from three perspectives: 1) handcrafted feature extraction, 2) deep con-
volutional neural networks, and 3) genetic programming methodologies. First, handcrafted engineered
features were the principal method to develop formulas that can extract features to obtain an image
representation to classify an image effectively.

One of the first works that employ handcrafted features was [115]; here, the authors proposed a Dis-
crete Cosine Transform (DCT) coefficients scheme used for feature extraction painter identification by
classifying the artist’s style. They build a custom database of approximately 300 grayscale images from
five painters (Rembrandt, Van-Gogh, Picasso, Magritte, and Dali) to experiment. Li and Wang [116]
proposed using a two-dimensional multi-resolution hidden Markov model to analyze brush strokes
to provide reliable information to distinguish artists from ancient Chinese paintings. Their database
consists of 276 grayscale images from five Chinese artists at a resolution of 3000 × 2000 pixels but
scaled to 512 on the shorter dimension, maintaining the aspect ratio. Also, authors in [117] present a
comparative study of different classification methodologies based on handcrafted engineered features.
They contrasted semantic-level features with an SVM, color SIFT and opponent SIFT with BoV, and
latent Dirichlet allocation with a generative BoV topic model for fine-art genre classification. In their
study, a database of seven categories of paintings (Abstract, Baroque, Renaissance, Popart, Expression-
ism, Impressionism, and Cubism) was used from the Artchive fine-art dataset using 70 images from
each class. Rosado [118] employed a BoV implemented using a dense-SIFT method for feature extrac-
tion and Probabilistic Latent Semantic Analysis (PLSA) make an image analysis of 434 digitized images
from paintings, drawings, books, and engravings by Antoni Tàpies. In general, we note that using
handcrafted engineered features makes it possible to obtain encouraging but not perfect results. Over
time, the complexity of these characteristics started to become more challenging to design. In addition
to the designing process of features, the learning algorithm development was a completely independent
research area needed to match the feature extraction.

DCNN has been a breakthrough in many areas of image processing, and recent works on AMC
have presented approaches based on state-of-the-art DCNN architectures. Authors in [119] introduced
the use of deep convolutional activation features from a DCNN model trained for object recognition
to recognize the style. These learned characteristics achieve high performance identifying styles in
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painting images and outperform most handcrafted engineered features. Bar et al. [120] proposed a
compact binary representation combining the PiCoDes descriptors and the deep convolutional activa-
tion features from a DCNN model to identify artistic styles in paintings showing exceptional results
to classify artwork images from WikiArt using 27 classes. Noord et al. [121] employed an adaptation
of AlexNet to classify artwork styles from Rijks Museum images. They could visualize the regions
with a heatmap from the artwork that impacts the prediction of style. Cetinic and Grgic [122] utilized
the features extracted from VGG to classify WikiArt database images into seven genre classes such as
portrait, landscape, city, still life, nude, flower, and animal. They outperform handcrafted engineered
features such as SIFT, gist descriptor, HOG, Gray Level Co-occurrence Matrix (GLCM), and HSV color
histograms with their classification method. Seguin et al. [123] propose to extract from VGG similar
components shared by various artworks named visual link. These links try to find similitude from the
paintings of the same creators or the same schools. The experiment used images from the Web Gallery
of Art database reporting that their method achieves better performance than handcrafted engineered
features such as SIFT.

Sun et al. [124] employed AlexNet and VGG to construct a structure with two pathways to obtain
object and texture features. The DCNN performs the object computation, and the texture pathway uses
the Gram matrices of intermediate features. Authors used in their experiments WikiPaintings, Flickr
Style, and AVA Style databases. Elgammal et al. [125] proposed an analysis of strokes in line drawings
using a database of 300 digitized drawings with over 80 thousand strokes. They employ handcrafted
engineered features, deep learned features, and the combination of both to discriminate between artists
at the stroke level with high accuracy. Also, their work serves to discover forgeries made by artists. Ce-
tinic et al. [126] performed an extensive CNN fine-tuning experiment using five Caffemodels (CaffeNet,
Hybrid-CNN network, MemNet network, Sentiment network, and Flickr network) for five different art-
related classification tasks (artist, genre, style, period, and association with a specific national artistic
context) on three large fine art datasets (WikiArt, Web Gallery of Art, and TICC Printmaking Dataset).
In [127], authors employed pre-train DCNN models (AlexNet, VGG, GoogLeNet, ResNet, DenseNet)
to recognize basic artistic media from artworks. They collected about 1000 artwork images per class
(oil-paint brush, pastel, pencil, and watercolor) through various search engines and websites to classify
them. They obtained comparable results with that of trained humans.

Finally, a GP-like methodology called BP obtained competitive results compared to a DCNN model
for the AMC task [25]. This technique aims to emulate the brain’s behavior based on neuroscience
learning processes with new symbolic learning via genetic programming. In the experiments, Chan-Ley
and Olague use two renowned high-resolution artwork databases (Kaggle and WikiArt) to classify five
art media classes (drawings, engraving, painting, iconography, and sculpture). The proposed technique
achieves comparable results to AlexNet on a binary classification problem.

Although DCNN has obtained exemplary results in solving a wide variety of computer vision tasks,
small perturbations named adversarial attacks on the input image turn the learning model’s decision to
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change its prediction completely. Researchers generate these perturbations in several forms, including
slight modifications to the input pixels and using spatial transformations, among others. These attacks’
primary purpose is to fool the DL model’s prediction intentionally and remain unnoticed to human
perception. Szegedy et al. [11] were the first who discovered an unusual weakness where small per-
turbations almost invisible to the human vision on the input pixels can fool a CNN. These attacks also
reported high confidence in the model’s wrong prediction, and even worse, multiple networks were
affected using the same perturbed image. Later, they found that CNN’s robustness against AA could
be improved using these images in the training phase. However, recent studies have highlighted the
lack of robustness in well-trained DCNNs [128, 129]. Goodfellow et al. [12] designed a method named
Fast Gradient Sign Method (FGSM), which enables efficient computing perturbations for a given im-
age. Another threat consists of an extreme and straightforward attack proposed by Su et al. [66], which
consists of modifying one pixel in the image to fool a CNN. A drawback, however, is that it only works
for icon images.

Nevertheless, they successfully attacked three different network models under this strategy with
high confidence. Moosavi-Dezfooli et al. [57] discovered singular perturbations that can misclassify
any image; they called them universal perturbations. In this way, Brown et al. [98] proposed creating
universal, robust, targeted adversarial image patches. These patches are so compact that they can be
printed and used in real-world scenes to fool a CNN. Despite significant efforts in making defense
methods against AAs, the research works have focused on modifying its training process or modifying
the input image during testing [12, 58, 130], also on changing the structure of the networks [60, 61, 62]
or through external models to classify unseen examples [63, 131]. Zhang et al. [132] discussed the
limitation of the adversarial training because the attacks have become more and more challenging with
high efficiency on the damage. Hence, it is difficult to fight against all the new and more complex AA.
Even if DL architectures have classified large-scale sets of imageswithmultiple classes with outstanding
results, this paradigm’s security concernsmake the solutions unreliable. The brittleness is because there
is a chance that hackers can intentionally fool such machine learning systems.

AMC is a complex problem to solve. Its solution involves a complicated analysis of features and
demands accurate and robust decisions, primarily when curators work with precious art pieces. The
performance of handcrafted engineered features methods does not compete with DCNN through their
inability to extract complex features from the artworks to build a better image representation. DCNN
has outperformed handmade methods and has established the leading for the AMC. Nevertheless, BP
demonstrates its competence against DCNN performance in this area [25]. AA is an open research area
that is a hot topic due to the risk of affecting DL architectures regardless of image databases because
attacks have successfully worked in critical areas such as face recognition and object recognition for
autonomous vehicles, among others[13]. Therefore, AMC is not the exception, and automation process
designers need to avoid using vulnerable systems in critical tasks performed by art experts in museums
and galleries, such as artist identification, art valuation, and forgery detection.
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5.1.1 Experiments

Robust classification is a key characteristic regarding automatic system development, security, and con-
fidence in art pieces’ predictions. In this study, we analyze the algorithms’ performance using accuracy.
Besides, we use the accuracy ratio between adversarial examples and clean images to measure robust-
ness. Moreover, we use a series of statistical analyses to corroborate the results. Firstly, we propose to
determine significant differences in the change of each classifier’s predictions’ confidence. Secondly,
we use multiple comparisons of group means with the Bonferroni method between the performances
from all the algorithms. This experiment consists of studying the accuracy and robustness against AAs
using three of the main approaches for image classifications:

• Traditional handcrafted features algorithm (SIFT+FV)

• Deep Genetic Programming Methodology (BP)

• DCNN models (AlexNet, VGG, ResNet18, and ResNet101).

We consider unconventional training, validation, and test datasets since we apply two different
image databases compiled by experts for AMC. Training and validation datasets are constructed from
the Kaggle database, while testing uses a standard database WikiArt (See Table 5.1). The aim is to
emulate a real-world scenario where we test the best models against standard databases.

In this experiment, we analyze the threat of using three types of AA to themodels mentioned above.
The white box untargeted (FGSM) determines the impact from an easy and direct threat to DCNN
by knowing its parameters. Also, we study the AE transferability property, which means generating
AEs and performing an attack with the misclassification on DL systems with no access to the model,
extending the analysis to different architectures like BP and SIFT+FV. We analyze the behavior of such
perturbations from these architectures, which can cause wrong predictions with the addition of subtle
texture to the artworks.

The black box untargeted (multiple-pixel attack) analyzes the hazard from an attack that tries to find
locations and pixel values to build a perturbation that changes the model’s prediction from an artwork
image. The targeted attack uses the adversarial patch to challenge the robustness of such modified
image patches, which can be rotated, put on random locations, and printed to appear in real-world
conditions in the artwork to cause a misleading prediction of the target class. We also analyze the AE
transferability of such patches through all models. Lastly, we include an analysis of a DCNN defense
mechanism to test a solution proposed to the AA problem. We verify the feasibility of using these
defense mechanisms in the real world to make DCNN secure.

5.1.2 Datasets

We use the same datasets from the experiment of AMC reported in [25]. We obtained training and
validation images from the Kaggle website. This digitized artwork dataset comprises five categories
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of art media: drawing, painting, iconography, engraving, and sculpture. The engraving class consists
of two different kinds; most of them were black and white art pieces. The other style was Japanese
engravings, which introduce color to the images. We split the engraving class into engraving black and
white and engraving color. We used a standard database obtained from WikiArt for testing, where we
selected the images that match the same categories of Kaggle. Since Wikiart engraving is in grayscale,
we use the ukiyo-e class (Japanese engravings) from Wikiart as the engraving color class. Also, the set
of images of the category landscapes, which are painting from renowned artists, is added to test the
evolved programs of the painting class. Table 5.1 provides the number of artworks for each dataset.

Iconography Painting Drawings Sculpture Engraving
BW

Engraving
Color

Caltech
Background

Train 1038 1021 553 868 426 30 233

Validation 1038 1021 553 868 283 19 233

Wikiart 251 2089 204 116 695 1167 233
Wikiart Land-
scapes

136

Table 5.1: Total number of images per class obtained from Kaggle and Wikiart databases.

5.1.3 Implementation details

In this subsection, we outline the implementation details for all learned models:

• Brain Programming: was implemented on Matlab R2018b using a modified version of GP Lab
[133] and the libsvm v3.25 [134], both are external Matlab libraries for genetic programming and
support vector machines, respectively

• SIFT+FV: was implemented on Matlab(R2018b) using VLFeat v0.9.21 [135], which is an open
source library that implements popular computer vision algorithms such as the SIFT description,
GMM, and Fisher Vectors. It was used the SVM provided by Matlab R2018b

• DCNN: for the implementation of the four models (AlexNet, VGG, ResNet18, and ResNet101),
we use the pre-trained models from the Python library PyTorch v1.1 [136]. These models were
retrained using transfer learning for the art media problem

also, we outline each of the AA:

• FGSM: was implemented in PyTorch v1.1 [136] using the validation and test datasets to compute
AEs with standard values for scale ϵ = 2, 4, 8, 16, 32 for all the DCNN models

• Multiple-pixel attack: was implemented using 100 random images from the test dataset (50 from
each class) in Matlab R2018b and Python v3.6.5. Python version was programmed using the
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differential evolution from the Pygmo v2.11.3 library [137], and Matlab’s version used the dif-
ferential evolution library available from their file exchange website [138]. Both implementa-
tions used the same settings of 50 individuals, 30 generations, a crossover probability of 0.9, and
d = 10, 000 pixels

• Adversarial Patch: was implemented using 100 images from the training dataset for each DCNN
model in PyTorch v1.1 [136] with the following parameters set to build the patch: patch size of
50× 50 pixels, a max of 100 iterations per image with a stop criteria of 0.9 posterior probability
of the target class. As we defined the binary classification problem, we choose the background
class as the target prediction to measure the number of class images that predict the model as
the target class

And the statistical analysis is explained next:

• Prediction confidence: We used the prediction confidence data from all the models to measure
significant differences from each pair of clean and AEs from the FGSM and adversarial patch. The
Matlab R2018b’s Statistics and Machine Learning Toolbox was used to determine independence,
normality, and homoscedasticity from data and use the proper test (ANOVA, Kruskal-Wallis or
Welch test) as described in Section 4.2

• Multiple comparisons: We used the accuracy testing data from FGSM and adversarial patch to
make multiple comparisons of group means using the Bonferroni test from Matlab R2018b’s
Statistics and Machine Learning Toolbox

all experiments were run in a computer with Intel Core i7-6700HQ with 24 GB of RAM and graphic
card NVIDIA GeForce GTX 1070. Following their respective articles, all the methods were trained
to build the classification models. For BP, it was used pre-trained models from [25]. However, in
the face recognition problem, we run several evolutionary loops to optimize BP models explained in
Section 5.2.4. Adversarial attacks were run independently to test each method using the parameter
mentioned above adapted to the art media dataset. The FGSM used ϵ = 2, 4, 8, 16, 32 to control the
intensity of the attack over the validation and testing datasets. The multiple-pixel attack used 100
random images from the testing dataset (50 of each class) using 10, 000 pixels. The adversarial patch
used the parameters mentioned above to train the patch, and it was put in 100 random images in a
random location and orientation. The statistical analysis was programmed to follow the procedure
from Chapter 4 to evaluate the predictions’ confidence over the testing data and the multi-comparison
over the FGSM and adversarial patch data. However, we outline the contribution of this thesis made
in our experimental design to measure vulnerabilities beyond deep learning models as mentioned in
Chapter 4.
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5.1.4 Results

In the following subsections, we present and discuss the results obtained from the experiments intro-
duced earlier.

FGSM

Table 5.2 presents the results for the training and validation datasets from Kaggle along with the AEs
computed using FGSM for all DCNNmodels. We report classification accuracy at each stage of training
and validation next to all models’ accuracy tested with the AEs. Here, we want to measure the influence
in the prediction of the FGSM in two manners: 1) direct, since we know the model’s parameters and
perturbation, and 2) indirect, through the AE transferability property, which different works report that
AEs generated from a model can perform a misclassification attack on a different DCNN trained for the
same task with no access to the model information [96, 139]. We consider the transferability property
as a type of black-box attack due to the lack of model information. Still, we want to extend the analysis
to different architectures such as BP and SIFT+FV that could be affected by these subtle perturbations
to the digitized artworks.

First, from Table 5.2 we notice a big gap between the training and validation accuracies from
SIFT+FV in comparison to the rest of the models, which obtained comparable results between both
datasets. The high variability among results was the reason to suspect possible overfitting in the
SIFT+FV models. We employed two overfitting verification procedures presented in Table 5.3. We
use the hyperparameters optimizer and the crossval function from Matlab. We set in the SVM training
process the hyperparameters optimizer with a maximum objective evaluations= 10 to return the best
model for each class after ten runs. We list the accuracy results from the best model found over the
training and validation datasets in the optimizer column at Table 5.3. The crossval function validates the
SVM model using 10-fold cross-validation that randomly partitions the data into ten sets of equal size
and trains an SVM classifier using nine sets to finalize after repeating the process ten times. After that,
we computed the mean accuracy considering the ten experiments for each class’s training and valida-
tion datasets. We present the results in the cross-validation column at Table 5.3. We obtained in both
columns the same results–high variability between training and validation–as the original experiment.
In summary, the results showed us that the data do not overfit the models.
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Iconography
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 92.84 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42
SIFT+FV 99.92 95.91 95.91 95.91 95.91 95.59 94.26 95.83 95.83 96.07 95.52 94.57 95.75 95.75 96.07 95.52 94.34 95.99 95.99 96.07 95.67 94.73
AlexNet 99.61 98.66 96.3 96.3 83.24 52.56 38.39 98.51 98.51 98.43 98.03 97.64 98.58 98.58 98.66 98.03 97.4 98.51 98.51 98.51 98.03 97.48
VGG 100 99.21 99.29 99.29 99.06 98.82 96.85 91.9 91.9 47.05 17.7 16.76 99.21 99.21 98.98 98.74 95.83 99.21 99.21 98.98 98.35 97.32
ResNet18 100 98.9 98.66 98.66 98.66 98.9 97.95 98.66 98.66 98.66 98.03 95.83 90.24 90.24 52.01 29.03 32.1 98.66 98.66 98.43 97.17 95.75
Resnet101 100 99.37 99.21 99.21 99.21 99.06 97.72 99.29 99.29 99.06 98.9 97.01 99.37 99.37 99.21 97.95 95.28 94.34 94.34 67.98 50.04 51.3

Painting
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 99.68 99.04 98.25 98.25 98.48 98.41 98.48 98.78 98.8 98.64 98.33 98.41 98.8 98.8 98.56 98.64 98.56 98.41 98.41 98.56 98.8 97.69
SIFT+FV 99.76 92.24 92.08 92.08 92.00 89.84 87.84 92.16 92.16 92.08 90.48 88.08 91.92 91.92 91.76 90.08 88.00 92.00 92.00 91.84 89.76 87.60
AlexNet 98.96 97.69 93.46 93.46 83.01 66.99 69.3 97.53 97.53 97.13 96.89 96.41 97.45 97.45 96.89 96.97 96.49 97.45 97.45 97.21 97.05 96.73
VGG 99.92 98.17 97.93 97.93 97.53 96.73 92.82 89.31 89.31 32.14 14.27 14.91 97.69 97.69 97.05 95.45 88.28 97.69 97.69 96.81 95.14 88.12
ResNet18 100 97.85 97.93 97.93 97.93 97.45 96.33 97.77 97.77 97.05 96.33 93.22 86.92 86.92 43.94 31.82 40.75 97.69 97.69 97.13 95.77 92.9
Resnet101 100 98.56 98.72 98.72 98.48 98.17 96.65 98.64 98.64 98.25 96.49 93.86 98.72 98.72 98.17 95.85 92.58 91.15 91.15 55.42 43.94 49.68

Drawings
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 96.56 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59 90.59
SIFT+FV 99.87 83.84 83.84 83.84 83.97 83.46 81.30 84.22 84.22 84.48 83.59 81.93 84.22 84.22 84.22 82.95 81.68 84.10 84.10 84.35 82.95 80.79
AlexNet 96.44 91.35 85.75 85.75 66.79 44.91 35.62 90.84 90.84 91.22 90.59 88.55 91.09 91.09 91.09 90.59 89.06 90.71 90.71 91.09 91.09 90.08
VGG 99.75 95.42 95.29 95.29 94.78 93.51 87.02 74.43 74.43 28.75 15.78 14.38 94.78 94.78 93.13 88.68 77.86 94.78 94.78 93.77 90.59 83.46
ResNet18 99.87 94.44 94.27 94.27 93.64 92.37 86.9 93.38 93.38 91.22 86.77 77.48 72.9 72.9 31.04 23.41 22.77 93.64 93.64 92.37 88.17 80.28
Resnet101 99.87 95.8 95.8 95.8 95.42 93.89 89.31 95.55 95.55 93.89 90.84 83.33 95.29 95.29 93.13 88.68 80.79 76.08 76.08 47.96 41.48 38.55

Sculpture
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 93.19 93.26 92.79 92.79 92.79 92.79 92.79 92.79 92.79 92.79 92.7 92.79 92.88 92.88 92.79 92.79 92.7 92.88 92.88 92.79 92.88 92.7
SIFT+FV 99.55 87.35 87.44 87.44 85.79 85.15 83.68 87.26 87.26 86.34 85.15 84.42 87.35 87.35 85.98 84.97 85.06 87.44 87.44 85.98 85.24 85.15
AlexNet 99.36 95.78 90.93 90.93 63.24 27.50 14.57 95.78 95.78 95.42 94.68 89.55 95.88 95.88 95.78 94.13 89.09 95.97 95.97 96.06 94.68 90.10
VGG 100 97.62 98.26 98.26 97.89 94.87 78.28 84.69 84.69 37.76 17.87 14.21 98.08 98.08 97.07 91.38 72.59 97.98 97.98 96.98 93.31 78.00
ResNet18 100 96.88 97.25 97.25 96.88 95.05 80.66 96.88 96.88 96.15 92.39 77.54 84.88 84.88 45.92 25.30 19.07 96.70 96.70 95.69 92.58 79.65
Resnet101 100 97.89 98.44 98.44 98.17 96.06 87.08 98.44 98.44 98.08 95.42 84.88 98.35 98.35 96.98 92.30 77.45 89.00 89.00 60.49 44.18 37.86

Engraving BW
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 89.76 92.05 92.23 92.23 92.23 91.70 91.87 91.70 91.70 92.06 91.87 91.70 91.70 91.70 92.23 92.05 91.53 91.70 91.70 91.87 91.87 92.05
SIFT+FV 100 93.99 94.35 94.35 94.70 94.17 92.76 94.35 94.35 94.35 94.17 93.64 94.35 94.35 94.52 94.17 93.46 94.35 94.35 94.88 94.35 93.46
AlexNet 99.76 99.29 96.11 96.11 78.62 56.71 47.88 99.12 99.12 99.12 98.94 98.41 99.12 99.12 99.12 98.94 98.06 99.12 99.12 99.12 98.94 98.41
VGG 100 100 99.82 99.82 99.82 99.65 99.29 98.53 97.53 73.14 49.29 47.17 99.82 99.82 99.82 99.82 99.12 99.82 99.82 99.82 99.82 99.29
ResNet18 100 100 100 100 99.82 99.82 98.94 99.82 99.82 99.82 99.65 98.23 95.58 95.58 78.98 64.49 63.07 100 100 100 100 98.41
Resnet101 100 100 100 100 100 99.82 99.47 100 100 99.82 99.82 99.47 100 100 99.65 99.65 98.76 98.94 98.94 94.70 89.75 88.16

Engraving Color
AlexNet VGG ResNet18 ResNet101

train val ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 98.33 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37 97.37
SIFT+FV 100 50.00 44.74 44.74 44.74 44.74 50.00 47.37 47.37 47.37 47.37 50.00 47.37 47.37 44.74 47.37 47.37 50.00 50.00 47.37 47.37 50.00
AlexNet 100 100 73.68 73.68 23.68 13.16 15.79 100 100 100 100 94.74 100 100 100 100 94.74 100 100 100 94.74 92.11
VGG 100 100 100 100 100 100 97.37 97.37 97.37 26.32 15.79 13.16 100 100 100 100 100 100 100 100 100 100
ResNet18 95.00 100 97.37 97.37 97.37 97.37 81.58 97.37 97.37 97.37 89.47 81.58 52.63 52.63 13.16 02.63 21.05 97.37 97.37 97.37 94.74 78.95
Resnet101 100 100 100 100 100 100 97.37 100 100 100 100 97.37 100 100 100 97.37 94.74 94.74 94.74 81.58 65.79 68.42

Table 5.2: Results using training and validation datasets from Kaggle. Each method presents its classification
accuracy for training, validation, and the AEs using the FGSM computed at ϵ = {2, 4, 8, 16, 32}. The AEs gen-
erated by the four DCNN models (AlexNet, VGG, ResNet18, and ResNet101) are in their respective columns.
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Optimizer Cross-validation
SIFT+FV train val mean train mean val
Iconography 100 95.28 99.28 95.28
Painting 99.76 92.72 98.84 92.83
Drawings 100 83.84 98.28 83.44
Sculpture 100 86.71 98.63 86.48
Engraving Bw 100 93.64 99.32 93.87
Engraving Color 100 50.00 92.00 47.11

Table 5.3: This table shows the results of using the SVM hyperparameters optimizer method from Matlab and
the cross-validation function to verify overfitting on SIFT+FV.

In Table 5.2 as well as in Figure 5.1, we observed how drastically can be dropped the performance of
DCNNs in the presence of a direct treat using the FGSM. The worst-case was in sculpture class, where
VGG’s performance went from 97.62% to 14.38%, AlexNet dropped from 95.78% to 14.57%, ResNet18
diminished from 96.88% to 19.07%, and ResNet101 decreased from 97.89% to 37.86%. We detected the
transferability property between DCNNmodels in this experiment, which is more significant at ϵ = 32.
This effect can be perceived in the most straightforward artwork classification experiments. Therefore,
we can assume that it can be present in more extensive experiments with thousands of classes in a
more effective manner converting the models more vulnerable to this effect as reported in [12, 96, 139].
The drawings class presents almost the same behavior as the sculpture class, where other networks
are affected by AEs. For all other classes, the effect is unnoticeable, but the accuracy is significantly
affected when the model matches the AE.

In some cases, SIFT+FV was affected by AEs from FGSM. For example, in the drawing class, the
performance was reduced by almost 8%. Furthermore, for the painting, the accuracy was decreased
approximately by 4%. This result demonstrated a partial AE transferability to SIFT+FV because regard-
less of the applied DCNN, the perturbation compromised these two classes’ performance. However,
BP maintains its performance in almost every test; the accuracy variation through all the analyses was
lower than 2%.

Figure 5.1 presents the results of Table 5.2 using the accuracy ratios between adversarial examples
and clean images. We observe that the variation of BP is imperceptible in comparison with SIFT+FV and
DCNNmodels. Also, we noted that the performance of DCNNs drastically dropped in almost all classes
reaching less than 20% of its original accuracy when the perturbation matches the network design. In
all other cases, the attack reduces the accuracy to about 20% of the actual performance considering clean
images for Sculpture, Engraving BW, and Engraving Color. Figure 5.4 illustrates an example showing
that the generated maps from the AVC do not suffer any change in their responses with the FGSM.
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Figure 5.1: Comparative graph of the computed accuracy ratios between adversarial examples and clean
images from each method using the validation dataset from Kaggle.
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Iconography
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 91.74 91.66 91.66 91.82 91.74 91.74 91.66 91.66 91.74 91.74 91.74 91.66 91.66 91.66 91.58 91.5 91.58 91.58 91.58 91.58 91.58
SIFT+FV 86.16 85.54 85.54 84.71 83.26 77.69 85.54 85.54 84.92 83.47 77.48 85.95 85.95 84.71 83.06 76.24 86.16 86.16 84.71 83.06 75.62
AlexNet 96.07 93.39 93.39 70.04 37.4 28.72 95.87 95.87 95.04 94.42 92.98 96.07 96.07 95.87 94.83 93.18 96.07 96.07 95.45 94.63 92.15
VGG 95.87 95.45 95.45 94.83 91.32 80.99 76.65 76.65 36.98 23.97 21.69 95.66 95.66 94.21 87.81 76.86 95.87 95.87 95.87 90.91 82.44
ResNet18 96.49 95.87 95.87 94.83 94.21 87.81 95.66 95.66 94.42 90.5 83.88 76.86 76.86 38.64 25.21 21.49 96.07 96.07 94.21 90.29 85.12
Resnet101 95.25 95.25 95.25 94.83 92.77 89.88 95.45 95.45 94.63 91.94 88.02 95.45 95.45 92.56 87.6 83.26 79.96 79.96 49.38 36.16 36.36

Painting
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 100 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65 95.65
SIFT+FV 94.83 94.83 94.83 94.70 94.57 93.63 94.92 94.92 94.88 94.57 93.63 94.88 94.88 94.79 94.44 93.28 94.88 94.88 94.70 94.32 93.20
AlexNet 94.06 90.57 90.57 64.64 41.04 41.00 94.10 94.10 93.90 94.01 94.92 94.10 94.10 94.06 94.32 95.35 94.10 94.10 94.06 94.06 95.00
VGG 93.37 93.28 93.28 92.64 87.47 60.12 61.15 61.15 13.14 10.42 10.68 92.89 92.89 91.17 80.10 47.55 92.59 92.59 90.78 81.05 44.96
ResNet18 94.23 94.19 94.19 94.40 94.40 92.64 94.01 94.01 93.63 91.30 81.91 64.86 64.86 15.25 13.01 15.07 93.80 93.80 92.72 89.84 80.19
Resnet101 95.91 95.82 95.82 95.78 94.62 90.09 95.82 95.82 95.69 90.44 79.03 95.61 95.61 94.66 88.33 73.47 75.24 75.24 30.62 19.04 19.98

Painting Landscapes
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SIFT+FV 75.34 75.07 75.07 72.90 70.46 62.6 75.61 75.61 73.71 70.46 62.60 75.34 75.34 73.17 68.83 60.70 75.34 75.34 72.90 68.29 59.62
AlexNet 93.77 86.99 86.99 61.25 41.46 35.77 93.50 93.50 92.68 91.06 90.24 93.50 93.50 92.68 91.60 90.51 93.77 93.77 92.68 91.33 90.51
VGG 94.58 94.58 94.58 94.31 90.79 73.71 80.76 80.76 42.01 28.73 30.89 94.31 94.31 94.31 88.08 72.63 94.04 94.04 93.22 87.53 70.19
ResNet18 95.12 94.85 94.85 93.77 92.95 90.79 94.31 94.31 92.41 89.43 81.84 72.36 72.36 42.82 33.60 38.48 94.31 94.31 91.6 88.62 79.95
Resnet101 95.39 95.12 95.12 95.12 93.77 89.43 94.58 94.58 94.58 93.50 83.74 94.31 94.31 92.95 88.89 78.86 80.76 80.76 50.96 43.90 44.72

Drawings
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 94.05 94.28 94.28 93.59 93.81 94.5 93.82 93.82 94.05 93.59 94.73 93.81 93.81 93.59 93.59 94.05 93.81 93.81 93.59 93.59 93.81
SIFT+FV 73.61 68.42 68.42 66.36 62.7 56.52 68.42 68.42 67.51 62.7 57.89 68.42 68.42 66.82 62.01 56.75 68.19 68.19 67.28 62.01 56.75
AlexNet 86.73 77.8 77.8 57.21 41.19 32.72 85.81 85.81 86.27 84.67 79.18 85.81 85.81 85.35 83.75 80.09 85.81 85.81 85.58 84.67 81.69
VGG 91.99 91.99 91.99 90.89 88.79 80.78 72.77 72.77 35.7 20.59 18.99 91.3 91.3 89.02 83.3 73.91 91.53 91.53 89.7 83.98 76.89
ResNet18 90.85 90.85 90.85 89.7 88.79 81.46 90.39 90.39 87.41 81.69 74.37 71.85 71.85 36.16 24.49 24.49 90.16 90.16 86.96 81.92 74.83
Resnet101 93.59 93.36 93.36 93.14 91.53 85.81 93.14 93.14 90.62 85.58 76.43 93.14 93.14 90.16 83.07 75.29 72.27 72.27 45.54 35.24 33.41

Sculpture
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 90.54 90.83 90.83 90.83 90.83 90.83 85.96 85.96 85.96 85.96 85.96 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83 90.83
SIFT+FV 60.47 52.80 52.80 52.80 53.10 51.62 53.39 53.39 53.10 52.51 52.51 52.80 52.80 52.51 52.51 51.33 53.39 53.39 52.51 52.51 50.74
AlexNet 91.45 87.61 87.61 65.49 44.25 36.87 91.15 91.15 90.56 89.38 87.32 91.45 91.45 91.45 89.09 89.38 91.45 91.45 91.45 90.27 88.20
VGG 94.69 94.99 94.99 94.99 92.33 84.37 79.06 79.06 45.43 32.74 34.51 95.28 95.28 94.10 88.20 82.01 94.69 94.69 93.81 91.74 86.73
ResNet18 92.63 91.74 91.74 90.86 89.38 83.19 91.74 91.74 87.91 84.96 80.24 75.81 75.81 46.61 34.81 33.92 91.15 91.15 89.38 86.14 83.19
Resnet101 92.92 93.22 93.22 92.63 90.86 87.61 92.92 92.92 92.92 89.97 86.14 93.22 93.22 91.15 88.20 83.48 80.53 80.53 56.64 50.44 56.34

Engraving BW
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 91.55 92.64 92.64 91.97 91.72 91.63 92.30 92.30 92.05 92.05 91.63 91.97 91.97 91.80 91.97 91.80 92.13 92.13 91.97 91.80 91.63
SIFT+FV 89.79 89.79 89.79 89.71 89.87 90.96 89.79 89.79 89.79 89.37 90.96 89.87 89.87 89.62 89.54 90.88 89.96 89.96 89.46 89.54 90.96
AlexNet 98.58 94.06 94.06 75.06 57.32 54.64 98.66 98.66 98.66 98.49 97.32 98.66 98.66 98.66 98.33 97.15 98.66 98.66 98.66 98.58 97.49
VGG 99.58 99.83 99.83 99.67 99.50 99.16 91.05 91.05 62.85 45.94 49.87 99.58 99.58 98.74 98.41 97.91 99.58 99.58 99.25 99.00 98.83
ResNet18 99.83 99.92 99.92 99.83 99.67 99.16 99.75 99.75 99.41 98.83 97.49 93.22 93.22 71.55 59.41 61.09 99.83 99.83 99.67 98.91 97.82
Resnet101 99.67 99.75 99.75 99.75 99.83 99.75 99.83 99.83 99.50 99.25 98.74 99.67 99.67 99.50 99.08 98.16 95.90 95.90 90.13 85.77 83.01

Engraving Color
AlexNet VGG ResNet18 ResNet101

test ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 89.92 89.68 89.68 89.74 89.86 89.80 89.92 89.92 89.74 89.86 89.62 89.68 89.68 89.74 89.98 89.80 89.92 89.92 89.86 89.50 90.16
SIFT+FV 66.95 66.77 66.77 66.59 66.89 68.09 66.83 66.83 66.59 67.19 68.09 66.89 66.65 66.95 68.33 66.71 66.71 66.53 66.53 66.95 66.95
AlexNet 94.72 73.55 73.55 25.49 12.30 17.22 94.78 94.78 94.90 94.48 93.64 94.72 94.72 94.66 95.14 94.24 94.54 94.54 95.02 94.66 94.00
VGG 99.40 99.46 99.46 99.46 99.28 96.52 79.90 79.90 16.02 05.46 06.06 99.52 99.52 99.22 99.10 97.18 99.40 99.40 99.10 98.50 95.98
ResNet18 96.40 95.98 95.98 96.16 95.02 89.14 95.92 95.92 95.50 93.88 89.50 49.13 49.13 06.84 05.58 10.74 95.62 95.62 95.02 92.68 86.98
Resnet101 99.88 99.76 99.76 99.76 99.52 98.92 99.70 99.70 99.70 99.22 98.44 99.82 99.82 99.76 99.40 98.56 92.86 92.86 61.91 49.19 54.53

Table 5.4: Results using testing datasets from Wikiart. Each method presents its classification accuracy for
training, validation, and the AEs using the FGSM computed at ϵ = {2, 4, 8, 16, 32}. The AEs generated by the
four DCNN models (AlexNet, VGG, ResNet18, and ResNet101) are in their respective columns.
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Figure 5.2: Comparative graphs of the computed accuracy ratios between adversarial examples and clean
images from each method using Iconography, Painting, Painting Landscapes, Drawings, and Sculpture classes
from the testing dataset from Wikiart.
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Figure 5.3: This figure shows comparative graphs of the computed accuracy ratios between adversarial exam-
ples and clean images from each method using Engraving BW and Engraving Color classes from the testing
dataset from Wikiart.

The testing stage exhibited aworse scenario comparedwith the validation dataset for theDCNNand
SIFT+FV. Table 5.4 shows that the accuracy was compromised in all DCNN models for three classes:
Painting, Drawings, and Engraving Color. For example, the worst-case is Engraving Color (see Fig-
ure 5.3), where AlexNet fell to 17.22% from a clean score of 94.72%, VGG and ResNet18 diminished their
performance by 5% of accuracy after scoring 99% and 96%, respectively, and ResNet101 achieves 49%,
which was the less affected in the accuracy. Moreover, the experimental results in Table 5.4 demon-
strated a drop in the performance due to the transferability property. Despite, it is not a big concern
the drop in accuracy of approximately 10-20% when we transfer AEs at ϵ = 32 contrary to the approx-
imate drop of 80% when the model matches the attack; attackers have almost up to 20% possibility to
succeed. Also, we observed an asymmetric transferability of AEs, which means that AEs generated
on a DCNN model tend to decrease the performance of a different model highly, but it does not occur
equally in the other direction. Therefore, we have two concerns with these results: 1) the possibility
to use the transferability properties as a black box attack and asymmetric transferability to find the
best DCNN model to manipulate a targeted model; 2) the reachability of this effect to manipulate the
results in the most straightforward artwork classification experiments pointing out to a situation when
the number of classes accentuates this vulnerability. Also, the test showed the poor performance of
SIFT+FV considering clean images. In four out of seven classes (Painting Landscapes, Drawings, Sculp-
ture, and Engraving color), the accuracy is way below to compete with DCNNs. Additionally, SIFT+FV
was affected by AEs in Iconography, Painting Landscapes, and Sculpture, where approximately 10% of
its original score reduced the performance. Finally, BP demonstrated high quality and steady results
keeping its scores from clean images after AEs with minimal to zero changes for all classes.Additionally,
it is noticeable that, as opposed to SIFT+FV, BP reaches comparable results to DCNNs’ scores. Besides,
we present in Figures 5.2-5.3 the accuracy ratio on AEs for the testing classes. We observed graphically
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the same behavior, at least for BP, whose rate for all experiments remains almost one. In contrast,
we see a drastic drop in DCNN models’ performance when the perturbation matches the network’s
architecture and influences AEs’ transferability to other DCNN models and SIFT+FV.
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Figure 5.4: Maps generated in each phase of the AVC extracted from the original image and the AE computed
with FGSM using ResNet101 and ϵ = 32. The last column illustrates the final stage of n global maxima and
their superposition with the original image. Note that despite the attack, the point locations do not change
much in the generated map.

Multiple-pixel Attack

The one-pixel attack experiment exhibit that one pixel does not perturb high-resolution images to
change the model’s prediction. We experiment with modifying one pixel to fool the models over 100
selected images, and the results indicate no score changes. Therefore, we experimentally found that
when we set the attack with 8000-10,000 pixels, DCNN models have a massive change in their predic-
tion. Thus, we set a multiple-pixel attack experiment with 10,000-pixels. In Table 5.5, we present the
pixel change ratios from the multiple-pixel attack experiment. Since art images present a high size vari-
ation, we denote the ratios from each class’s smallest and largest images to indicate pixel rate change
in the experiment.
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Class Iconography Painting Painting Land. Drawings Sculpture Engraving BW Engraving Color

Min size (pixels) 2276× 1804 400× 335 789× 800 768× 595 549× 500 768× 629 875× 600

Ratio 0.24% 7.46% 1.58% 2.18% 3.64% 2.07% 1.90%
Max size (pixels) 2697× 4386 3039× 2400 1100× 1377 1424× 1348 2484× 1564 3000× 1934 3518× 2348

Ratio 0.08% 0.13% 0.66% 0.52% 0.25% 0.17% 0.12%

Table 5.5: Pixel ratios from the multiple-pixel attack.

Table 5.6 presents the results from themultiple-pixel attack experiment. Under the success rate row,
we observed the number of images that changed their forecast. The confidence row shows the mean
posterior probability over the new predictions, which is the parameter that all classifiers give when a
label is predicted to measure the confidence in the forecast. Also, we report the mean processing time
in seconds. We observed that DCNN changes by a considerable amount of their predictions with high
confidence bymodifyingmultiple-pixels. SIFT+FVwas also misled in five out of seven classes achieving
the same number of images as DCNN models with lower confidence. In this way, only two categories
resisted the attack. On the contrary, BP was robust to this attack having four out of seven classes
without changes and the rest with a maximum error of 4%. Notice that the amount of pixels modified
in this experiment fails the motivation of AA in which the perturbation should be unnoticeable to
human vision and its processing time makes this attack unfeasible to perform in real-time applications
like video streams.

It is remarkable to notice that this attack attempts to threaten image classification methods regard-
less of their architecture directly. The differential evolution algorithm [97] employed in this attack
proposes one of the most powerful stochastic optimization strategies for solving complex multi-modal
problems. In this manner, we want to highlight that even this method had evolved populations to find
10,000 pixels’ location and their RGB values, but it could not find in their entire search space (image size
and RGB values) perturbations that represented a real threat to BP. Contrarily to DCNN and SIFT+FV,
which were affected in a significant manner. We illustrate in Figure 5.5 an example of BP-generated
maps using a multiple-pixel attack to compare it against the original response in Figure 5.4. We can
observe that the response of the n global maxima, where the image descriptor is built, does not change
with the perturbed image.
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Iconography BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 92.00 88.00 96.00 94.00 96.00 92.00
Success Rate 0.00 32.00 32.00 44.00 46.00 42.00
Confidence NA 64.96 85.09 85.72 76.34 77.61
Time (seconds) 94.22 301.21 138.51 147.72 152.37 237.73
Painting BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 100 78.00 94.00 90.00 92.00 94.00
Success Rate 2.00 0.00 54.00 60.00 64.00 64.00
Confidence 51.83 NA 78.11 97.34 99.37 98.06
Time (seconds) 90.16 598.12 119.78 122.59 111.14 242.58
Painting Landscapes BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 100 78.00 88.00 88.00 92.00 92.00
Success Rate 2.00 40.00 54.00 60.00 64.00 66.00
Confidence 54.06 62.04 75.70 97.25 99.26 97.37
Time (seconds) 98.83 585.69 141.85 163.51 143.62 205.53
Drawings BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 88.00 70.00 80.00 90.00 86.00 92.00
Success Rate 0.00 38.00 68.00 68.00 74.00 78.00
Confidence NA 66.53 83.91 91.94 95.11 94.24
Time (seconds) 118.85 462.92 110.18 111.48 128.07 220.69
Sculpture BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 86.00 62.00 88.00 98.00 96.00 96.00
Success Rate 4.00 60.00 62.00 54.00 56.00 54.00
Confidence 58.14 67.61 92.65 98.60 97.45 96.93
Time (seconds) 71.20 601.53 121.22 130.06 137.16 181.14
Engraving BW BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 94.00 94.00 100 100 100 100
Success Rate 0.00 0.00 40.00 50.00 32.00 20.00
Confidence NA NA 77.63 68.07 71.86 61.25
Time (seconds) 88.71 599.41 148.90 169.56 152.11 177.61
Engraving Color BP SIFT+FV AlexNet VGG ResNet18 ResNet101
Original Acc. 94.00 74.00 98.00 100 92.00 100
Success Rate 0.00 60.00 40.00 50.00 46.00 22.00
Confidence NA 55.98 73.80 66.15 62.96 65.31
Time (seconds) 87.01 600.82 150.70 174.51 154.52 186.13

Table 5.6: This table shows the results from the experiment of computing the multiple-pixel attack with d =
10, 000 on 100 random images from the testing dataset. The original accuracy refers to the score of the clean
images. Success rate means the percentage of images that change the prediction with a mean confidence
value of the posterior probabilities over the new predicted classes and the mean processing time in seconds.
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Figure 5.5: Maps generated in each phase of the AVC extracted from an AE of the multiple-pixel attack and
the image with the adversarial patch. The last column illustrates the final stage of n global maxima and their
superposition with the original image. Note that despite the attack, the point locations do not change much in
the generated map.

Adversarial Patch

We present the accuracy of the adversarial patch experiment in Table 5.7 and the accuracy ratios in
a graphical manner in Figure 5.6. This experiment analyzes the change in the model’s predictions by
adding the trained patches from DCNN models using 100 images from each class in a random location
and orientation. The results from Table 5.7 show that these patches affect in a significant manner
DCNN models in most experiments. Also, we discovered that the patches could be transferable to
other DCNNs.

The painting landscapes experiment showed the worst-case scenario for DCNN models, on which
we observed a considerable AE transferability between the models. We observed that VGG, ResNet18,
and ResNet101 were affected by all the patches. DCNN models dropped their performance to approx-
imately half of their original accuracy and, in some cases, is less to 50%. ResNet18 was fooled in all
images using its trained patch. All other classes did not show a similar behavior; the patches can fool
DCNNmodels. In contrast, SIFT+FV and BP demonstrated a robust control over the adversarial patches,
showing almost an unchangeable performance. Figure 5.5 illustrates the BP-generated maps using an
image with the adversarial patch.
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Iconography Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 99.00 99.00 99.00 99.00 99.00
SIFT+FV 92.00 89.00 93.00 93.00 92.00
AlexNet 98.00 74.00 97.00 97.00 98.00
VGG 94.00 91.00 45.00 82.00 81.00
ResNet18 94.00 87.00 90.00 58.00 90.00
ResNet101 93.00 87.00 87.00 78.00 70.00

Painting Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 100.00 100.00 100.00 99.00 100.00
SIFT+FV 97.00 98.00 97.00 98.00 96.00
AlexNet 96.00 54.00 94.00 94.00 94.00
VGG 92.00 71.00 48.00 73.00 61.00
ResNet18 94.00 67.00 76.00 23.00 43.00
ResNet101 97.00 72.00 72.00 69.00 56.00

Painting Land. Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 100.00 100.00 100.00 100.00 100.00
SIFT+FV 87.00 81.00 78.00 84.00 81.00
AlexNet 94.00 24.00 85.00 86.00 77.00
VGG 95.00 41.00 19.00 48.00 23.00
ResNet18 95.00 22.00 39.00 0.00 9.00
ResNet101 96.00 43.00 41.00 35.00 22.00

Drawings Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 91.00 91.00 91.00 91.00 91.00
SIFT+FV 72.00 67.00 68.00 69.00 67.00
AlexNet 94.00 30.00 85.00 80.00 73.00
VGG 98.00 81.00 69.00 74.00 62.00
ResNet18 96.00 82.00 91.00 66.00 79.00
ResNet101 99.00 88.00 90.00 85.00 75.00

Sculpture Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 85.00 85.00 85.00 85.00 85.00
SIFT+FV 95.00 92.00 94.00 94.00 95.00
AlexNet 97.00 32.00 92.00 89.00 86.00
VGG 97.00 93.00 72.00 85.00 85.00
ResNet18 95.00 92.00 86.00 66.00 89.00
ResNet101 94.00 87.00 89.00 86.00 87.00

Engraving BW Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 90.00 90.00 91.00 91.00 91.00
SIFT+FV 91.00 94.00 93.00 95.00 92.00
AlexNet 100.00 99.00 100.00 100.00 100.00
VGG 100.00 99.00 83.00 96.00 97.00
ResNet18 100.00 100.00 96.00 71.00 96.00
ResNet101 100.00 100.00 100.00 100.00 100.00

Engraving Color Original Acc. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 93.00 92.00 93.00 92.00 92.00
SIFT+FV 94.00 94.00 96.00 95.00 95.00
AlexNet 97.00 67.00 98.00 95.00 93.00
VGG 100.00 100.00 99.00 100.00 100.00
ResNet18 98.00 99.00 100.00 98.00 99.00
ResNet101 100.00 100.00 100.00 100.00 100.00

Table 5.7: This table shows the results from the adversarial patch experiment. Each column presents the score
obtained for the original 100 images per class (Wikiart) when adding the adversarial patch.
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Figure 5.6: Comparative graph of the computed accuracy ratios between adversarial examples from the
patches and clean images from each method using 100 images per class from the testing dataset.
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Statistical Analysis of Robustness

The statistical analysis from Tables 5.8-5.9 shows that the predictions’ confidence from BP is not signif-
icantly different in every experiment of the test dataset using FGSM. That means that the confidence is
not affected by the subtle perturbations added to the images. The majority of p-values from SIFT+FV
demonstrate to be not significantly different between the predictions’ confidences. Nonetheless, the
analysis from all DCNN architectures showed that, in most cases, the rejection of the null hypothesis
Ho. The rejection illustrates the damage of the AEs to the DCNN’s predictions’ confidence by making
them statistically different.

We observe the same behavior in the statistical analysis at Table 5.10, which shows the method’s
predictions’ confidence to the adversarial patch. The study showed the same rejection of the null hy-
pothesis Ho from all DCNN architectures in a significant part of the experiments for all classes. Con-
versely, BP accepted the null hypothesisHo in every experiment. SIFT+FV showed similar behavior to
BP, but the sculpture class and the VGG patch obtained significantly different predictions’ confidence.

A simple main effect analysis between all classifiers using the Bonferroni method as a post-hoc
test from the previous procedure considerations was employed with the FGSM testing data. First, we
obtained a rejection of the null hypothesis that all groupmeans are equal with a p-value= 4.2063e−15.
Then, we use multiple comparisons to determine which groupmeans are different from others using the
Bonferroni method. Figure 5.7 shows the multiple comparisons of group means on which BP obtained
significant differences from the rest of the classifiers.

Also, we applied this statistical analysis to the adversarial patch data to compare the performances
from all classifiers. We obtained a p-value= 0.0013, establishing a rejection of the null hypothesis and
demonstrating the differences between all classifiers. Figure 5.8 presents the multiple comparisons of
group means; in this case, BP shows significant differences to VGG and ResNet18. This result can be
explained because the authors from this attack claimed to be robust to the location and orientation of
the patch [98]; however, it is still dependant on these variables. In this experiment, we observed two
scenarios where two DCNN models were drastically affected and two in a limited manner. Despite BP
and SIFT+FV exhibited higher group means, BP highlight among all groups.
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Iconography
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.99743 0.99889 0.99599 0.9958 0.9958 0.99828 0.99634 0.99517 0.9937 0.99371
SIFT+FV 0.95119 0.95118 0.80859 0.21374 0.00012958 0.93022 0.93022 0.73482 0.10472 9.0663e-06
AlexNet 1.7665e-12 1.7665e-12 1.8922e-54 5.2622e-73 1.5556e-74 0.99483 0.99483 0.99702 0.84401 0.83964
VGG 0.58235 0.58245 0.0087004 1.884e-09 3.1824e-32 3.2201e-30 3.2201e-30 3.1832e-64 1.3611e-174 7.6365e-176
ResNet18 0.63062 0.63063 0.024056 8.0612e-06 3.3087e-17 0.52182 0.52182 0.00035193 3.2009e-10 2.4186e-22
ResNet101 0.6259 0.62599 0.054054 5.9926e-05 2.5752e-11 0.54501 0.54501 0.0017698 1.0084e-06 2.232e-12

Painting
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.9136 0.89874 0.89634 0.85943 0.12557 0.99068 0.99108 0.78341 0.75145 0.59411
SIFT+FV 0.21866 0.21866 0.00012449 1.6086e-24 1.65e-86 0.16502 0.16502 3.9752e-06 1.516e-31 3.6495e-98
AlexNet 3.4962e-105 3.4962e-105 0 0 0 0.98106 0.98106 0.90152 0.47591 0.050199
VGG 0.64622 0.64621 9.6649e-14 2.4111e-137 0 0 0 0 0 0
ResNet18 0.9711 0.97111 0.92035 0.13873 3.8914e-111 0.37065 0.37065 2.124e-25 1.5714e-103 1.1938e-291
ResNet101 0.90558 0.90557 0.37347 3.1411e-66 4.1528e-240 0.35338 0.35338 3.3466e-53 1.3622e-216 0

Painting Landscapes
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 1 1 1 1 1 1 1 1 1 1
SIFT+FV 0.79505 0.79505 0.30022 0.0024393 3.3167e-09 0.79599 0.79599 0.3353 0.0019852 3.6761e-09
AlexNet 7.9291e-10 7.9291e-10 1.4342e-29 5.265e-33 8.3707e-33 0.9905 0.9905 0.95413 0.95212 0.70978
VGG 0.87445 0.87447 0.38584 3.5473e-12 7.3903e-34 5.0409e-29 5.0409e-29 5.5977e-37 3.0354e-37 1.0586e-38
ResNet18 0.89967 0.89966 0.7306 0.30211 1.4175e-05 0.68713 0.68713 0.030198 1.4375e-05 7.5887e-15
ResNet101 0.9671 0.96696 0.74545 5.8498e-08 2.5216e-22 0.87901 0.87901 0.33332 2.368e-17 3.0898e-30

Drawings
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.98405 0.98405 0.97876 0.95426 0.97483 0.98745 0.98745 0.99322 0.98889 0.97186
SIFT+FV 0.67854 0.67854 0.43269 0.04983 2.6184e-06 0.69315 0.69315 0.46697 0.064349 1.0753e-05
AlexNet 1.5308e-05 1.5308e-05 3.0146e-26 5.9791e-41 6.2069e-47 0.92991 0.92989 0.83881 0.84904 0.0052409
VGG 0.87066 0.87066 0.058863 9.9068e-08 3.7992e-30 1.5939e-20 1.5939e-20 1.7229e-53 3.4676e-58 6.0516e-61
ResNet18 0.90781 0.90781 0.50143 0.0023366 5.16e-16 0.59103 0.59103 0.0056782 6.2775e-08 9.5421e-26
ResNet101 0.97912 0.97912 0.55583 3.2526e-06 1.313e-22 0.79099 0.79099 0.00070622 4.8929e-12 1.5062e-33

Sculpture
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.99772 0.99772 0.99742 0.99748 0.99701 0.99736 0.99736 0.99717 0.99702 0.99753
SIFT+FV 0.89198 0.89198 0.4632 0.1714 0.086323 0.93114 0.93114 0.5201 0.20871 0.14017
AlexNet 0.00013513 0.00013513 2.0152e-20 8.8035e-31 8.2946e-34 0.89484 0.89484 0.54423 0.00026161 1.6579e-12
VGG 0.75594 0.75594 0.0082156 5.2489e-08 1.6714e-21 6.7774e-13 6.7774e-13 1.0801e-30 7.3611e-34 2.2997e-36
ResNet18 0.76905 0.76905 0.053247 2.3723e-06 7.1788e-18 0.6501 0.6501 0.0032158 1.3364e-08 4.5108e-21
ResNet101 0.83153 0.83153 0.018017 6.1378e-07 2.1775e-14 0.73046 0.73046 0.0025386 2.3318e-07 3.531e-15

Engraving BW
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.1314 0.1314 0.75089 0.7213 0.76281 0.1184 0.1184 0.69932 0.72718 0.75278
SIFT+FV 0.89606 0.89606 0.9213 0.77775 0.01329 0.87447 0.87447 0.85628 0.96241 0.086893
AlexNet 5.358e-33 5.358e-33 2.205e-116 3.5771e-171 2.9344e-187 0.61108 0.61108 0.79384 0.66623 1.2529e-07
VGG 0.94146 0.94146 0.62982 0.019374 0.092515 1.7458e-85 1.7458e-85 2.3367e-202 6.0154e-219 3.4579e-219
ResNet18 0.35122 0.35122 0.020752 6.4226e-13 4.1326e-56 0.11378 0.11378 2.9188e-05 5.2976e-22 1.1364e-73
ResNet101 0.14262 0.14262 0.70567 0.0010867 5.2621e-31 0.4537 0.4537 0.19041 4.4468e-06 1.2934e-39

Engraving Color
AlexNet VGG

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.89591 0.89591 0.94823 0.93453 0.98186 0.87265 0.87265 0.92126 0.93354 0.99179
SIFT+FV 0.83715 0.83715 0.7306 0.52109 0.95255 0.78356 0.78356 0.78447 1 0.82826
AlexNet 1.6503e-133 1.6479e-133 4.924e-273 2.106e-290 1.6302e-274 0.56852 0.56852 0.36771 0.041684 1.0253e-05
VGG 3.66e-32 3.66e-32 1.8892e-35 1.7963e-34 1.0132e-18 0 0 0 0 0
ResNet18 1.105e-08 1.105e-08 1.8668e-09 4.1096e-08 6.1218e-06 1.6772e-10 1.6772e-10 1.7619e-14 1.0486e-16 1.5263e-15
ResNet101 5.1941e-16 5.1941e-16 1.1333e-18 6.1089e-25 5.416e-42 8.2181e-23 8.2181e-23 1.968e-41 3.066e-70 3.3115e-107

Table 5.8: This table shows the results from the statistical tests applied to each method’s predictions’ confi-
dence from clean and attacked images using test datasets and AEs from AlexNet and VGG. Each value repre-
sents the corresponding p-value from the statistical test.

64



Iconography
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.99767 0.99672 0.99739 0.99585 0.99585 0.99992 0.99593 0.99825 0.99589 0.99589
SIFT+FV 0.95457 0.95457 0.78501 0.098796 1.296e-05 0.9245 0.92449 0.71244 0.06041 2.3283e-06
AlexNet 0.99776 0.99776 0.96299 0.74961 0.18328 0.9903 0.9903 0.98065 0.79478 0.62045
VGG 0.45019 0.45018 1.3824e-05 7.6022e-17 2.9553e-39 0.60766 0.60768 0.0020685 3.2656e-09 6.6815e-28
ResNet18 2.8465e-35 2.8465e-35 1.2532e-66 1.0059e-161 1.2666e-66 0.48618 0.48626 0.0005933 1.195e-08 9.7675e-18
ResNet101 0.36979 0.36979 1.161e-05 8.3498e-14 2.6481e-22 5.2645e-31 5.2645e-31 1.3736e-58 7.7789e-61 7.2518e-59

Painting
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.84987 0.78268 0.54929 0.99293 0.9937 0.73759 0.94754 0.87769 0.88685 0.83682
SIFT+FV 0.15684 0.15685 1.1729e-06 9.2235e-34 4.2265e-102 0.1448 0.1448 4.1104e-07 1.6025e-34 6.9011e-99
AlexNet 0.97537 0.97538 0.83884 0.0002221 0.056476 0.98499 0.98501 0.8621 0.39927 0.11822
VGG 1.5516e-06 1.5524e-06 1.4289e-58 1.8098e-237 0 8.3796e-06 8.3735e-06 5.48e-50 1.1918e-222 0
ResNet18 0 0 0 0 0 9.7705e-05 9.7674e-05 3.6504e-28 2.1311e-107 9.0869e-291
ResNet101 0.20263 0.20266 7.6609e-70 1.041e-267 0 0 0 0 0 0

Painting Landscapes
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 1 1 1 1 1 1 1 1 1 1
SIFT+FV 0.81073 0.81072 0.31041 0.0013292 9.4406e-10 0.79544 0.79544 0.27643 0.0011679 3.2551e-09
AlexNet 0.97698 0.97699 0.93679 0.92671 0.66599 0.99458 0.9946 0.97321 0.97355 0.81807
VGG 0.71643 0.71643 4.7994e-05 1.6994e-17 4.5878e-38 0.73709 0.73709 0.00021444 4.9845e-16 8.8656e-38
ResNet18 1.3222e-24 1.3435e-24 1.8235e-34 5.3646e-34 2.2238e-35 0.60616 0.60616 0.021885 2.1956e-05 1.1705e-16
ResNet101 0.83154 0.83154 1.4205e-06 5.6908e-22 5.671e-33 8.0509e-29 8.0509e-29 7.9778e-37 9.0441e-38 5.7158e-41

Drawings
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.98646 0.98646 0.98853 0.96403 0.97252 0.99539 0.99539 0.99544 0.98031 0.98827
SIFT+FV 0.69545 0.69544 0.45485 0.052022 4.3891e-06 0.68791 0.68791 0.43034 0.039834 2.482e-06
AlexNet 0.91835 0.91835 0.86539 0.77007 0.0013548 0.9221 0.92208 0.86883 0.94347 0.29188
VGG 0.61463 0.61463 0.00064209 2.228e-13 1.8494e-35 0.5806 0.58052 0.0061323 1.4804e-10 5.7541e-34
ResNet18 1.7101e-24 1.7101e-24 1.9766e-51 1.4251e-54 1.2956e-56 0.50031 0.50028 0.00714 1.1845e-06 2.6572e-20
ResNet101 0.59366 0.59366 0.0001009 4.6116e-12 1.5527e-34 4.7426e-30 4.7426e-30 3.8037e-54 1.3584e-57 3.9703e-60

Sculpture
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.9975 0.9975 0.99702 0.99693 0.9969 0.99659 0.99659 0.99686 0.99662 0.99609
SIFT+FV 0.91246 0.91245 0.45842 0.19418 0.23847 0.91303 0.91303 0.40899 0.11917 0.0022884
AlexNet 0.89915 0.89911 0.57069 0.00029538 2.4554e-12 0.92807 0.92807 0.63864 0.0012897 1.0607e-10
VGG 0.71495 0.71495 0.00025963 4.4615e-10 1.6644e-23 0.83568 0.83568 0.0062375 1.065e-06 8.4707e-20
ResNet18 5.4653e-13 5.4653e-13 1.885e-26 2.7286e-29 2.1562e-32 0.8016 0.8016 0.01385 2.2828e-06 1.1366e-17
ResNet101 0.63809 0.63809 0.00097214 2.3315e-09 1.5158e-17 7.4724e-11 7.4724e-11 1.7682e-19 8.4807e-21 1.7814e-25

Engraving BW
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.62139 0.62139 0.76279 0.72754 0.73081 0.23525 0.23525 0.73697 0.75743 0.76744
SIFT+FV 0.88575 0.88575 0.8536 0.95828 0.14382 0.86903 0.86904 0.88072 0.92791 0.065097
AlexNet 0.88255 0.88255 0.82907 0.12103 5.201e-14 0.63177 0.63178 0.85028 0.51736 0.026006
VGG 0.3549 0.3549 0.011117 1.113e-11 1.2312e-46 0.61302 0.61311 0.14793 1.5966e-08 1.9818e-32
ResNet18 2.0619e-81 2.0619e-81 8.5802e-191 2.2357e-211 4.2645e-218 0.10882 0.10882 0.0001122 9.641e-23 5.6127e-80
ResNet101 0.5792 0.5792 0.0092807 5.08e-14 5.8058e-77 4.4317e-56 4.4223e-56 1.1988e-119 1.3737e-152 3.8698e-193

Engraving Color
ResNet18 ResNet101

Testing Vs. ϵ2 ϵ4 ϵ8 ϵ16 ϵ32 ϵ2 ϵ4 ϵ8 ϵ16 ϵ32
BP 0.96553 0.96553 0.93342 0.99733 0.99721 0.96275 0.96275 0.9169 0.98099 0.83034
SIFT+FV 0.89023 0.89023 0.67872 0.66967 0.8903 0.89075 0.89075 0.72948 0.51895 0.8264
AlexNet 0.61061 0.61064 0.4212 0.095421 0.0014581 0.56698 0.56703 0.33301 0.017158 1.6441e-06
VGG 8.8075e-36 8.8007e-36 1.3014e-44 7.2256e-54 7.1826e-59 1.3175e-40 1.323e-40 6.4181e-58 1.2544e-79 1.8917e-105
ResNet18 3.076e-307 3.076e-307 0 0 0 3.907e-11 3.907e-11 5.3445e-16 1.6623e-17 1.5303e-14
ResNet101 4.2e-20 4.1976e-20 4.9361e-32 4.2834e-52 6.6939e-89 2.6025e-310 2.6206e-310 0 0 0

Table 5.9: This table shows the results from the statistical tests applied to each method’s predictions’ confi-
dence from clean and attacked images using test datasets and AEs from ResNet and ResNet101. Each value
represents the corresponding p-value from the statistical test.
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Iconography
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.99608 0.99019 0.99812 0.99901
SIFT+FV 0.60131 0.89837 0.61682 0.97909
AlexNet 7.1039e-20 0.79567 0.46915 0.56209
VGG 0.0003743 1.3363e-23 9.9987e-07 1.0847e-07
ResNet18 2.5542e-05 0.00040313 2.092e-18 0.00029613
ResNet101 0.0010507 8.4448e-05 3.9575e-08 1.358e-12

Painting
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.54497 0.74837 0.55432 0.82595
AlexNet 1.3914e-27 2.7344e-07 4.1336e-07 7.5744e-12
VGG 4.5007e-16 3.0804e-22 5.2464e-14 3.4408e-20
ResNet18 1.2746e-19 1.1991e-15 2.269e-29 4.9202e-26
ResNet101 3.855e-20 1.9447e-20 5.876e-18 9.657e-26

Painting Landscapes
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.71106 0.35442 0.76126 0.32247
AlexNet 2.3132e-27 1.4598e-08 1.3614e-06 4.8304e-13
VGG 3.4926e-25 5.7961e-30 1.6104e-22 3.0764e-29
ResNet18 1.5553e-28 1.3091e-24 1.1945e-33 5.1204e-32
ResNet101 1.868e-27 5.565e-27 3.9203e-28 1.1313e-30

Drawings
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 1 1 1 1
SIFT+FV 0.49234 0.24792 0.40336 0.20665
AlexNet 2.0788e-27 2.61e-05 2.1405e-08 7.0741e-12
VGG 3.9051e-15 2.6781e-20 1.1136e-18 3.3552e-21
ResNet18 5.2286e-15 3.8956e-09 1.3091e-24 5.042e-17
ResNet101 3.8469e-17 9.1359e-12 5.7602e-14 1.0681e-22

Sculpture
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.99544 0.99701 0.99823 0.99557
SIFT+FV 0.093228 0.048075 0.14621 0.49341
AlexNet 9.0533e-28 1.6758e-06 1.6128e-08 8.3985e-08
VGG 6.2478e-06 4.5278e-19 1.1145e-10 3.8384e-09
ResNet18 9.011e-06 5.6851e-07 3.0015e-20 6.7596e-08
ResNet101 3.1949e-07 0.00045029 2.9946e-07 1.2838e-08

Engraving BW
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.84032 0.9292 0.83695 0.79371
SIFT+FV 0.17899 0.68646 0.63549 0.75774
AlexNet 6.8616e-16 0.33203 0.13546 0.80088
VGG 2.7464e-15 6.3779e-28 1.1879e-13 1.0857e-15
ResNet18 4.2622e-24 1.3125e-21 5.7495e-32 6.0573e-26
ResNet101 1.5343e-07 1.7745e-10 4.6019e-14 4.6746e-23

Engraving Color
Testing Vs. AlexNet Patch VGG Patch ResNet18 Patch ResNet101 Patch
BP 0.81987 0.96904 0.82055 0.81363
SIFT+FV 0.51466 1 1 1
AlexNet 4.7445e-15 0.42195 0.6454 0.32844
VGG 0.00057199 5.3585e-08 0.11452 0.000143
ResNet18 0.00012499 0.01838 0.00042032 0.31804
ResNet101 0.33861 0.29463 1.2204e-05 8.898e-10

Table 5.10: This table shows P-values obtained using the adversarial patch on the statistical tests. Each col-
umn presents the score obtained for the 100 images per pair (Clean and AE) using the adversarial patch.
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Figure 5.7: Multiple comparisons of group mean from testing data considering the FGSM experiment.

65 70 75 80 85 90 95 100 105

2 groups have means significantly different from BP

ResNet101

ResNet18

VGG

AlexNet

SIFT+FV

BP

Figure 5.8: Multiple comparisons of group mean from testing data considering the adversarial patch experi-
ment.
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Defense mechanisms

In this experiment, we generated new models from the DCNN in three different classes using adver-
sarial training. Next, we computed new AEs from FGSM using the new models to verify the direct
attack and the AE transferability. We also test them using the multiple-pixel attack and the previously
computed adversarial patch to each model. Table 5.11 presents the results from the experiments. We
observed in the first stage that the direct impact from FGSM is reduced, but it still decreases the DCNN’s
performance in a great manner. In contrast, the AE transferability property between the models was
not perceptible even in the strong perturbations. However, the success rate from the multiple-pixel
attack obtained almost the same performance as previous models with no defense. In addition, the
previously computed adversarial patches affected the new models. The adversarial training diminished
the influence of the patch, but it did not provide proof of solving this vulnerability.

Clean images AlexNet VGG Multiple-pixel Adversarial patch
Paintings train val test ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 previous model new model previous score new score
AlexNet 98.48 96.80 92.81 87.73 87.73 73.9 60.34 57.92 92.81 92.81 92.85 92.55 92.68 54 46 54 76
VGG 99.84 97.52 94.01 94.57 94.57 94.53 94.40 93.63 92.16 92.16 84.24 73.21 68.04 60 96 48 87

Clean images AlexNet ResNet18 Multiple-pixel Adversarial patch
Drawings train val test ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 previous model new model previous score new score
AlexNet 93.26 90.71 86.96 77.57 77.57 60.18 43.48 35.93 86.73 86.73 85.35 83.52 80.32 68 54 30 56
ResNet18 99.87 93.51 88.56 88.56 88.56 88.56 88.1 86.27 82.84 80.78 65.45 52.86 47.83 74 52 55 86

Clean images AlexNet ResNet101 Multiple-pixel Adversarial patch
Sculpture train val test ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 previous model new model previous score new score
AlexNet 98.46 96.36 90.56 84.96 84.96 66.37 43.95 36.28 91.15 91.15 91.74 91.74 89.97 62 60 32 47
ResNet101 100 98.53 94.1 95.28 95.28 94.40 93.81 91.15 83.19 83.19 64.01 55.16 59.29 54 58 87 90

Table 5.11: This table shows the results using adversarial training in all DCNNs models in three different
classes. Each method presents its classification accuracy for training, validation, testing, and the adversarial
examples using the FGSM computed from the testing dataset at ϵ = {2, 4, 8, 16, 32}. The multiple-pixel col-
umn presents the attack success rate between the original and the new model (a higher value means worse).
The adversarial patch column shows the classification accuracy between the original and the new model to
the first precomputed adversarial patches.

5.2 Face Recognition Problem

Face Recognition (FR) is an important research area in Computer Vision (CV), where security is crucial.
The face is the most popular biometric among others to recognize persons since it can be acquired
in unconstrained environments and, in turn, provide excellent discriminative features for recognition.
Hence, FR’s security is necessary because it is an essential tool in tasks like video-surveillance, security
systems and access control, and many applications in our everyday.

The recent progress of Machine Learning (ML) in many areas of CV has enabled ML algorithms to
be adaptable to many research areas like Face Recognition. Commonly, these algorithms are known
to achieve exemplary performance in many areas. However, recent studies have demonstrated that
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Adversarial Attacks (AA) pose a predicting threat to their success because, with perturbations inten-
tionally created in the input image, they could lead to a wrong prediction.

In this matter, the study of the attack architectures and defense mechanisms to diminish the damage
has been a popular research topic. Nevertheless, despite significant efforts to solve this problem, attacks
have become more complex and challenging to defend [13]. The attack effects have been only exposed
for ML algorithms, unlike Evolutionary Paradigms (EPs), which have not been demonstrated to have
such vulnerability yet. Therefore, an EP could function as a solution to AA due to the inability to solve
the problem in current ML algorithms such as DCNNs.

Recently, there has been enormous progress in solving the FR problem by introducing massive face
databases useful for training very deep architectures of DCNNs [140]. Although FR shares similarities
with object recognition, a particular aspect is characteristic of a face: they have a well-structured shape
that can be modeled very well. Hence, in FR, the data is preprocessed to appropriately modify the
input image to easily learn the face representations [141]. DCNNs have achieved exemplary results in
popular databases for FR even some of them were pretrained for generic object recognition [2, 142, 3].
The advantage of the DCNN architectures against other methods is that they can be optimized end-
to-end to develop features that amplify the identity signal, improving the identification ability of face
recognition systems exploiting the vast training databases available.

Face recognition systems demand reliability and security in their predictions because they are the
most popular biometric used for person recognition. Nevertheless, they have been traditionally eval-
uated with the implicit assumption of no threats that actively attempt to fool the system [143, 144].
Recent studies have encountered on AA a predicting threat to CNN’s success because with perturba-
tions intentionally created (some of them are imperceptible to human vision), can completely change
the DCNN’s prediction to drop its performance, and face recognition systems based on DCNNs are not
the exception [11, 12, 145].

For example, subjects can be effectively impersonated using 3d-printedmasks or face images down-
loaded from social networks [146, 147]. Fredrikson et al. presented model inversion attacks, in which
face images of enrolled users are reconstructed from neural networks trained compromising the privacy
of users enrolled in the system [148]. Feng and Prabhakaran proposed in [149] the use of makeup and
hair designs to dodge face recognition systems (including non-CNN architecture such as Eigenfaces
[150] and Fisherfaces [151]). Sharif et al. proposed in [99] a physically realizable and inconspicuous
attack through printing a pre-computed pair of eyeglass frames to evade recognition.

There have been immense efforts to develop defense mechanisms to mitigate AA [147, 152, 153].
Still, the perturbations have becomemore complex and highly efficient in fooling CNNs [140]. However,
despite the ML community’s progress, EC have mostly contributed to developing strategies to search
for meaningful DCNN architectures for image classification [19]. Nevertheless, these approaches have
fallen short to be on par with hand-craft DCNNs architectures. Additionally, AAs’ problem is inherent
to the CNN structure, making them susceptible to these attacks.
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Moreover, Genetic Programming (GP) has been one of EC’s principal tools to optimize the selection
of features and automatically extract the best characteristics to approach image classification tasks
[43, 45]. However, they are still dealing with outdated problems using classical datasets while making
comparisons against CV methods based on handcrafted features and obsolete CNNs. EPs have not
demonstrated to be vulnerable against AA yet, and FR could be a suitable application for EPs on which
reliability and security in the predictions are required.

5.2.1 Experiment

Reliable predictions are a highly valuable characteristic regarding face recognition system development
following security and confidence of the recognition. We propose the assumption of an attempt to fool
the system and highlight the differences between the renowned DCNN who has performed well in
object and face recognition (ResNet [3]), and an Evolutionary Paradigm (BP) who has obtained compa-
rable results with AlexNet[1]. We take into consideration performance and security against adversarial
attacks in the most straightforward face recognition experiment. We use training, validation, and test-
ing stages. The aim is to emulate a real-world scenario where the proposed models employ standard
benchmark procedures.

In this experiment, we analyze a threat to evade recognition using a pair of inconspicuous eye-
glasses frame. The facial accessories perturbation is a white-box targeted attack that challenges the
robustness of such eyeglasses, which can be printed to appear in real-world conditions to cause a mis-
leading prediction of a target class. The analysis helps us to determine whether this attack could be
used to evade recognition or can be used for impersonation. We also analyze the AE transferability
of such eyeglasses to BP. Lastly, we include a statistical analysis to determine significant differences
between each pair of prediction confidences between DCNN and BP at each stage.

5.2.2 Dataset

We use a widely used face recognition dataset named CelebFaces Attributes (CelebA)[154]. It consists
of a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute
annotations. The images in this dataset cover significant pose variations and background clutter. Addi-
tionally, it has enormous diversities, large quantities, and rich annotations, including 10,177 identities,
202,599 face images, five landmark locations, 40 binary attributes annotations per image.

Class training validation testing

Faces 1000 300 800
Background 1000 300 800

Table 5.12: Dataset construction from CelebA images.
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As the experiment required a significant number of images, in Table 5.12, we provide the number of
images for each set of images for training, validation, and testing stages. Hence, we randomly construct
three sets of images from the CelebA dataset and manually fine-tune changing images to preserve
the face diversity and front-facing images. Additionally, we use a Multi-task Cascaded Convolutional
Networks (MTCNN) to perform face detection and alignment using the DeepFace library from [155].
We constructed the background class from landscape images from the ml5 project datasets [156].

5.2.3 Implementation details

In this subsection, we outline the implementation details for the models used:

• Brain Programming: was implemented on Matlab R2018b using a modified version of GP Lab
and the libsvm v3.25 [134] library for the SVM.

• DCNN: for the implementation of ResNet, we use the pre-trained model from PyTorch v1.1 [136].
This model was retrained using transfer learning for face recognition.

Also, we outline each of the AA:

• Facial accessories perturbation: was implemented using 100 images from the training dataset in
PyTorch v1.1 [136].

The BP algorithm was run in a server with an Intel Xeon Silver 4114 CPU and 32 Gb of RAM and
ResNet as well as the facial accessories perturbation were run in a computer with Intel core i7-6700HQ
with 24 GB of RAM and graphic card NVIDIA GeForce GTX 1070.

5.2.4 Results

We show in Figure 5.9 the fitness evolution progress of BP in the training phase. It is seen that most
of the runs converged to approximately 75% of the validation accuracy, two runs achieved around 80%,
and one run obtained approximately 90% (see Table 5.13). Hence, we can see that it is not easy to
reach satisfactory solutions in the search space due to the complex structure of the AVC departing
from random individuals, but it was possible to obtain an excellent individual. Nevertheless, due to the
BP’s high computational cost, it was possible only to execute 15 runs with a mean execution time of
40.18 hours and a standard deviation of 1.04 hours in a server with an Intel Xeon Silver 4114 CPU and
32 Gb of RAM.
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Figure 5.9: Fitness evolution progress for the best solution during the validation stage of BP. Each plot repre-
sents one of the 15 runs.
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Figure 5.10: Fitness evolution progress for the best solution during the five runs of the hands-on artificial
evolution.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Training 0.7175 0.7705 0.7810 0.7620 0.8925 0.7700 0.7165 0.7605 0.8420 0.7800 0.8065 0.7840 0.7195 0.7180 0.7500
Validation 0.7617 0.7833 0.8183 0.7850 0.9033 0.7833 0.7733 0.7700 0.8133 0.7867 0.7867 0.7833 0.7617 0.7583 0.7667

Table 5.13: Performance of the best individuals of BP in each run.
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Therefore, we follow the hands-on artificial evolution strategy from [95] in which we selected the
best two individuals from each run to construct an initial population to search for new individuals.
Figure 5.10 shows the fitness evolution progress of five runs from this strategy. It can be seen the
guide from the previous experiments delivered an increase of up to 5% in the performance. Hence, we
validate the advantage of the hands-on evolution strategy to get out of local minima, thus helping the
methodology to discover better solutions.

Next, we present in Table 5.14 the outcome of each model for the clean images, and when it is ap-
plied, the eyeglasses frame perturbation to the training, validation, and testing datasets. Each method
presents its accuracy to each dataset. We observed that ResNet surpassed BP in all sets of clean images
(training, validation, and testing). However, as we add the eyeglasses frame perturbation to all sets of
face images, the AA’s effect becomes enormous. It is shown that ResNet completely drops its outstand-
ing performance as the eyeglasses frame is present in the face images, making almost every face image
in the three datasets evade the recognition.

Clean Images ResNet Eyeglasses

train val test train val test
BP 94.1 95.67 93.19 94.3 94.33 95.75

ResNet 99.75 99.67 99.94 4.70 5.67 1.38
h 1 1 1 1 1 1

Table 5.14: Results obtained using the ResNet eyeglass attack. Each method presents its classification accu-
racy for training, validation, and testing, and the adversarial examples using the pre-computed glasses from
ResNet. The third row present results of a two-sample Kolmogorov-Smirnov test between both methods.

The powerful effect of the eyeglasses frame perturbation is seen on the training dataset, where
even though ResNet has identified the faces images from the training stage, the perturbation makes
them evade the recognition. Meanwhile, BP demonstrated to remain with a maximum variation of
2.56% of its original score, proving its security to recognize faces even the images are perturbed with
an eyeglasses frame. Additionally, Table 5.14 shows a two-sample Kolmogorov-Smirnov test between
each pair of prediction confidences at each stage between DCNN and BP. h is one if the test rejects the
null hypothesis at the 5% significance level and 0 otherwise. Hence, all the prediction confidences at
each stage between both methods denoted significant differences by rejecting the null hypothesis.

This experiment innovates by introducing the assumption of an attempt to fool the system and
highlighting the differences between a renowned DCNN (ResNet) and the AVCs generated by BP. We
also considered contrast performance and security against adversarial attacks in the most explicit face
recognition problem. ResNet’s performance was extremely weakened using the facial accessories per-
turbation. In contrast, the AVCmodels from BP resist the attempt to mislead the system. Additionally, a
two-sample Kolmogorov-Smirnov test confirmed that DCNN and the AVCmodels designed with BP are
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statistically different. These results open the possibility of using evolutionary computation in the face
recognition pipeline to protect the predictions. Furthermore, we validate the hands-on strategy beyond
a pure random initialization that helped get out from the local minima to discover better solutions.
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Conclusions

Robustness against AAmust be the primary concern when we are developing an automatic recognition
system. From now on, a classifier’s performance should not only focus on accuracy but also on robust-
ness to AAs. In this thesis, we present an empirical study for AMC and FR subject to AA. We compare
several methods to analyze the performance and their reliability to predict a class using adversarial
perturbations.

For the AMC problem, we selected six models using three of the main approaches for image clas-
sification: 1) handcrafted features approach (SIFT+FV), 2) deep genetic programming approach (BP),
and 3) DCNN approach (AlexNet, VGG, ResNet18, and ResNet101). The comparative study consists of
analyzing three different attacks:

1. Analyze the direct threat’s impact and transferability considering the white box untargeted
attack–FGSM. This perturbation adds a subtle texture to the artwork, which can cause a mis-
leading prediction.

2. Find a set of localization and pixel values to modify the artwork to fool the classifier using a
black box untargeted attack–multiple pixel attack.

3. Apply precomputed patches–adversarial patch–robust to transformations located randomly in
the artwork to predict a targeted class.

In this sense, this study has confirmed that AA is a severe threat to the performance of DCNN con-
sidering the AMC problem. Using FGSM showed that if the attacker knows the model, it can make the
DCNN decrease its performance up to less than 20% of its original score. Additionally, we corroborated
the AE transferability property between DCNN models, which is not severe for the binary classifica-
tion, but it can reduce up to 20% of the performance. On the other hand, SIFT+FV also was affected by
some of the classes but by a minor amount. However, the added texture caused by the FGSM leads to
a decrease in its performance in a significant manner when testing the algorithm, having encouraging
results but not suitable to compete with DCNNs in the testing phase. Finally, BP exhibits compara-
ble performance (efficiency) to DCNN in both validation and testing phases. Furthermore, it has an
almost imperceptible variant on its accuracy to these perturbations proving no direct transferability
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from other models. Figures 5.4-5.5 show the output of each stage of BP from clean and AEs with
almost no variation on its outcomes.

The study about a one-pixel attack confirms this type of attack’s poor design due to a minimal
scenario contrived with an input image of size 32 × 32 pixels. We conclude that it is challenging to
apply single-pixel attacks on real-world conditions. Also, it is hard to apply it in multiple-pixel attacks
due to the following factors. On the one hand, when we extend to multiple pixels, the perturbation
loses the attack’s intention of imperceptible to human vision. On the other hand, a massive amount of
processing time. The robustness of BP shows that it is a challenge to make it fail against these attacks
even by increasing the number of pixels per attack by five times compared to the SIFT + FV and DCNN
models. Finally, the adversarial patch showed that a precomputed perturbation positioned in a random
location and orientation in the artwork could fool DCNNmodels with excellent transferability between
them; meanwhile, BP and SIFT+FV remain in their original score. It is remarkable the BP robustness to
the multiple pixel attack and the adversarial patch. However, these two attacks are harsh perturbations,
and BP remained steady in its performance, leading to the reliability of BP’s predictions in no human
supervision cases.

The statistical analysis from the predictions’ confidence supports the study of robustness by illus-
trating the change in the posterior probability complementing the results from the accuracy’s stand-
point. In this manner, BP demonstrated to have not significantly different predictions’ confidence
compare to DCNN models, which showed in most cases the rejection of the null hypothesis Ho. Con-
versely, SIFT+FV obtained good results, with most of the test scoring a not significant difference in the
predictions’ confidence. Also, the comparison between all models using the accuracy proves a rejection
of the null hypothesis that all group means are equal in the FGSM and the adversarial patch experi-
ments. Specifically, BP exhibits significant differences from the rest of the classifiers using the multiple
comparisons with Bonferroni method in the FGSM experiment. BP highlighted among all groups in
the adversarial patch data means showing significant differences to VGG and ResNet18.

Lastly, defensemechanisms proposed particular solutions to the AA problem. The adversarial train-
ing showed to diminish the effect of FGSM. However, it could not provide any defense to the multiple-
pixel and adversarial patch. Defense mechanism implies that we must add a defense for every attack,
making it impractical and difficult to implement when new and complex attacks are made. Therefore,
we present BP as a solution to the AA problem, which proposes a different approach that competes
with DCNN and does not suffer this vulnerability.

Art media categorization is a complex problem that involves high-resolution images and the in-
clusion of many artifacts and textures, where it is difficult to outperform DCNN performance. BP has
obtained comparable results to DCNN models, but it demonstrated immunity to these adversarial at-
tacks with no direct transferability of such perturbations to the model. On the other hand, SIFT+FV
proves to be robust for a limited number of experiments with moderate results. Therefore, BP arises as
an alternative to DCNN for an art media classifier approach without the vulnerabilities of AA because it
takes advantage of the symbolic representations and incorporates expert systems rules in a hierarchical
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structure to solve the AMC problem. Additionally, BP opens the possibility of being explainable within
each stage, unlike DCNN, an important research area to precisely know the model’s inner workings.

For the FR problem, AA confirm to be a severe threat to the security of DCNNs. Their performance
can be extremely manipulated with a physically realizable and inconspicuous eyeglasses frame to evade
recognition. However, BP has demonstrated to automatically design AVCmodels capable of competing
with DCNN and safeguarded the predictions’ integrity by remaining steady in its performance. This
thesis innovates by introducing the assumption of an attempt to fool the system and highlighting the
differences between a renowned DCNN and an Evolutionary Paradigm by considering performance
and security against adversarial attacks in the most straightforward face recognition experiment.

The Facial Accessories Perturbation demonstrated the vulnerability of a DCNN in contrast to the
EP. ResNet’s performance was extremely weakened in this experiment. In contrast, the AVC models
from BP resist the attempt to mislead the system. Additionally, a two-sample Kolmogorov-Smirnov test
confirmed that DCNN and the AVC models designed with BP are statistically different. These results
open the possibility of using evolutionary computation in the face recognition and artwork classifica-
tion pipeline to protect the predictions. Furthermore, we validate the hands-on strategy beyond a pure
random initialization that helped get out from the local minima to discover better solutions.

The BP’s immunity to AA is a significant breakthrough to the EC community where this feature
could be an edge compared to machine learning techniques. Due to the enormous advance that DL has
brought to the state-of-the-art, many research areas have not been on par with DL. However, demon-
strating trustworthiness is another manner to compete with such models. This example could be just
the beginning of the secure era of EC techniques.

Future Work

As future work from this thesis, we consider the following research topics. First, as we made an em-
pirical study of robustness beyond deep learning systems, we plan to work on the theoretical reasons
why BP is immune to adversarial attacks. We expect to find the main features in the BP architecture
that make it immune to employing it in other classification algorithms. Secondly, we want to extend
the robustness study to demonstrate the BP’s immunity to other research areas that involve security
solutions such as person re-identification, pedestrian detection, among others.

Genetic programming algorithms’ limitation of binary classification is a significant constraint in
developing image classification systems. Therefore, we want to improve the BP architecture to solve
multi-class problems with the advantage of robustness to adversarial attacks. Finally, we want to ex-
plore the possibility of designing adversarial attacks to algorithms beyond deep learning either in other
research areas or for BP to discover vulnerabilities.
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