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Resumen

El cáncer de mama es una grave amenaza para la salud, ya que representa el tipo de

cáncer más común y expandido entre las mujeres de todo el mundo. Aunque todavía se

desconocen las causas exactas de esta enfermedad, estudios han identificado factores de

riesgo asociados al padecimiento. Los factores de riesgo son cualquier condición genética,

reproductiva, hormonal, física, biológica o de estilo de vida que aumente la probabilidad

de desarrollar cáncer de mama. A lo largo de los años, el estudio de factores de riesgo

de cáncer de mama, ha ayudado a tener un mayor entendimiento de la enfermedad y a

crear estrategias preventivas y de control de riesgo. Esta investigación tiene como objetivo

identificar los factores de riesgo más relevantes en pacientes con cáncer de mama en un

conjunto de datos siguiendo el proceso de Descubrimiento de Conocimiento en Bases de

Datos (Knowledge Discovery in Databases), el cuál, hace uso de algoritmos computacio-

nales para extraer información potencialmente útil y valiosa de los datos. Para determinar

la relevancia de los factores de riesgo, esta investigación implementa dos métodos de se-

lección de características: la prueba de la Ji al cuadrado y el cálculo de la Información

mutua. Además, se utilizaron siete algoritmos de clasificación para validar los resulta-

dos obtenidos. Nuestros resultados muestran que los factores de riesgo identificados como

los más relevantes están relacionados con la edad de la paciente, su estatus y tipo de

menopausia, y si se ha sometido a terapia hormonal.



Abstract

Breast cancer is a serious health threat, since it represents the most common and widespread

type of cancer among women around the world. Although the exact causes of this disease

are still unknown, studies have identified risk factors associated with the condition. Risk

factors are any genetic, reproductive, hormonal, physical, biological, or lifestyle-related

conditions that increase the likelihood of developing breast cancer. Over the years, the

study of breast cancer risk factors has helped to have a better understanding of the dis-

ease and to create preventive and risk control strategies. This research aims to identify

the most relevant risk factors in patients with breast cancer in a dataset by following the

Knowledge Discovery in Databases process, which makes use of computational algorithms

to extract potentially useful and valuable information from the data. To determine the

relevance of risk factors, this research implements two feature selection methods: the

Chi-squared test and Mutual information. Also, seven classification algorithms are used

to validate the results obtained. Our results show that the risk factors identified as the

most relevant are related to the age of the patient, her menopausal status, whether she

had undergone hormonal therapy, and her type of menopause.
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Chapter 1

Introduction

Globally, breast cancer is the most common and widespread type of cancer among women

with more than 2.2 million new cases and about 680,000 deaths in 2020, according to the

Global Cancer Observatory [1]. Researchers have studied the origin, causes, and ways to

reduce the impact of this disease on society. Despite the progress that has been made,

the specific causes of breast cancer incidence are still difficult to determine [2]. The early

detection of breast cancer is key for increasing the chance of treatment and recovery; this

is normally done by screening tests, such as a mammography. Studies have also identified

what are known as risk factors, that are associated with the likelihood of developing

breast cancer. There are a wide variety of risk factors that include genetic, reproductive,

hormonal, physical, biological, and lifestyle-related, among others [2], [3].

It is important to analyze and understand the possible impact each factor can have on

the development of breast cancer so that physicians could suggest preventive strategies

to women who are known to have some of these risk factors. A common trend in recent

years is the creation of preventive strategies from the analysis of data obtained from

clinical records [4]. This has been achieved by using methodologies or processes that

focus on extracting potentially useful and valuable information through computational

tools. Knowledge Discovery in Databases (KDD) [5] is a process that follows different

stages (as shown in Figure 1.1 based on [5]) with the aim of identifying new knowledge

from datasets.

All the steps are essential for the successful application of KDD in practice, however,
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Figure 1.1: The process of Knowledge Discovery in Databases (KDD) (based on [5]).

the method used in the Data Mining step is very important, since it determines the

overall discovery goal. This research uses the method called dependency modeling, which

consists of finding a model that describes significant dependencies between variables. We

are interested in determining the dependency or correlation between each of the risk

factors and the variable that determines whether the person has breast cancer or not.

In order to determine which risk factors are more relevant in the development of breast

cancer, Feature Selection was used in this research. Feature selection is mainly focused on

removing non-informative or redundant predictors from a model by methods involving the

evaluation of the relationship between each input variable and the target variable using

statistics and selecting those input variables that have the strongest correlation with the

target variable [6]. For the feature selection process, Chi-squared and Mutual information

were used. Our results show that the risk factors identified as the most relevant are related

to the age of the patient, her menopausal status, whether she had undergone hormonal

therapy, and her type of menopause. Subsequently, a validation stage was implemented to

evaluate the performance obtained by training seven classification algorithms: Decision

Tree, Random Tree, Decision Stump, Deep Learning, K-Nearest Neighbors (K-NN), Naïve

Bayes and Generalized Linear Model. The purpose of the validation stage was to obtain

and compare the training performance results with all the risk factors of the dataset and

with the four most relevant risk factors resulting from the feature selection stage. Our
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results show that in most cases a minimum loss of performance occurs when training with

the four most relevant risk factors compared to training with all the risk factors of the

dataset.

1.1 Motivation

There is a large number of research works that are related to the prediction or likelihood of

breast cancer. However, most of them are dedicated in identifying the risk of breast cancer

by analysing mammograms, few studies are dedicated to the study of risk factors for breast

cancer. In contrast to information from imaging studies, the analysis of risk factors offers

a different opportunity to research breast cancer, since no specialized medical equipment

is required to obtain the majority of information on risk factors (excluding information on

genetic risk factors). With the study of the relevance of risk factors, it could be determined

whether there is a risk of developing breast cancer or not, solely from information readily

known to most people, is an important option that could be widely available without the

need to have specialized equipment. Of course, this is not meant to substitute screening

tests and the knowledge of medical personnel, on the contrary, these studies could provide

useful information and be part of the development of breast cancer risk control strategies.

When studying risk factors it should be taken into account that it is an area that

represents great challenges, for example, there are not many publicly available datasets,

the imbalance of the data, the size of datasets, the unknown information in medical

records, etc. Several works have proposed a variety of alternatives to solve these challenges

through different computational techniques. Unlike other works, our solution integrates

feature selection methods and ensamble learning algorithms to determine and validate the

most relevant breast cancer risk factors of a dataset.

1.2 Research Questions

Generating guidelines for the development of control strategies focused on risk factors for

breast cancer leads to an important research question addressed in this thesis:
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• What are the most relevant risk factors for the determination of breast cancer in

patients that already have such cancer, using the Knowledge Discovery in Databases

process?

1.3 Research Goals

1.3.1 General goal

Identify and validate the most relevant risk factors of breast cancer, through the applica-

tion of feature selection methods for their identification, and classification algorithms for

their validation.

1.3.2 Specific goals

1. Understand the problem by reviewing the state of the art, and having meetings with

radiologists and oncologists.

2. Analyze publicly available datasets of breast cancer risk factors and select the one

that could suit our needs.

3. Prepare and clean the selected dataset to ensure data quality.

4. Analyze and apply feature selection methods to determine the most relevant risk

factors in the selected dataset.

5. Validate the relevant risk factors by means of classification algorithms.

6. Interpret the results by comparing the results obtained with and without the feature

selection process.

1.4 Research Methodology

To organize all the activities related to this research, the methodology of Figure 1.2 was

created and followed. As observed, it consists of four main phases summarized next.
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Figure 1.2: Research methodology.

Problem understanding: It consists of activities that allow us to know the problem

and define the objectives of our research, both in the medical and computational

fields.

Research resources and tools: The goal of this phase, as the name implies, is to

gather the necessary resources and tools for the next phase where the KDD process

is applied. Resources represent risk factors datasets and tools are the methods to be

used for the data mining and interpretation/evaluation stages of the KDD process.

KDD Process: This phase consists in applying each of the following phases of the KDD

process:

1. Selection: Selecting a dataset, or focusing on a subset of variables or data

samples, on which discovery is to be performed.

2. Preprocessing : Perform data cleaning to ensure data quality.

3. Data mining : Searching for patterns of interest in a particular representational

form.

4. Interpretation/Evaluation: This step can also involve visualization of the ex-

tracted patterns/models of the data (possibly return to previous phases).

The KDD process can involve significant iteration and may contain loops between
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those steps.

Knowledge: It is the final stage where the results obtained from the KDD process are

concluded.

Throughout all the research there is a constant literature review.

1.5 Thesis Contribution

According to the research goals and methodology described above, the following is the

contribution from this thesis:

• Determination and validation of the most relevant risk factors for breast cancer in a

dataset through the integration of feature selection methods and ensemble learning

algorithms.

1.6 Thesis Outline

The rest of this thesis is structured according to the following summary of chapters:

Chapter 2: This chapter presents an overview of the medical and computational back-

ground. A definition of breast cancer is presented and the problem that risk factors

represent is described. Also, the computational techniques used in this thesis to

address the problem are defined. The set of solution methods proposed in related

works are also described and discussed.

Chapter 3: This chapter describes the activities developed for the selection and pre-

processing stages of the KDD process. In the selection stage, the dataset selection

criteria and the dataset options that were identified are described. In the prepro-

cessing stage, a follow-up is given through the operations applied to the original

dataset selected in order to give a format to data for the data mining stage. As

a result, it provides a general description of the attributes and records of the final

dataset.
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Chapter 4: This chapter contains the description of data mining and interpretation/

evaluation stages of the KDD process. For the data mining stage, two feature selec-

tion methods (Chi-squared and Mutual information) are used to obtain the relevant

values for each of the risk factors. In the interpretation/evaluation stage, the re-

sults obtained from the data mining stage are tested using classification algorithms

to subsequently perform an analysis for the interpretation of the results. Finally, a

comparison with other works is made.

Conclusions: This chapter summarizes the main findings obtained, addresses the strengths

and limitations of the study and proposes areas of future research.
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Chapter 2

Background on Breast Cancer and

Data Mining

This chapter provides a description of the medical and computational background. First,

breast cancer and the concept of risk factors are described. Next, the Knowledge Discovery

in Databases (KDD) process is explained as well the computational methods and tech-

niques used in this research. Finally, the related work of the solution methods proposed

to find the relationship between risk factors and breast cancer is presented.

2.1 Breast Cancer

Breast cancer is a disease of the mammary gland that originates when breast cells begin

to grow uncontrollably. These cells that divide faster than healthy cells usually build up

into a lump or tumor [7], which can be detected by a physical exam or imaging tests, such

as a mammogram, ultrasound, or magnetic resonance. Breast cancer is one of the world’s

largest health problems. This type of cancer can occur in both men and women, but it

is much more common in women. In fact, it is the most diagnosed cancer in women and

ranks first with the highest number of deaths for the female gender [1]. In 2020, there were

2.2 million women diagnosed with breast cancer and 685 000 deaths globally [1]. By the

end of the same year, 7.8 million women who had been diagnosed with breast cancer in

the previous five years were still alive, making this cancer the most prevalent in the world
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[8]. Survival rates for breast cancer have increased in the last few years, and the number

of deaths associated with this disease continues to decline, mostly due to factors such as

early detection, a new personalized approach to treatment, and a better understanding of

the disease. Finding breast cancer early and getting state-of-the-art cancer treatment are

two of the most important strategies for preventing deaths from breast cancer [9]. Breast

cancer that is found early, when it is small and has not yet spread, it is easier to treat

successfully. Getting regular screening tests is the most reliable way to find breast cancer

early. Screening refers to tests and exams used to find a disease in people who do not

have any symptoms. The goal of screening tests for breast cancer is to find it early, before

it causes symptoms (like a lump in the breast that can be felt). Different screening tests

can be used to look for and diagnose breast cancer, for example, mammograms, breast

ultrasound and breast magnetic resonance imaging. One of the most used screening test

is mammograms, the results of this test uses the scale called BI-RADS (Breast Imaging

Reporting and Data System), which is used in this thesis in later sections and chapters,

for this reason, is explained below.

2.1.1 Mammograms

A screening mammogram is used to look for signs of breast cancer in women who do

not have any breast symptoms or problems. X-ray pictures are taken by a radiologist,

who categorizes the mammogram results using a numbered system [10]. This system is

called the Breast Imaging Reporting and Data System (BI-RADS ) sorts the results into

categories numbered 0 through 6 [11]:

• 0: Incomplete, additional imaging evaluation and/or comparison to prior mammo-

grams (or other imaging tests) is needed. This means the radiologist may have seen

a possible abnormality, but it was not clear and it is necessary more tests, such as

another mammogram with the use of spot compression (applying compression to a

smaller area when doing the mammogram), magnified views, special mammogram

views, or ultrasound.

• 1: Negative. This is a normal test result.
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• 2: Benign (non-cancerous) finding. This is also a negative test result (there is no

sign of cancer), but the radiologist chooses to describe a finding that is not cancer,

such as benign calcifications, masses, or lymph nodes in the breast.

• 3: Probably benign finding. A finding in this category has a very low (no more than

2%) chance of being cancer.

• 4: Suspicious abnormality, biopsy should be considered. The findings in this cat-

egory can have a wide range of suspicion levels. For this reason, this category is

often divided further:

– 4A: Finding with a low likelihood of being cancer (more than 2% but no more

than 10%).

– 4B: Finding with a moderate likelihood of being cancer (more than 10% but

no more than 50%).

– 4C: Finding with a high likelihood of being cancer (more than 50% but less

than 95%), but not as high as Category 5.

• 5: Highly suggestive of malignancy. The findings look like cancer and have a high

chance (at least 95%) of being cancer.

• 6: Known biopsy-proven malignancy. This category is only used for findings on a

mammogram (or ultrasound or MRI) that have already been shown to be cancer by

a previous biopsy.

With these categories, radiologists can describe what they find on a mammogram

using the same words and terms. A mammogram report also include an assessment of the

breast density, which is a description of how much fibrous and glandular tissue is in the

breasts, as compared to fatty tissue. There are four categories of breast density. They go

from almost all fatty tissue to extremely dense tissue with very little fat. The radiologist

decides which of the four categories best describes how dense the breasts are:

• Category A: Breasts are almost all fatty tissue.
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• Category B: There are scattered areas of dense glandular and fibrous tissue.

• Category C: More of the breast is made of dense glandular and fibrous tissue (de-

scribed as heterogeneously dense). This can make it hard to see small masses in or

around the dense tissue, which also appear as white areas.

• Category D: Breasts are extremely dense, which makes it harder to see masses or

other findings that may appear as white areas on the mammogram.

As part of achieving early detection of breast cancer, efforts have been made to identify

the causes of the disease, however, these remain unknown. Nevertheless, studies have

identified some risk factors that increase the likelihood of developing breast cancer [2],

[3], which are described in the next subsection.

2.1.2 Risk factors

A risk factor for breast cancer is anything that could make the disease to be more likely

to occur. The literature indicates that the most important risk factors for breast cancer

are advanced age and the female gender (men may also develop breast cancer, however it

represents only 1% of all cases) [3]. However, there is a long list of factors related to the

increased risk of developing breast cancer [2], [3], [12]–[16], which includes:

Family history of cancer: Women with a first-degree relative (mother, daughter, or

sister) with breast cancer have approximately double the risk of the general popula-

tion and are at particularly high risk if the cancer was premenopausal or bilateral1.

Genetic factors: Certain mutations in the genes that increase the risk of breast cancer

can be inherited. The best-known mutations are BRCA1 and BRCA2. These genes

can greatly increase the risk of breast cancer and other cancers, however, they do

not make the disease inevitable.

Reproductive factors: Factors such as early menarche (before age 12), late menopause

(after age 55), nulliparity (when the person has never been pregnant), and first live
1Bilateral breast cancer occurs when cancer occurs in both breasts at the same time.
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birth after age 30 bestow a slightly higher risk for breast cancer, as a result of having

more menstrual cycles and longer exposure to estrogen and progesterone.

Hormonal factors: For example use of oral contraceptive or use of hormone replacement

therapy that combines estrogen and progesterone to treat the signs and symptoms

of menopause.

Exposure to the radiation: If radiation treatments have been done in the thorax area

during childhood, the risk of breast cancer increases.

Demographic factors: Including country of origin, year of birth, specification of ethnic-

ity and family race (Asian, Black, Hispanic, Native American and White). Women

of Ashkenazi (Eastern European) Jewish heritage have a slightly higher risk of breast

cancer than does the general population.

Personal history of breast diseases: A breast biopsy showing atypical ductal hyper-

plasia (ADH) histology increases the risk for breast cancer to four to five times that

of the general population. The presence of lobular carcinoma in situ (LCIS) also

increases the risk for breast cancer, but at a much higher rate than ADH (about 10

times that of the normal population). The acronym LCIS is a misnomer and not a

cancer at all; rather, LCIS is a high-risk marker for developing breast cancer.

Personal history of breast cancer: If cancer has developed in one breast, there is an

increased risk of developing cancer in the other.

Mammographic breast density: A large amount of fibroglandular tissue within the

breast measured on the mammogram is associated with the risk of breast cancer.

Lifestyle factors: One of these is drinking alcohol. One drink per day bestows a very

small risk, but two to five drinks per day increases the risk to 15 times that of

women who do not drink. Being overweight or obese also increases the risk of

cancer, especially if the weight gain happens after menopause and the fat is around

the abdomen.
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Since there are many factors that could contribute to the occurrence of breast cancer,

it is very difficult to identify the exact combination of elements that cause the disease.

Nevertheless, based on several researches [12]–[16] aimed on determining the relationship

between risk factors and breast cancer, it has been possible to contribute to the generation

of risk reduction and control strategies, including:

• Making changes in habits and lifestyle: Exercising 30 minutes per day, maintaining

a healthy weight, if alcohol is consumed, doing so in moderation and limiting the

amount of consumption per day, opting for a healthy diet.

• Limiting the use of hormone replacement therapy.

In cases where the risk is high, more specialized strategies have been developed:

• Preventive medications (chemoprevention): Estrogen-blocking medications, such as

selective estrogen receptor modulators and aromatase inhibitors.

• Preventive surgery: Women with a high risk of breast cancer may choose to have

their healthy breasts surgically removed (prophylactic mastectomy). They may also

choose to have their healthy ovaries removed (prophylactic oophorectomy) to reduce

the risk of both breast cancer and ovarian cancer.

Due to the challenge it represents and the importance it has to generate risk reduction

and control strategies, several computational alternatives have been proposed to study the

correlation between risk factors and breast cancer [4], [17], [18]. Most of these solution

alternatives use a set of techniques capable of processing large dataset, identifying patterns

and relationships between variables to provide useful information in the medical field. The

following section describes the Knowledge Discovery in Databases (KDD) process used in

this research to extract valuable information from the relationship between risk factors

and breast cancer.

13



2.2 Knowledge Discovery in Databases

Fayyad, Piatetsky-Shapiro, and Smyth define Knowledge Discovery in Databases as "The

nontrivial process of identifying valid, novel, potentially useful, and ultimately understand-

able patterns in data" [5]. According to the authors, the data is a set of facts (e.g., cases in

a database) and pattern is an expression in some language describing a subset of the data

or a model applicable to that subset. Extracting a pattern also designates fitting a model

to data, finding structure from data, or in general, any high-level description of a set of

data. The discovered patterns should be valid on new data with some degree of certainty.

The patterns have to be novel and potentially useful. Finally, the patterns should be

understandable, if not immediately, then after some post-processing. The term process

implies that KDD is comprised of many steps, which involve data preparation, search for

patterns, knowledge evaluation, and refinement, all repeated in multiple iterations. This

process is characterized by being nontrivial, meaning that it is not a straightforward com-

putation, but involves a more complex search or inference. Below is a detailed description

of each of the steps in the KDD process.

2.2.1 KDD Process

Is the process of using the database along with any required selection, preprocessing,

subsampling, and transformations of it; to apply data mining methods (algorithms) to

enumerate patterns from it; and to evaluate the products of data mining to identify the

subset of the enumerated patterns deemed as "knowledge" (as shown in Figure 2.1 based

on [5]). The basic steps of the process are the following:

Understanding: Developing an understanding of the application domain and the rele-

vant prior knowledge, to identify the goal of the KDD process.

Selection: Choosing a dataset or focusing on a subset of variables or data samples, on

which discovery is to be performed.

Preprocessing: Basic operations such as the removal of noise if appropriate, collecting

the necessary information to model or account for noise, deciding on strategies for
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Figure 2.1: The process of Knowledge Discovery in Databases (KDD) (based on [5]).

handling missing data fields, accounting for time sequence information and known

changes.

Transformation: Finding useful features to represent the data depending on the goal of

the task. Using dimensionality reduction or transformation methods to reduce the

effective number of variables under consideration or to find invariant representations

for the data.

Data mining: Searching for patterns of interest in a particular representational form

or a set of such representations: classification rules or trees, regression, clustering,

and so forth. The user can significantly aid the data mining method by correctly

performing the preceding steps.

Interpretation/Evaluation: This step can involve visualization of the extracted pat-

terns/models, or visualization of the data given the extracted models (possibly re-

turn to previous steps).

Consolidating discovered knowledge: Incorporating this knowledge into another sys-

tem for further action, or simply documenting it and reporting it to interested par-

ties. This also includes checking for and resolving potential conflicts with previously

believed (or extracted) knowledge.
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The KDD process can involve significant iteration and may contain loops between any

of the steps. The basic flow of steps (although not the potential multitude of iterations and

loops) is illustrated in Figure 2.1. All the steps are essential for the successful application

of KDD in practice, however, the method used in the Data Mining step is very important,

since it determines the overall discovery goal. The knowledge discovery goals are defined

by the intended use of the system [5] and are described next.

2.2.2 Data extraction methods

Two types of primary goals can be distinguished (see Figure 2.2 based on [5]): verifica-

tion, where the system is limited to verifying the user’s hypothesis, and discovery, where

the system autonomously finds new patterns. The discovery goal can be subdivided into

prediction, where the system finds patterns for the purpose of predicting the future be-

haviour of some entities; and description, where the system finds patterns for the purpose

of presenting them to a user in a human-understandable form.

Figure 2.2: Data extraction methods (based on [5]).

The relative importance of prediction and description for particular data mining ap-

plications can vary considerably. However, in the context of KDD, description tends to be

more important than prediction. This is in contrast to pattern recognition and machine
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learning applications where prediction is often the primary goal of the KDD process. The

goals of prediction and description are achieved by using the following primary methods

of data extraction [5]:

Classification: Learning a function that maps (classifies) a data item into one of several

predefined classes.

Regression: Learning a function that maps a data item to a real-valued prediction vari-

able and the discovery of functional correlation between variables.

Clustering: Identifying a finite set of categories or clusters to describe the data. Closely

related to clustering is the method of probability density estimation which consists

of techniques for estimating from data the joint multi-variate probability density

function of all of the variables/fields in the database.

Summarization: Involves methods for finding a compact description for a subset of

data, e.g., the derivation of summary or association rules and the use of multivariate

visualization techniques.

Dependency modeling: Consists of finding a model that describes significant depen-

dencies between variables. Dependency models exist at two levels:

• The structural level of the model specifies (often graphically) which variables

are locally dependent on each other, and

• The quantitative level of the model specifies the strengths of the dependencies

using some numeral scale.

Change and deviation detection: Focuses on discovering the most significant changes

in the data from previously measured or normative values.

This research uses the method called dependency modeling, since we are interested in

determining the dependency or correlation of each of the risk factors with the variable

that indicates whether the person has breast cancer or not. In this way, we identify

that feature selection is used to search features or attributes that have great contribution
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or most weight on the dataset. The following subsection describe the feature selection

methods used in this research to achieve the above goal.

2.3 Feature selection methods

Feature selection is a popular technique used to find the subset of features that are rele-

vant to build powerful learning models [19]. In the medical field, it can be used for the

identification of the most crucial risk factors related to a particular disease. There are

many feature selection algorithms reported in the literature, however, for this research,

we are interested in those techniques that use the target variable, called Supervised Fea-

ture Selection (SFS) techniques. Kuhn et al. [6] indicates the approaches for SFS can

be placed into three main categories, including filter, wrapper and embedded. In Figure

2.3 (based on [20]), the dotted line indicates the activities involved in each of the feature

selection approaches.

Figure 2.3: Feature selection approaches (based on [20]).
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Filter methods: Uses statistical indicators to score and filter each feature, focusing on

the characteristics of the data itself. As shown in Figure 2.3, the selection process

is independent of the learning algorithm. Filter-based methods rank the features

before the learning algorithm. In the selection process, each feature is evaluated

individually to check if there is a plausible correlation between such feature and the

observed classes. Only features with a relevant correlation would then be included

in a learning algorithm.

Wrapper methods: Uses a learning algorithm to evaluate the feature set. This method

scores the features using the learning algorithm that will ultimately be employed

in classification. As shown in Figure 2.3, the feature selection process is integrated

with the training of the learning algorithm, and the prediction ability of the model

is used as the selection criterion to evaluate the feature subset. Wrapper-based

methods evaluate multiple models using procedures that add or remove features to

find the optimal combination that maximizes model performance.

Embedded methods: Compared to the other two methods, embedded feature selection

is automatically built into the construction of the learning algorithm (as shown in

Figure 2.3). Features with good ability of classification are selected, and then the

selected feature subsets are used to perform the learning tasks.

All three approaches have advantages and drawbacks. The advantage of the filter meth-

ods is that the calculation is fast and does not depend on a specific model. However, the

selection criteria is not directly related to the effectiveness of the model. Compared with

the filter, the wrapper has better performance in generating high-quality subsets, but the

data processing is computationally expensive since the learner needs to be trained many

times during the feature selection process. Unlike filter selection, which does not consider

subsequent classification algorithms, wrapper selection directly takes the performance of

the final classification algorithms as the evaluation standard of the feature subset. In

other words, wrapper feature selection chooses the most favorable feature subset for a

given learning algorithm. Feature subset stability and adaptability are poor because each
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additional feature must be built as a feature subset for evaluation. Finally, embedded

feature selection provides a trade-off solution between filter method and wrapper meth-

ods, which can solve the high redundancy of the filter algorithm and the computational

complexity of the wrapper algorithm, but the design of the embedded method is tightly

coupled with a specific learning algorithm, which in turn limits its application to other

learning algorithms. Filter methods represent the best option for this research since unlike

the other two, the results of selection are obtained from the characteristics of the data

itself, unlike wrapper methods, selection results do not depend on the selected learning

algorithm and in contrast to embedded methods, the learning method is not limited to a

specific set.

Figure 2.4: Filter-based feature selection methods (based on [21]).

Filter-based feature selection provides a variety of methods with different performance

criteria for evaluating the value of information. The selection of the appropriate method

usually depends on the data types of the attributes of the dataset (as seen in Figure 2.4

based on [21]). Common data types include numerical and categorical, although each

may be further subdivided such as integer and floating point for numerical variables, and

boolean, ordinal, or nominal for categorical variables. To select a filter-based method, the

data type of the input and output attributes must be known. Input attributes are those

that are provided as input to a model. Output attributes are those for which a model

is intended to predict. Because the input and output attributes of the dataset used in

this research are categorical (as will be described in Chapter 3), the methods selected for
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the feature selection process are: Chi-Square and Mutual information.The following two

subsections describe these methods in detail.

2.3.1 Chi-squared test

The Chi-squared test [22] is a nonparametric statistical technique used to determine if

a distribution of observed frequencies differs from the theoretical expected frequencies,

is one way to show a relationship between two categorical variables. The value of the

Chi-squared test is given by Equation 2.1:

X2
c = Σi[(Oi − Ei)

2/Ei] (2.1)

Where the subscript c represents the degrees of freedom. O is the observed frequency

of variable i, and E is the expected frequency. The Chi-squared test summarizes the

discrepancies between the expected number of times each outcome occurs (assuming that

the model is true) and the observed number of times each outcome occurs, by adding the

squares of the discrepancies, normalized by the expected numbers over all the categories.

To determine whether the Chi-squared test value indicates a statistical significance in

the relationship between two categorical variable, the test results of each variable should

be compared with the critical value from a chi-squared distribution table. If the chi-

squared value is more than the critical value, then there is a significant relationship. To

be able to make the comparison with a critical value the following information must be

defined:

1. Null hypothesis and alternate hypothesis: The null hypothesis can be thought

of as a nullifiable hypothesis. That means that can nullify it, or reject it. The

alternate hypothesis is the researcher’s thoughts about the experiment. For this

research, they can be defined as follows:

• Null Hypothesis (H0): Two variables are independent.

• Alternate Hypothesis (H1): Two variables are not independent.
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2. Degrees of freedom (df): Is the number of categories of the variable minus 1.

3. p value: Is used in hypothesis testing. The value P is expressed with decimals.

The value must be greater than 0 and less than 1. The smaller the p-value, the

more important and significant are the results.

• If p > .10 → “not significant”.

• If p <= .10 → “marginally significant”.

• If p <= .05 → “significant”.

• If p <= .01 → “highly significant.”.

Figure 2.5: Critical value in chi-squared (taken from [23]).

The value of the chi-squared random variable X2 with df = k that cuts off a right

tail of area c is denoted X2
c and is called a critical value (Figure 2.5 taken from [23]).

The critical value of each variable corresponds to the insertion between the P value and

degrees of freedom in the Figure 2.6 (taken from [23]). If the chi-squared value is greater

than the critical value, the null hypothesis is rejected and the alternative hypothesis is

accepted, it is concluded that the variables are not independent and therefore there is a

relationship of significance. Instead, if the chi-squared value of the variable is lower than

the critical value, the null hypothesis is accepted and it is concluded that the variables

are independent and therefore there is no relationship of significance.
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Figure 2.6: Chi-squared distribution table (taken from [23]).

2.3.2 Mutual information

Mutual information [24] is usually a good measure for deciding the relevance of an at-

tribute. Mutual information is calculated between two variables and measures the reduc-

tion in uncertainty for one variable given a known value of the other variable. The Mutual

information between two random variables X and Y can be stated formally by Equation

2.2:

I(X;Y ) = H(X)−H(X|Y ) (2.2)
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where I(X ; Y) is the Mutual information of X and Y, H(X) is the entropy of X,

and H(X | Y) is the conditional entropy of X given Y. The result is always greater than

or equal to zero, where the greater the value, the relationship between the two variables

increases. If the calculated result is zero, then the variables are independent. A threshold

(cutoff) value is calculated in order to determine which attributes should be selected. As

proposed in [25] the threshold value is calculated by means of the standard deviation in

Equation 2.3:

S =

√
n
∑n

i=1 x
2
i −

∑n
i=1 xi

n(n− 1)
(2.3)

Where S is the standard deviation, x is the average value of the mutual information,

and n is the number of attributes used in the dataset. For an attribute to be selected, its

mutual information value must be greater than the threshold value S.

For the evaluation stage of the KDD process, the results obtained by the feature se-

lection methods will be evaluated using classification algorithms. At the evaluation stage,

the aim is to demonstrate that the most relevant risk factors resulting from the feature

selection process are significant to classify breast cancer cases as if they were perform-

ing with all the risk factors of the dataset. In the subsection below, the classification

algorithms for the evaluation stage are described.

2.4 Classification algorithms

A classification algorithm is a supervised learning technique that is used to identify the

category of new observations on the basis of training data. Classification algorithms

employ a variety of statistical, probabilistic and optimisation methods to learn from the

given dataset and detect useful patterns to classify new information. In this research we

opted to use different variants of supervised machine learning algorithms to evaluate the

results obtained from the feature selection stage. These algorithms were selected based on

the characteristics of the dataset and the capabilities of the development tool used (section

2.4 provides more information about the selected development tool, RapidMiner). Below
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is an overview of each of the seven algorithms used.

2.4.1 Decision tree

A decision tree [26] models the decision logic i.e., tests and corresponds outcomes for

classifying data items into a tree-like structure. The nodes of a decision tree normally

have multiple levels where the first or top-most node is called the root node. All in-

ternal nodes (i.e., nodes having at least one child) represent tests on input variables or

attributes. Depending on the test outcome, the classification algorithm branches towards

the appropriate child node where the process of test and branching repeats until it reaches

the leaf node. The leaf or terminal nodes correspond to the decision outcomes.

2.4.2 Decision stump

A decision stump [27] is a machine learning model consisting of a one-level decision tree.

That is, it is a decision tree with one internal node (the root) which is immediately

connected to the terminal nodes (its leaves). A decision stump makes a prediction based

on the value of just a single input variable.

2.4.3 Random tree

Random tree [28] is a tree-based classification with the difference that the tree is only

built with a random subset of variables and not with all input variables. Trees derived

with traditional methods often cannot be grown to arbitrary complexity, this produce a

possible loss of generation accuracy on unseen data. The limitation on complexity usually

means suboptimal accuracy on training data. Random tree tries to solve this limitation

with the selection of a subset of random variables to increases the accuracy for unseen

data.
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2.4.4 Deep learning

Deep learning [29] attempts to mimic the human brain through a combination of data

inputs, weights, and bias. These elements work together to accurately recognize, classify,

and describe objects within the data. Deep learning consist of multiple layers of intercon-

nected nodes, each building upon the previous layer to refine and optimize the prediction

or categorization. This progression of computations through the network is called forward

propagation. The input and output layers of a deep neural network are called visible lay-

ers. The input layer is where the deep learning model ingests the data for processing,

and the output layer is where the final prediction or classification is made. Another pro-

cess called backpropagation uses algorithms, like gradient descent, to calculate errors in

predictions and then adjusts the weights and biases of the function by moving backwards

through the layers in an effort to train the model. Together, forward propagation and

backpropagation allow a neural network to make predictions and correct for any errors

accordingly.

2.4.5 Generalized linear model

The generalized linear model (GLM) [30] extends simple linear regression by allowing each

outcome of the dependent variable to come from a large range of probability distributions.

It is an umbrella term that encompasses many other models, which allows the response to

have an error distribution other than a normal distribution. The models include Linear

Regression, Logistic Regression, and Poisson Regression. In a linear regression model,

the target variable is expressed as a linear function of all the predictors. The underlying

relationship between the response and the predictors is linear. Also, the error distribution

of the response variable should be normally distributed. Nevertheless, GLM models allow

us to build a linear relationship between the response and predictors, even though their

underlying relationship is not linear. This is made possible by using a link function, which

links the response variable to a linear model. Unlike linear regression models, the error

distribution of the response variable need not be normally distributed. The errors in the

response variable are assumed to follow an exponential family of distribution (i.e. normal,
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binomial, Poisson, or gamma distributions).

2.4.6 K-nearest neighbor

K-Nearest Neighbors (k-NN) [31] stores all available records and predicts the class of a

new instances giving attention to similarity measurements from the nearest neighbors in

likelihood. This classification technique is known to be lazy learning method because

it keeps the data members stored simply in efficient data structures like hash table by

virtue of which computation cost becomes less to check and apply the appropriate distance

function between the new observation and all k number of different data points stored and

then come to any conclusion about the label of the new data point, without constructing a

mapping function or internal model like other classification algorithms. Result is obtained

from a simple majority support of the k number of nearest neighbors of each new data

point.

2.4.7 Naïve Bayes

Naïve Bayes [32] is a classification technique based on the Bayes’ theorem with an as-

sumption of independence among predictors. In simple terms, a Naive Bayes classifier

assumes that the presence of a particular feature in a class is unrelated to the presence of

any other feature. Bayes’ theorem can describe the probability of an event A given some

prior probability of event B represented by P (A|B) in Equation 2.4:

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Where A and B are events, P (A) and P (B) are the probabilities of observing A and

B independent of each other, P (A|B) is the conditional probability, i.e. Probability of

observing A, given B is true, and P (B|A) is the probability of observing B, given A is

true.
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2.5 Performance Metrics

In order to understand the outputs of classification methods and to identify whether the

results are good or bad, the so-called confusion matrix [33] is often used. The basic

framework of the confusion matrix has been provided in Figure 2.7 (based on [33]). For

a binary classification problem the framework has two rows and two columns. Across the

top is the predicted class labels and down the side are the actual class labels. Each cell

contains the number of predictions made by the classifier that fall into that cell.

Figure 2.7: The basic framework of the confusion matrix (based on [33]).

In this framework, true positives (TP) are the positive cases where the classifier cor-

rectly identified them. Similarly, true negatives (TN) are the negative cases where the

classifier correctly identified them. False positives (FP) are the negative cases where

the classifier incorrectly identified them as positive and the false negatives (FN) are the

positive cases where the classifier incorrectly identified them as negative. The following

measures, which are based on the confusion matrix, are commonly used in the literature

an in this research are used to analyse the performance of classifiers:

Accuracy: It is the total number of correct predictions divided by the total number

of predictions, defined by Equation 2.5. Accuracy is a metric that measures the

balance between true positives and true negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)
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Precision: Precision is the number of true positives divided by the number of true pos-

itives and false Positives (Equation 2.6). Put another way, it is the number of

positive predictions divided by the total number of positive class values predicted.

It is also called the Positive Predictive Value (PPV). Precision can be thought of as

a measure of a classifiers exactness.

Precision =
TP

TP + FP
(2.6)

Recall: Recall is the number of true positives divided by the number of true positives

and the number of false negatives (Equation 2.7). Put another way it is the number

of positive predictions divided by the number of positive class values in the test

data. It is also called sensitivity or the True Positive Rate (TPR). Recall can be

thought of as a measure of a classifiers completeness.

Recall =
TP

TP + FN
(2.7)

2.6 Development Tools

For the development of this research, we were looking for a software tool focused on data

analysis, able to provide a set of useful methods for data preparation, implementation

of machine learning algorithms and for data visualization, and whose learning curve was

efficient and fast. These days there are several tools available that meet these characteris-

tics, such as RapidMiner and Weka. These tools are known to help in cluster, regression,

and classification analysis, data visualization, text mining, etc. These tools can assist in

transforming a vast amount of data into useful information and knowledge.

RapidMiner 2 is an user interactive environment for machine learning and data mining

processes. It is opensource, free project implemented in Java. It represents a modu-

lar approach to design even very complex problems, a modular operator concept which

allows the design of complex nested operator chains for a huge number of learning prob-
2https://rapidminer.com
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lems. RapidMiner uses XML to describe the operator trees modeling knowledge discovery

processes. RapidMiner has flexible operators for data input and output in different file

formats. It contains more than 100 learning schemes for classification, regression and

clustering tasks [34].

Weka3 is a widely used toolkit for machine learning and data mining that was originally

developed at the University of Waikato in New Zealand. It contains a large collection of

state-of-the-art machine learning and data mining algorithms written in Java. WEKA

contains tools for regression, classification, clustering, association rules, visualization, and

data pre-processing [34].

Comparing the two tools, RapidMiner proved to be a better alternative for the follow-

ing reasons:

• It has a wider variety of operators for data processing and modeling. Provides

potentially useful operators at the preprocessing stage.

• In addition to the default operators, it has an extensive catalog of extensions to

download for specific problems.

• It has an extension to use Weka operators.

• It provides a wide range of controls to facilitate dynamic visualization of data and

results.

• Provides the option to create custom operators.

• The documentation is extensive and frequently updated.

2.7 Related Work

Some relevant works related to identifying relevant attributes in datasets to determine

the likelihood of breast cancer [35]–[39], most of them focus on analyzing databases with

clinical information from specialized imaging studies, such as mammograms. Nevertheless,
3https://www.cs.waikato.ac.nz/ml/weka/
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we are interested in those works that determine the relevant risk factors and their use in

the prediction of breast cancer. The following studies focus on analyze the relevance of

breast cancer risk factors with multiples feature selection and machine learning techniques

[40]–[43].

The authors in [40], present a prevention and control system for breast cancer by

means of Item Rule Association (IRA) algorithms applied on a private dataset with 2,966

records and 83 attributes. An important characteristic of their work is the creation of

their own dataset by interviewing patients from 22 hospitals over a one-year period and

storing clinical, personal, and socioeconomic information. Three types of rules defining

the more relevant risk factors were identified; 35 rules were obtained using a single factor,

19 rules were obtained combining two factors, and 9 rules were obtained combining three

factors.

In [41], the authors focused on determining breast cancer risk factors for patients in

Indonesia and identified differences against patients in the United States, using a private

dataset with 1907 records and 21 attributes (containing demographic, pathology and

therapy information). They used three features selection methods: i) Information gain,

ii) Fisher’s discriminant, and iii) Chi-squared test, to select the best attributes (risk

factors). They also applied Hierarchical K-means clustering to remove attributes that

have the lowest contribution. As a result, out of the 21 original attributes, 14 relevant

attributes were obtained.

Rather than determining the relevance of risk factors, in [42], the authors analyzed

the effect of caffeine consumption on the incidence of breast cancer cases. A Bayesian

network was used on a dataset with 1,302 records from The Clinical Breast Care Project

(CBCP) . The study concluded that caffeine consumption does not affect the incidence

of cancer in its study population.

In [43], are generated risk factor rules by means of Association Rule Mining (ARM),

using the Breast Cancer Surveillance Consortium’s (BCSC) Risk Factors dataset. This

public dataset contains 6,318,638 cases and 13 attributes, although all records containing

at least one missing value were discarded. The Logit model was used to select those factors
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that may affect the likelihood of breast cancer. A set of 5 rules was obtained for breast

cancer cases and 4 rules for non-cancer cases. However, because of the class imbalance

problem, they had to adjust the algorithm for the breast cancer cases.

The class imbalance is a problem that is commonly found in cancer-related datasets,

since there are fewer positive cases compared to the number of negative cases. In the

literature, few papers that address this problem were identified [44], [45].

In [44], the authors focused on this issue by implementing three data-level resampling

approaches: random under-sampling, random over-sampling, and a hybrid of over- and

under-sampling. These techniques were applied on the BCSC’s Risk Factors dataset, after

discarding all records containing at least one missing value. To evaluate the results of

each of the approaches, the authors used three different classification algorithms: Decision

Tree, Random Forest, and XGBoost. Their results showed that performance improves

when resampling techniques are used compared to when no techniques are applied.

In [45], the authors proposed a prognosis model framework to predict Invasive Disease-

Free Survival (i.e., the length of time after the primary treatment ends and no signs of

cancer appear again) for early-stage breast cancer patients. They used a private dataset

with 12,119 records and 89 attributes of the Clinical Research Center for Breast (CRCB)

from West China Hospital of Sichuan University. The features consist of demographic,

diagnosis, pathology, and therapy information. A Stratified Feature Selection was used

by calculating the importance score using Gradient boosting decision tree algorithm (XG-

Boost), that resulted in a selection of 23 features, including some risk factors.

2.8 Summary

This chapter provides a medical background to understand the relationship between risk

factors and breast cancer, and the social problem that this disease represents. As part

of the computational background, the stages of the Knowledge Discovery in Databases

process that this thesis uses as part of the methodology were described. In addition, an

overview of the methods and techniques used at the data mining and evaluation stages

was provided. Finally, the related work to the research topic was presented, as well the
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alternative solutions that have been proposed.
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Chapter 3

Dataset and Preprocessing

In this chapter, the selection criteria for the dataset is described. Next, a description of

the characteristics of the selected dataset is provided. Finally, each of the necessary steps

that were executed for the preprocessing stage are explained. This chapter covers the first

two stages of the Knowledge Discovery in Databases process: selection and preprocessing.

3.1 Dataset Selection

This section describes what was done during the selection stage. The first part of this

research was to gather and analyze all possible datasets that could be used. Unfortu-

nately, the number of datasets publicly available that are related to breast cancer, and

particularly, risk factors, is very small. Additionally, this initial search was complicated

because the majority of public datasets of breast cancer contain information about di-

agnosis, pathology, and therapy information, but not enough about risk factors. This is

the case for some of the most widely used public datasets in the breast cancer literature;

Beast Cancer dataset [46] by the Oncology Institute, Breast Cancer Wisconsin Diagnostic

dataset [47] and Breast Cancer Wisconsin Prognostic dataset [48], which only provide

information about one or a maximum of two risk factors.

Although many of the public datasets did not have enough information on risk fac-

tors, four datasets provided by the Breast Cancer Surveillance Consortium (BCSC) were

identified with a good number of risk factors and cases. The characteristics of the BCSC
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datasets are described below and summarized in the Table 3.1.

Risk Estimation Dataset [49]: Includes data from 2,392,998 mammograms and 16 at-

tributes of which 11 are risk factor of breast cancer. Cancer registry and pathology

data were linked to data on mammography and incident breast cancer (invasive 1

or ductal carcinoma in situ 2). In August 2012, the BCSC added a second version

of this risk estimation dataset. The second version limits observations to one per

woman, as opposed to multiple observations.

Risk Factors Dataset [51]: Includes information from 6,788,436 mammograms between

January 2005 and December 2017. The dataset includes participant characteristics

previously shown to be associated with breast cancer ris. The dataset has 13 at-

tributes of which 11 are risk factors.

Hormone Therapy and Breast Cancer Incidence [52]: The dataset includes infor-

mation from 603,411 screening mammograms performed on women from January

1997 to December 2003. It includes data from women aged 50-69 who did not have

a previous diagnosis of breast cancer and who had undergone breast mammography

in the prior 9 to 30 months. The mammogram data were linked to cancer registry

and pathology data to identify incident breast cancer (invasive or ductal carcinoma

in situ) within one year after the screening mammogram. This aggregate dataset

includes frequencies and adjusted quarterly rates of postmenopausal hormone ther-

apy use and breast cancer (overall and by invasive1 or DCIS2 and estrogen receptor

status).

Digital Mammography Dataset [53]: Includes data derived from a random sample

of 20,000 digital and 20,000 film-screen mammograms performed between January

2005 and December 2008. Some women contribute multiple examinations to the

data. The dataset includes 13 attibutes of which 5 are risk factors.

1Invasive breast cancer is when the cancer has spread into surrounding breast tissue [50].
2Ductal carcinoma in situ (DCIS) is a non-invasive or pre-invasive breast cancer [50].
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Table 3.1: Main characteristics of the BCSC datasets.

Dataset Attributes Risk Factors Cases Records
Risk Estimation v.1 16 11 2,392,998 280,660
Risk Estimation v.2 16 11 1,007,660 181,903
Risk Factors 13 11 6,788,436 1,522,340
Hormone Therapy and
Breast Cancer Incidence 15 1 603,411 28

Digital Mammography 13 5 40,000 40,000

For our analysis, the Risk Estimation Dataset v.2 3 was selected for three reasons: i) it

provides an attribute indicating the presence of breast cancer, that is used to classify each

case, ii) it contains information about 11 risk factors, and iii) patients had no previous

diagnosis of breast cancer up until the screening test recorded in the dataset. This last

point is important because we are interested in determining relevant risk factors when no

cancer has been diagnosed before. For instance, the Risk Factors Dataset includes patient

information that have had cancer at some point in their life. As presented in Table 3.1, it

is important to note that the Risk Estimation dataset has two versions: the first version

(v.1) contains multiple observations per patient obtained on different dates; while the

second version (v.2) is limited to only one observation per patient (all other information

is the same in both versions). An issue with the first version is that the dataset does not

contain specific information about those multiple observations, for instance, when each

observation occurred and for which patient. Thus, we preferred to use the second version

to make sure the information was related to single observations. The following section

provides a detailed description of the attributes and records of the selected dataset.

3.2 Dataset Description

The records of the Risk Estimation Dataset v.2 are described by 16 attributes shown in

Table 3.2, each attribute is given a name, a description and the values that can be assigned

to the attribute. The Attribute column provides the original names of each attribute in

the dataset. Although most attribute names are already understandable, the Description
3Data collection and sharing was supported by the National Cancer Institute-funded Breast Cancer

Surveillance Consortium (HHSN261201100031C). http://www.bcsc-research.org/
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column provides detailed information about the attribute. Finally, the column Values lists

the values that can be assigned to the attribute, which are given for a numerical value

from 0 to 10. In each attribute, these numeric values have different meanings, which are

also presented in the last column of Table 3.2.

The first attribute menopause provides the person’s menopause status; the possible

values that may present in this attribute are 0, 1 and 9; the value 0 represents that the

person’s menopause status is premenopausal, the value 1 is assigned when the person’s

menopause status is postmenopausal or when the person is over 55 years old; finally, the

value 9 is assigned when the data is unknown.

The attribute of agegrp indicates the age group to which the patient belongs; it can

take values from 1 to 10, each value has a range of 5 years starting with the value 1

ranging from 35 to 39 years and ending with the value 10 ranging from 80 to 84 years.

The density attribute provides the person’s breast density based on the Breast Imaging

Reporting and Data System (BI-RADS) scale; values range from 1 to 4 incrementally, with

1 being the lowest density value and 4 being the value for highest density; finally, the value

9 is assigned when the data is unknown or when a different measurement system was used.

The fourth attribute race includes four different races: white, asian or pacific islander,

black and native american; the value 5 is assigned when the person’s race is not among

these options or when the race is mixed, the last value that can be assigned is 9, it is used

when the person’s race is unknown.

The attribute hispanic works to identify those people who are hispanic, it can be

assigned the value of 0 for those who are not hispanic and 1 for those who are; if it is

unknown if the person is hispanic, the value 9 is assigned.

The attribute bmi categorizes the person’s body mass index (BMI4) based on four

options: 1 for BMI between 10 and 24.99, 2 for BMI between 25 and 29.99, 3 for BMI

between 30 and 34.99, and 4 for those with BMI over 35, the value 9 is assigned when the

person’s BMI is unknown.
4According to the World Health Organization [54], for adults over 20 years old, a BMI less than 18.5

is equivalent to underweight, from 18.5 to 24.9 is a normal weight, from 25.0 to 29.9 is pre-obesity, from
30.0 to 34.9 is obesity class I, from 35.0 to 39.9 is obesity class II, and above 40 is obesity class III.
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The seventh attribute agefirst, provides information about the age of the person’s first

birth; the possible values that can be assigned to this attribute are 0, 1, 2 and 9; the

value 0 is assigned when the first birth occurred when the person was less than 30 years

old and the value 1 when the person was 30 or more; if the person has never given birth,

the value 2 is assigned; when the data is unknown, the value 9 is assigned.

The attribute nrelbc indicates the number of first-degree relatives with breast cancer

that the person has; the value 0 is assigned if the person does not have relatives with breast

cancer, the value 1 if the person have only one relative and the value 2 if the person have

2 or more relatives with breast cancer, the value 9 is assigned when the information is

unknown.

The attribute brstproc indicates whether the person has previously undergone any

breast procedure; the value 0 means that the person has not performed breast procedures

before and the value 1 means that some procedure has been performed, the value 9 is set

when the data is unknown.

To know the result of the person’s last mammogram, the attribute lastmamm takes

the value 0 when it is negative and 1 when it is a false positive; if the data is unknown,

the value 9 is assigned.

The eleventh attribute surgmeno provides the person’s type of menopause; the possible

values that may present in this attribute are 0, 1 and 9; the value 0 represents that the

person’s type of menopause is natural, the value 1 is assigned when the type of menopause

is surgical, finally, the value 9 is assigned when the data is unknown or when the values

of menopause is 0 or 9.

The attribute hrt indicates if the person is currently taking hormone restitution ther-

apy, if this is the case the value of this attribute is 1, otherwise it is 0; as in surgmeno,

the value 9 is assigned when the data is unknown or when the values of menopause is 0

or 9.

The attribute invasive identifies those people who have been diagnosed with invasive

breast cancer. The attribute cancer indicates the person’s cancer diagnosis, the value 1

is assigned when the diagnosis is positive to cancer and the value 0 is assigned in the
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opposite case.

The dataset authors provide the attribute training as a suggestion to identify the

records that belong to the training and validation set, assigning a value of 1 and 0 respec-

tively.

Finally the attribute called count represents the number of people who presented the

same combination of values of the previous attributes. The dataset Risk Estimation v.2

is a large cross-classification of risk factors by cancer outcome, meaning that if the value

of the count column for a particular row is 13, means that there were 13 people who

reported similar conditions to obtain the same values of the attributes.

Table 3.2: Description of attributes of the Risk Estimation Dataset v.2.

No. Attribute Description Values

1 menopause Menopausal status
0 = premenopausal
1 = postmenopausal or age ≥ 55
9 = unknown

2 agegrp Age (years) in 5-year groups

1 = 35 - 39
2 = 40 - 44
3 = 45 - 49
4 = 50 - 54
5 = 55 - 59
6 = 60 - 64
7 = 65 - 69
8 = 70 - 74
9 = 75 - 79
10 = 80 - 84

3 density BI-RADS breast density
codes

1 = almost entirely fat
2 = scattered fibroglandular den-
sities
3 = heterogeneously dense
4 = extremely dense
9 = unknown or different mea-
surement system

4 race Race

1 = white
2 = asian/pacific islander
3 = black
4 = native american
5 = other/mixed
9 = unknown

5 hispanic Patient is Hispanic
0 = no
1 = yes
9 = unknown
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Table 3.2: Description of attributes of the Risk Estimation Dataset v.2 (continued).
No. Attribute Description Values

6 bmi Body mass index

1 = 10 - 24.99
2 = 25 - 29.99
3 = 30 - 34.99
4 = 35 or more
9 = unknown

7 agefirst Age at first birth

0 = age < 30
1 = age 30 or greater
2 = nulliparous
9 = unknown

8 nrelbc Number of first-degree
relatives with breast cancer

0 = zero
1 = one
2 = two or more
9 = unknown

9 brstproc Previous breast procedure
0 = no
1 = yes
9 = unknown

10 lastmamm Result of last mammogram
0 = negative
1 = false positive
9 = unknown

11 surgmeno Type of menopause
0 = natural
1 = surgical
9 = unknown or not menopausal
(menopause=0 or menopause=9)

12 hrt Current hormone therapy
0 = no
1 = yes
9 = unknown or not menopausal
(menopause=0 or menopause=9)

13 invasive Diagnosis of invasive breast
cancer

0 = no
1 = yes

14 cancer
Diagnosis of invasive or
ductal carcinoma in situ
breast cancer

0 = no
1 = yes

15 training Training data 0 = no (validation)
1 = yes (training)

16 count
Frequency count of this com-
bination of covariates and out-
comes (all variables 1 to 15)

Table 3.3 shows the distribution of positive and non-cancer numbers of both cases and

records within the dataset. To clarify the difference between case and record terms, it is

important to define that a case corresponds to a person, and a record corresponds to a row

in the dataset, which, contains in the count attribute the number of cases that reported

the same values of the attributes 1 to 15 of Table 3.2. This means that the number of
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records in the dataset is less than the number of cases because each record corresponds to

several cases. In total, the dataset contains 1,007,660 cases with 7,319 (0.73%) positive

cancer and 1,000,341 (99.27%) non-cancer cases. The difference between the number of

positive and non-cancer cases is clearly evident. Regarding to the number of records,

the overview is similar, the dataset contains 181,903 records with 6,274 (3.45%) positive

cancer and non-cancer 175,629 (96.55%) records. This imbalance in the data is an issue

commonly present in this type of problems and will be further discussed in Chapter 4.

Table 3.3: Distribution of positive and non-cancer cases within the Risk Estimation v.2
dataset.

Breast Cancer
Diagnosis Cases Cases (%) Records Records (%)

Yes 7,319 0.73 6,274 3.45
No 1,000,341 99.27 175,629 96.55
Total 1,007,660 100 181,903 100

After the selection of the dataset, it was necessary to apply a set of preprocessing

operations in order to improve the quality of the data. The preprocessing stage in the

KDD process is important for the success of later stages. The following section describes

the preprocessing operations applied to the Risk Estimate v.2 dataset.

3.3 Preprocessing

Data preprocessing techniques generally refer to the addition, deletion, or transformation

of training set data [6]. Data preprocessing is an important stage in the KDD process,

because it can be handle various types of dirty data on large datasets. Dirty data consist

of data noise, incomplete, inconsistent and missing values.

To evaluate data quality during preprocessing, we use the tool called Quality Measures

that RapidMiner provides. Quality Measures is a way of seeing at a glance typical data

quality problems. They are encoded with the colors specified below. The Quality Measures

(located at the top left) of the agegrp attribute are shown as an example in Figure 3.1.

Here are the details about how those quality measurements are calculated and what they

mean:
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• Missing (red): The number of missing values in this column divided by the number

of rows.

• Infinite (red): The number of infinite values in this column divided by the number

of rows.

• ID-ness (blue): The number of different values for this column divided by the

number of rows.

• Stability (gray): The count for the most frequent non-missing value for this column

divided by the number of rows.

• Valid (green): The fraction of values of this column which are not counted as

missing, infinite, id, or stable.

Figure 3.1: Column details in RapidMiner.

Table 3.4 shows the quality measures of the attributes in the original Risk Estimation

v.2 dataset, before preprocessing. The rows correspond to each of the attributes and

the columns to the quality measures. Although it seems that initially all attributes have

a good percentage of valid values, some irregularities are detected. For example, all

unknown values are not properly detected, these should be reflected in the percentage of
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the Missing measure. In order to resolve these irregularities and obtain a dataset suitable

for its use in later stages, we applied four different preprocessing operations: i) simple

conversion operations, ii) transformation of attributes, iii) removal of attributes and iv)

elimination of records with unknown values.

Table 3.4: Initial quality measurements of the Risk Estimation v.2 dataset.

No. Attribute Missing Infinite ID-ness Stability Valid
1 menopause 0.00% 0.00% 0.00% 77.67% 22.33%
2 agegrp 0.00% 0.00% 0.01% 16.97% 83.03%
3 density 0.00% 0.00% 0.00% 29.91% 70.09%
4 race 0.00% 0.00% 0.00% 57.20% 42.79%
5 hispanic 0.00% 0.00% 0.00% 57.31% 42.69%
6 bmi 0.00% 0.00% 0.00% 41.05% 58.95%
7 agefirst 0.00% 0.00% 0.00% 39.77% 60.23%
8 nrelbc 0.00% 0.00% 0.00% 62.25% 37.75%
9 brstproc 0.00% 0.00% 0.00% 60.94% 39.06%
10 lastmamm 0.00% 0.00% 0.00% 56.31% 43.69%
11 surgmeno 0.00% 0.00% 0.00% 45.04% 54.96%
12 hrt 0.00% 0.00% 0.00% 35.49% 64.51%
13 invasive 0.00% 0.00% 0.00% 97.11% 2.89%
14 training 0.00% 0.00% 0.00% 65.99% 34.01%
15 cancer 0.00% 0.00% 0.00% 96.34% 3.65%
16 count 0.00% 0.00% 0.08% 57.07% 42.85%

3.3.1 Simple conversion operations

Two conversion operations were applied to the original dataset. The first operation was

to convert all data types from numerical to categorical, except the count attribute which

remained as a numerical attribute. As mentioned in Chapter 2, the data type of the

predictor and outcome varibles are important to define the feature selection and classifi-

cation algorithms that are useful to work with. Initially, all the attribute values within

the dataset are numbers from 0 to 10, due to this fact Rapid Miner assigned them the

data type Integer by default, however, the actual meaning of those values corresponds

to a data type Category. It is important to perform this operation so that the data is

interpreted properly.

The second operation was to convert all 9 values to the categorical value of unknown

in all attributes that contain this value (i.e., attributes 1 and 3 to 12, in Table 3.2).
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It is important to perform this operation with the aim that the feature selection and

classification algorithms do not evaluate it as a categorical value, instead the algorithms

evaluate it as what it is, unknown data.

Table 3.5 shows the quality measures after the two previous operations, the table only

lists attributes 1 and 3 to 12 because the quality measures for attributes 2 and 13 to 16

are the same as in Table 3.4. It can be noticed that all attributes have decreased in the

percentage of Valid measure due to the increase in the percentage of Missing. While these

values in the quality measures could be considered worse than the initial ones, it should

be noted that the data is being assigned the correct meaning for its use in later stages of

the KDD process.

Table 3.5: Quality measurements after simple conversion operations.

No. Attribute Missing Infinite ID-ness Stability Valid
1 menopause 6.33% 0.00% 0.00% 82.96% 10.71%
3 density 25.45% 0.00% 0.00% 40.05% 34.50%
4 race 20.54% 0.00% 0.00% 71.95% 7.51%
5 hispanic 29.34% 0.00% 0.00% 81.15% 0.00%
6 bmi 40.38% 0.00% 0.00% 37.96% 21.66%
7 agefirst 35.00% 0.00% 0.00% 60.92% 4.08%
8 nrelbc 13.70% 0.00% 0.00% 72.16% 14.14%
9 brstproc 12.08% 0.00% 0.00% 69.33% 18.59%
10 lastmamm 38.41% 0.00% 0.00% 91.22% 0.00%
11 surgmeno 45.93% 0.00% 0.00% 59.21% 0.00%
12 hrt 35.45% 0.00% 0.00% 54.58% 9.97%

3.3.2 Attribute transformation

After analyzing the values of three attributes, specifically, value 1 of the menopause at-

tribute, value unknown of the surgmeno attribute, and value unknown of the hrt attribute

(attributes 1, 11 and 12 in Table 3.2 respectively); we decided to transform these three

attributes to clarify the information given by those values.

For the menopause attribute, value 1 refers to postmenopausal women or women of

more than 55 years old. It is possible to identify true postmenopausal cases by means

of the surgmeno attribute. If the surgemeno attribute contains a 0 or 1, it means that

the record refers to a postmenopausal woman, and these records are assigned a value of

44



1 in the menopause attribute. A new value 2 was created and assigned to those cases

where it is not possible to define whether a woman is postmenopausal or is older than 55

years. The attribute was renamed as menopause_new to differentiate from the original

(see attribute 1 in Table 3.7). Originally, value 1 was assigned to 140,843 records; after

the transformation 107,810 records were detected as true postmenopausal records (that

were left with a value of 1 ), and the rest (33,033 records) were assigned the new value of

2. As can be seen in Table 3.6, this change produces an increase in the Valid measure

from 10.71% to 29.39% because a new value is introduced to the variety of values of the

attribute and this produces that the stability measure decreases from 82.96% to 64.28%.

For the surgmeno attribute, value unknown is given to women that have not undergone

menopause yet or the status of menopause is unknown. To clearly identify cases that have

not undergone menopause and separate them from those that are unknown, a new value

2 was created to refer to cases that are still not menopausal by checking if the menopause

attribute is 0. The attribute was renamed as surgmeno_new to differentiate from the

original (see attribute 10 in Table 3.7). Originally, value unknown was assigned to 83,545

records; after this operation 29,542 records were given the value of 2, and 54,003 remained

as unknown. As presented in Table 3.6, this change produces an significant increase in

the valid measure from 0.00% to 24.42% because the values for missing and stability are

reduced from 45.93% to 29.69% and 59.21% to 45.89% respectively.

Similarly, for the hrt attribute, the same value unknown is assigned to cases that

have not presented menopause or to cases where the use of hormone restitution therapy is

unknown. To clearly identify cases that have not undergone menopause and separate them

from those that are unknown, a new value 2 was created to refer to cases that are still not

menopausal by checking if the menopause attribute is 0. The attribute was renamed as

hrt_new to differentiate from the original (see attribute 11 in Table 3.7). Originally, value

unknown was assigned to 64,489 records; after this operation 29,542 records were given

the value of 2, and 34,947 remained as unknown. As presented in Table 3.6, this change

produces an significant increase in the valid measure from 9.97% to 36.96% because the

values for missing and stability are reduced from 35.45% to 19.21% and 54.58% to 43.83%
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respectively.

Table 3.6: Quality measurements after attribute transformation.

No. Attribute Missing Infinite ID-ness Stability Valid
1 menopause 6.33% 0.00% 0.00% 64.28% 29.39%
11 surgmeno 29.69% 0.00% 0.00% 45.89% 24.42%
12 hrt 19.21% 0.00% 0.00% 43.83% 36.96%

3.3.3 Attribute removal

There are potential advantages to removing predictors prior to modeling [6]. First, fewer

predictors means decreased computational time and complexity. Second, if two predictors

are highly correlated, this implies that they are measuring the same underlying informa-

tion. Removing one should not compromise the performance of the model and might lead

to a more parsimonious and interpretable model. Third, some models can be crippled

by predictors with degenerate distributions. In these cases, there can be a significant

improvement in model performance or stability without the problematic variables.

Four attributes were removed from the dataset. The invasive attribute, that refers to

the diagnosis of invasive or ductal carcinoma, was not considered due to the causality of

correlation with the cancer attribute of interest. The training attribute suggests whether

that record in the dataset is to be considered for training or validation. However, because

of the next transformations to be described we cannot use this division of records, thus

the attribute is removed. The last_mammogram attribute indicates the result of the last

mammogram taken before the index mammogram that relates to the cancer attribute.

Since it only contains information about negative and false positive results, then, it can

be removed without affecting our analysis. Finally, the count attribute is removed to keep

only one example of the record and remove duplicates. After this operation the number

of records and cases is the same. Table 3.7 shows the list of resulting attributes after

attribute removal.
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Table 3.7: Description of attributes of the Risk Estimation Dataset v.2 after
preprocessing.

No. Attribute Description Values

1 menopause_new Menopausal status
0 = premenopausal
1 = postmenopausal
2 = postmenopausal or
age>=55

2 agegrp Age (years) in 5-year
groups

1 = 35 - 39
2 = 40 - 44
3 = 45 - 49
4 = 50 - 54
5 = 55 - 59
6 = 60 - 64
7 = 65 - 69
8 = 70 - 74
9 = 75 - 79
10 = 80 - 84

3 density BI-RADS breast density
codes

1 = almost entirely fat
2 = scattered fibroglandular
densities
3 = heterogeneously dense
4 = extremely dense

4 race Race

1 = white
2 = asian/pacific islander
3 = black
4 = native american
5 = other/mixed

5 hispanic Patient is Hispanic 0 = no
1 = yes

6 bmi Body mass index

1 = 10 - 24.99
2 = 25 - 29.99
3 = 30 - 34.99
4 = 35 or more

7 agefirst Age at first birth
0 = age < 30
1 = age 30 or greater
2 = nulliparous

8 nrelbc Number of first-degree
relatives with breast cancer

0 = zero
1 = one
2 = two or more

9 brstproc Previous breast procedure 0 = no
1 = yes

10 surgmeno_new Type of menopause
0 = natural
1 = surgical
2 = not menopausal

11 hrt_new Current hormone therapy
0 = no
1 = yes
2 = not menopausal
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Table 3.7: Description of attributes of the Risk Estimation Dataset v.2 after
preprocessing (continued).

No. Attribute Description Values

12 cancer
Diagnosis of invasive or
ductal carcinoma in situ
breast cancer

0 = no
1 = yes

3.3.4 Elimination of records with unknown values

Most of the attributes, as shown in Table 3.2, contain the unknown value. In general, we

had three options for handling missing or unknown data: i) leave the records as they are,

ii) apply imputation methods by substituting the missing data to complete the dataset

or, iii) discard all records containing missing values. If we leave the missing data in

the dataset, the feature selection methods and machine learning algorithms could get

confused with these unknown values and be used as true values for the attributes. This

would result in classification estimates with information that is not really known. The

second option could add some bias to the data, and in health-related datasets this could

lead to unreliable results. Even though the third option would discard a large number

of records, after careful analysis we decided to remove all records containing one or more

unknown values and work only with records containing true values. After this operation,

out of the 181,903 records in the dataset (see Table 3.3), we are left with 25,251 records

after this operation (see Table 3.8).

Table 3.8: Distribution of positive and non-cancer cases within the Risk Estimation v.2
dataset after elimination of records with unknown values.

Breast Cancer
Diagnosis Records Records (%)

Yes 1,053 4.17
No 24,198 95.83
Total 25,251 100

After removing records with unknown values, the resulting quality measures are shown

in Table 3.9. It can be observed that if the quality measurement missing is decreased to

0.00%, then the valid values increase.
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Table 3.9: Quality measurements after elimination of records with unknown values.

No. Attribute Missing Infinite ID-ness Stability Valid
1 menopause_new 0.00% 0.00% 0.01% 75.89% 24.10%
2 agegrp 0.00% 0.00% 0.04% 19.17% 80.79%
3 density 0.00% 0.00% 0.02% 36.68% 63.30%
4 race 0.00% 0.00% 0.02% 71.23% 28.75%
5 hispanic 0.00% 0.00% 0.01% 88.48% 11.51%
6 bmi 0.00% 0.00% 0.02% 35.10% 64.88%
7 agefirst 0.00% 0.00% 0.01% 56.96% 43.03%
8 nrelbc 0.00% 0.00% 0.01% 67.41% 32.58%
9 brstproc 0.00% 0.00% 0.01% 65.79% 34.20%
10 surgmeno_new 0.00% 0.00% 0.01% 44.12% 55.87%
11 hrt_new 0.00% 0.00% 0.01% 40.82% 59.17%
12 cancer 0.00% 0.00% 0.01% 95.92% 4.07%

3.4 Summary

Following the KDD process, in this chapter we searched and selected the dataset used in

this thesis. The Risk Estimation v.2 dataset proved to be the best option compared to

other datasets found during the search. In addition, the prepocessing stage was performed,

at the end of this stage the attributes’ data types were converted to categorical; the values

of three attributes were transformed and renamed (i.e., menopause_new, surgmeno_new,

and hrt_new); four attributes were removed from the dataset (i.e., invasive, training,

last_mammogram and count); and all records with unknown values were removed. The

final list of attributes is presented in Table 3.7. The number of final records are found

in Table 3.8. The quality measures of the attributes shown in Table 3.9. The resulting

dataset will be used for the next chapter.
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Chapter 4

Selection and Validation of Risk Factors

The previous chapter described the activities carried out to select and preprocess the

dataset used in this research. This chapter describes the activities carried out for the

Data mining and Evaluation stage of the Knowledge Discovery in Databases process.

The methods identified to perform the feature selection and validation are implemented.

4.1 Feature Selection

The main purpose of this research work is to identify the relevant risk factors that could

accurately predict whether a woman could get breast cancer or not. To determine which

risk factors are more relevant, feature selection methods are used that involve statistical

evaluations that calculate how strong the relationship between each attribute and the

target variable is (where the target variable is the cancer attribute). To determine the

ranking of attributes, this research makes use of two feature selection methods: Chi-

squared test and Mutual Information.

4.1.1 Chi-squared test

As described in Chapter 2, in order to perform the Chi-squared test it is necessary to

define three things; the hypothesis of the test, the degrees of freedom of each attribute

and the value of p, which indicate the significance of the hypothesis test. The hypotheses

for the test are defined below:
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• Null Hypothesis (H0): Two variables are independent.

• Alternate Hypothesis (H1): Two variables are not independent.

Figure 4.1: Critical value in chi-squared (taken from [23]).

The degrees of freedom of each attribute are shown in Table 4.1 in the column named

D.F. The value p is defined with a low value p = 0.05 in order for the results to be

significant. After knowing the previous information, the critical values of each attribute

were identified using Figure 4.1 (taken from [23]) and are shown in the column C.V. in

Table 4.1. The column X2 in Table 4.1 presents the chi-squared values obtained for each
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of the 11 risk factors within the dataset. The values are sorted in descending order. The

higher the value of an attribute the more relevant it is considered. The last two columns

in Table 4.1 show the test results for hypotheses H0 and H1. Which are evaluated by the

following two conditions:

X2 > C.V → Reject(H0) ∧ Accept(H1) (4.1)

X2 < C.V → Accept(H0) ∧Reject(H1) (4.2)

Condition 4.1 indicates that if the value X2 is greater than the critical value (C.V.)

of the attribute then null hypothesis (H0 ) is rejected and alternative hypothesis (H1 )

is accepted. This means that the variables are not independent and there is a correla-

tion between them, the correlation is established between the attribute of the risk factor

evaluated and the variable that indicates that the person has breast cancer. Otherwise,

condition 4.2 indicates that if the value X2 is less than the critical value (C.V.) of the

attribute then the null hypothesis (H0 ) is accepted and the alternative hypothesis (H1 )

is rejected. This means that the variables are independent and there is no relationship

between the attribute of the risk factor evaluated and the variable that indicates if the

person has breast cancer.

Table 4.1: Chi-squared results.

No. Attribute X2 D.F C.V. H0 H1
1 agegrp 170.285 9 16.92 Reject Accept
2 hrt_new 84.666 2 5.99 Reject Accept
3 surgmeno_new 82.351 2 5.99 Reject Accept
4 menopause_new 82.305 1 3.84 Reject Accept
5 brstproc 49.162 1 3.84 Reject Accept
6 density 40.555 3 7.81 Reject Accept
7 nrelbc 21.018 2 5.99 Reject Accept
8 hispanic 16.403 1 3.84 Reject Accept
9 agefirst 6.721 2 5.99 Reject Accept
10 race 4.455 4 9.49 Accept Reject
11 bmi 1.373 3 7.81 Accept Reject

The Table 4.1 shows that attributes from 1 to 9 are statistically significant at the 0.05

level. Only attributes 10 and 11 are not statistically significant. According to the obtained
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values the first four attributes could be considered as more relevant, i.e., the patient’s age

(agegrp), whether she had undergone hormone therapy (hrt_new), her type of menopause

(surgmeno_new), and her menopausal status (menopause_new). The next two attributes

are also interesting, whether the patient have had a breast procedure (brstproc) and the

patient’s breast density (density). The rest of the attributes could be considered less

relevant for this specific dataset.

4.1.2 Mutual information

Table 6 presents the values obtained from the Mutual Information. Again, the values are

sorted in descending order. The higher the value of an attribute the more relevant it is

considered. Here, as explained in Chapter 2, a threshold (cutoff) value was calculated

in order to determine which attributes should be selected. Our threshold value was

calculated by means of the standard deviation. For an attribute to be selected, its Mutual

Information value must be greater than the threshold value S. In this case, only the

first four attributes are greater than our calculated S = 0.00022. Notice that these four

selected attributes are the same most relevant calculated by the Chi-squared test. The

rest of the attributes have a similar ranking as given by the Chi-squared test.

Table 4.2: Mutual Information results.

No. Attribute Mutual Information Test for independence
1 agegrp 0.000739 Accept
2 hrt_new 0.000398 Accept
3 surgmeno_new 0.000389 Accept
4 menopause_new 0.000389 Accept
5 brstproc 0.000202 Reject
6 density 0.000196 Reject
7 hispanic 0.000092 Reject
8 nrelbc 0.000085 Reject
9 agefirst 0.000031 Reject
10 race 0.000021 Reject
11 bmi 0.000006 Reject
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4.1.3 Definition of subsets of relevant attributes

To synthesize and validate the results obtained by the Chi-squared test and Mutual In-

formation, three subsets are defined based on the values given in the rankings of both

methods as seen in Table 4.3.

Table 4.3: Description of the new attributes after being transformed.

Attribute Values
Subset(4) {agegrp, hrt_new, surgmeno_new, menopause_new}
Subset(7) {Subset(4), brstproc, density, nrelbc}
Subset(11) {Subset(7), Hispanic, agefirst, race, bmi}

Subset(4) contains the four risk factors ranked as the most relevant in both Chi-squared

test and Mutual Information, corresponding to the patient’s age (agegrp), whether she

had undergone hormone therapy (hrt_new), her type of menopause (surgmeno_new),

and her menopausal status (menopause_new).

Subset(7) contains all attributes of Subset(4) plus the next three attributes given by

the Chi-squared test ; whether the patient has had a breast procedure (brstproc), the

patient’s breast density (density), and whether she has first-degree relatives with breast

cancer (nrelbc).

Finally, Subset(11) contains all the risk factors of the dataset. We need to consider all

risk factors to validate the previous two subsets as will be seen in the next sections. The

sets defined in this section shall be used at the Validation stage.

4.2 Risk Factors Validation

This section covers the Validation process, corresponding to the Evaluation stage of the

KDD process. Because the two feature selection methods used in this research are statis-

tical indicators focusing on the characteristics of the data itself, it is necessary to evaluate

whether the attributes identified as the most relevant are actually significant and related

to the effectiveness of a classification model. To achieve the evaluation, in this research

it is proposed to perform the training of the seven classification algorithms selected (De-

cision tree, Random tree, Decision stump, Deep learning, k-Nearest Neighbors (K-NN),
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Naïve Bayes and Generalized linear model) with the preprocessed dataset (with 11 at-

tributes and an target attribute that indicates the incidence of breast cancer) to obtain

the values of the performance metrics of each classifier. Subsequently, perform the train-

ing of the same classification algorithms but now, only with the attributes of the subsets

generated in the previous section. The aim is to demonstrate that the most relevant risk

factors resulting from the feature selection process are significant to obtain the values of

performance metrics as if they were training with all the risk factors of the preprocessed

dataset.

4.2.1 Imbalance classification problem

Before we try to validate our selected risk factors, it is necessary to tackle what is known

as the imbalance classification problem. This type of problem occurs when the number of

records of some class label is much larger than the other class. In other words, classes

are not represented equally. Table 4.4 shown that the dataset used in our research has

99.27% of non-cancer cases versus 0.73% of positive cancer cases. This problem remains

after the preprocessing phase described in Chapter 3, where all records with an unknown

value were eliminated. The resulting dataset ended up with 95.83% of non-cancer records

versus 4.17% of positive cancer records.

Table 4.4: Distribution of positive and non-cancer cases within the Risk Estimation v.2
dataset before and after preprocessing.

Breast Cancer
Diagnosis

Records before
preprocessing

Records after
preprocessing

Yes 7,319 (0.73%) 1,053 (4.17%)
No 1,000,341 (99.27%) 24,198 (95.83%)

Total 1,007,660 (100%) 25,251 (100%)

Imbalanced classifications pose a challenge for predictive modeling as most of the

machine learning algorithms used for classification were designed around the assumption

of a similar number of examples for each class. As a consequence of an unbalanced dataset,

the models obtained have poor predictive performance, specifically for the minority class.

This is a problem because typically, the minority class is more important and therefore the
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problem is more sensitive to classification errors for the minority class than the majority

class. The imbalance class classification problem brings with it the paradox of accuracy,

and it happens for example when in a dataset with 990 samples of a certain class "A"

and only 10 of another class "B", an algorithm will learn that the best assumption you

can make will be that every element is of class "A", since in this way you will get a

99% hit rate, this is known as paradox of accuracy. These results are not at all accurate

considering that it has failed in predicting 100% of the elements that were class "B".

Table 4.5 shows the results of training the seven classifiers selected with the complete

preprocessed dataset without having solved the data imbalance problem.

Table 4.5: Performance metrics with the complete preprocessed dataset.

Model Accuracy Precision Recall
Decision stump 95.83% unknown 0.00%
Decision tree 95.83% unknown 0.00%
Random tree 95.83% unknown 0.00%
Deep learning 91.32% 19.82% 34.86%
Generalized linear model 95.83% unknown 0.00%
Naïve Bayes 95.83% unknown 0.00%
k-NN 95.65% 13.34% 0.57%

If only accuracy is observed in Table 4.5, it could be deduced that the results of

the classifiers are good, since all values are greater than 90%. However, this is a classic

example of the paradox of accuracy ; the models classified all or most of the positive records

as negative, that is, the model has failed in predicting 100% of the positive cancer records,

and still obtained high accuracy. This can be easily confirmed by looking at the values of

the other two metrics beginning with precision. Precision is defined by the Equation 4.3:

Precision =
TP

TP + FP
(4.3)

When models register a precision of unknown is because the sum of TP + FP was

equal to 0, that means that the model did not identify any record as positive, neither true

positive (TP) nor false positive (FP). Having no true positive (TP), Recall gets a value

of 0.00% since the dividend (TP) in Equation 4.4 is 0. A low recall indicates many false

negatives (FN).
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Recall =
TP

TP + FN
(4.4)

The precision and recall values different to unknown and 0.00% obtained by Deep

learning and k-NN indicate that these two classifiers were able to detect a small number

of true positives (TP) despite the existing imbalance.

As shown by the above results, data imbalance is an obvious problem for the validation

process and needs to be addressed. The key approaches presented in the literature to solve

this problem are presented below. Then, the best option for this research is selected.

Key approaches for resolution of imbalanced problem

The problem of class imbalance has been actively addressed and several techniques to

deal with this problem have been proposed. In the literature, three key approaches to the

learning for resolution of imbalanced problem are defined [55]–[57]:

Data-level methods: This approach is geared towards matching the class distributions.

The class distribution are being balanced using the sampling methods by resizing

the training datasets. The sampling methods can be categorized into techniques for

under-sampling and over-sampling [56].

• Over-sampling: The basic idea of over-sampling is to increase the size of the

minority class to obtain balanced classes. Duplication of samples is done in

random over-sampling in which samples are randomly selected. Thus, class

size increases due to duplication of samples, as shown in Figure 4.2 (based on

[57]).

• Under-sampling: Taking a random set of samples from the majority class to

balance the classes and rest of the samples are ignored. The size of the data

space is measured to obtain desirable class distribution ratio. Thus, under-

sampling helps in gaining the equal number of class samples (as shown in

Figure 4.3 based on [57]) and makes training phase faster.
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Figure 4.2: Example of over-sampling (based on [57]).

Figure 4.3: Example of under-sampling (based on [57]).

Algorithm-level methods: Improving the ability of current classifier algorithms for

learning from minority classes. For example, adjustment of the estimation of prob-

ability or modification of cost per class may be favorable to the minority class [56].

Hybrid methods: Is the combination of data-level and algorithm-level approaches. The

main idea behind this is to delete the noisy and unreliable samples to extract useful

and consistent samples using methods of data-level and then, use algorithm-level

methods to achieve good classification accuracy [56].

Data-level methods are easy to implement and more popular as compared to algorithm-

level methods. But algorithm-level methods are more effective computational techniques

[57]. Because in this research it is important to maintain the integrity of our dataset, we

follow an algorithm-level approach by implementing an ensemble learning method, since

in the other two approaches it is necessary to make modifications to the original data.

Combining multiple classifiers into an ensemble is one of the most powerful approaches

in modern machine learning, leading to improved predictive performance, generalization

capabilities, and robustness. The following section describes the main assembly methods.

58



4.2.2 Ensemble learning methods

Ensemble learning [58] is a general approach to machine learning that seeks better pre-

dictive performance by combining predictions from multiple models. Although there is

a wide variety of methods, there are three that dominate the field of ensemble learning:

Boosting [59], Stacking [60] and Bagging [61].

Boosting

The Boosting method [59] involves the incremental and sequential construction of sub-

classifiers based on a single machine learning algorithm. The training of each sub-classifier

is executed by generating weighted samples emphasizing the misclassified instances in the

previous sub-classifier. For the final prediction, a weighted average vote occurs. Figure

4.4 (based on [59]) shows a diagram of the boosting method.

Figure 4.4: Boosting method (based on [59]).

Stacking

Stacking [60] is based on the creation of parallel sub-classifiers using distinct types of

machine learning algorithms to strategically maximize the individual strengths of each

of them. Penalized logistic regression is used to combine the sub-classifiers. Figure 4.5

(based on [60]) shows a diagram of the stacking method.

Bagging

The Bagging method [61] creates independent and parallel sub-classifiers with a single

machine learning algorithm. First, from the initial data, several subsets of the same
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Figure 4.5: Stacking method (based on [60]).

size are generated, thus ensuring diversity and independence. Then, for each sample, a

sub-classifier is constructed and, finally, using a majority vote the final classification is

obtained. Figure 4.6 (based on [61]) depicts the diagram of how the bagging method

operates.

Figure 4.6: Bagging method (based on [61]).

Although the three ensemble methods try to improve the predictive performance of

the classification problem, not all three methods could solve the class imbalance problem.

Stacking uses the dataset as it currently is, thus the class imbalance problem would remain

the same. Boosting could be used to solve class imbalance since it takes a random sample

of data that could be constructed with balanced data. However, this method would have

to be used several times to consider the remaining data, and the method does not consider

this kind of situation. Bagging, on the other hand, provides a solution to the imbalance

problem by using independent sub-classifiers trained with random samples that we can

make sure they are balanced. For this reason, in this research bagging is implemented as

a solution to data imbalance.
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4.2.3 Bagging implementation

Following the bagging method, it was necessary to create a resampling of the data accord-

ing to the cancer attribute. Figure 4.7 shows the process used to perform such resampling.

From the dataset, after being preprocessed, twenty-three sample groups were randomly

generated, combining all the positive cancer records with a subset of the same number

of randomly selected non-cancer records. Since the dataset ended up with 1,053 positive

cancer records after the preprocessing phase, each sample group contains that number of

records plus a random selection of 1,053 non-cancer records, that results in 2,106 records

per sample group.

Figure 4.7: Resampling process for the class imbalance problem.

Subsequently, each of the samples generated were used to train the seven classification

algorithms selected in this research. Through the training, a 10 fold cross validation was

carried out to obtain the performance metrics of accuracy, precision, and recall. To obtain

the final result, all classifiers of the same type generated from each of the sample groups

were assembled, as shown in Figure 4.8.

Table 4.6 shows the results of the bagging implementation in the dataset with all

attributes. The performance improvement in precision and recall metrics can be observed

compared to those obtained in Table 4.5, where no ensemble technique was applied.

Related to precision, before the bagging implementation, the models could not identify any

record as positive; in contrast, after the bagging implementation was obtained a minimum

precision of 87.79% with random tree and a maximum of 99.91% with k-NN. Regarding
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Figure 4.8: Ensemble process for the class imbalance problem.

recall, the value of 0.00% obtained before the bagging implementation was improved to

obtain a minimum value of 62.67% with k-NN and a maximum of 95.12% with Decision

tree. Obtaining average values above 90% with bagging implementation indicates that

the models dramatically improved in the identification of positive breast cancer registries

without sacrificing the identification of negative records, thus, it is shown that bagging is

a good solution to data imbalance in this research. Now that the imbalance problem has

been dealt with, the results of the risk factor validation with the defined subsets will be

presented in the next section.

Table 4.6: Performance metrics with the complete preprocessed dataset after bagging
implementation.

Model Accuracy Precision Recall
Decision stump 86.32% 99.79% 72.83%
Decision tree 97.45% 99.77% 95.12%
Random tree 78.38% 87.79% 70.08%
Deep learning 97.21% 99.52% 94.88%
Generalized linear model 96.62% 99.71% 93.51%
Naïve Bayes 93.93% 98.70% 89.16%
k-NN 81.30% 99.91% 62.67%

4.2.4 Risk factor validation with the defined subsets

Section 4.1 (Feature Selection) defined two similar rankings for the risk factors within the

dataset. The aim of identifying which risk factors are more relevant than others, is to

use those relevant attributes to determine breast cancer cases, or at least, to pay more
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attention to those specific factors; in case not all attributes are available or could not

be obtained. In this section, experiments will be performed to determine the predictive

performance of the attribute subsets as defined in Table 4.3, i.e., Subset(4), Subset(7),

and Subset(11), where the latter will be used as baseline for the previous two subsets.

For our experiments, seven different algorithms were selected to cover multiple ma-

chine learning techniques: Decision tree, Decision stump, Random tree, Deep learning,

Generalized linear model, Naïve Bayes, and k-Nearest Neighbors (k-NN). All algorithms

were executed considering the default settings given by RapidMiner. To validate each sub-

set of attributes, the seven classification algorithms were trained only with the attributes

that belong to the subset being evaluated. Also, a 10-fold cross validation was used to

obtain the performance metrics of accuracy, precision, and recall.

Table 4.7 presents the results using bagging for the three subsets of attributes as

defined in Table 4.3. Recall that Subset(4) contains the four most relevant risk factors

found, Subset(7) contains those four attributes plus the next three risk factors as ranked

by the Chi-squared test. Finally, Subset(11) contains all risk factors within the dataset,

correspond to the baseline results obtained in Table 4.6.

The first thing to note is the column that refers to Subset(11); this is our baseline, as

it considers all attributes. The classifiers with the highest accuracy (Acc.) are Decision

tree and Deep learning with 97.45% and 97.21% respectively, while the least accurate is

Random tree with 78-38%. It is important to also consider the metrics of precision (Prec.)

and recall (Rec.), that provide more information with regard of the classification of positive

cancer cases. The higher the precision value the fewer false positives being classified.

On the other hand, the higher the recall value the more positive records are classified

correctly. In our experiments for Subset(11), the precision values for all algorithms are

high. However, the recall value for k-NN is low, which means that only 62.67% of the

positive cancer cases were correctly classified. In terms of the three metrics, Decision tree,

Deep learning, and Generalized linear model obtained the best results for all attributes.

In order to validate whether the selected attributes could be truly relevant in our study,

we need to compare the results against those obtained as the baseline (Subset(11)). First,
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Table 4.7: Performance metrics of the defined subsets of risk factors.

Algorithm Metric Subset(4) Subset(7) Subset(11)

Decision stump
Acc. 86.32% 86.32% 86.32%
Prec. 99.79% 99.79% 99.79%
Rec. 72.83% 72.83% 72.83%

Decision tree
Acc. 86.32% 96.18% 97.45%
Prec. 99.79% 99.82% 99.77%
Rec. 72.83% 92.53% 95.12%

Random tree
Acc. 85.24% 80.67% 78.38%
Prec. 98.29% 94.39% 87.79%
Rec. 72.15% 67.16% 70.08%

Deep learning
Acc. 93.32% 96.16% 97.21%
Prec. 99.41% 99.65% 99.52%
Rec. 87.19% 92.65% 94.88%

Generalized linear
model

Acc. 92.87% 95.56% 96.62%
Prec. 99.62% 99.68% 99.71%
Rec. 86.09% 91.44% 93.51%

Naïve Bayes
Acc. 92.51% 93.87% 93.93%
Prec. 98.77% 98.64% 98.70%
Rec. 86.31% 89.11% 89.16%

k-NN
Acc. 93.10% 87.27% 81.30%
Prec. 100.00% 99.94% 99.91%
Rec. 86.20% 74.59% 62.67%

notice that Decision stump reported the same metrics for the three subsets. This is

because the algorithm generates a Decision tree with only one division obtained from the

evaluation of one of the most significant attributes. In our case, the algorithm chose the

attributes of agegrp and menopause_new as a single node, since both attributes are part

of the three subsets then the results are the same. Although the results do not provide

important information, the algorithm supports the relevance of these two attributes as

stated in Section 4.1.

The Decision tree algorithm obtained good results with all the attributes (Subset(11)),

and maintains its precision for all subsets. However, it is drastically affected using Sub-

set(4), as it loses 11% in accuracy and 22% in recall. On the other hand, Subset(7)

maintains practically the same performance compared to the baseline.

In the case of Random tree we can see that Subset(4) performs somehow better than

the baseline, with a 6% gain in accuracy and 10% gain in precision. Nevertheless, the recall

in the three subsets is low, which means it would be better to consider other classifiers.
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Deep learning is one of the best alternatives of the classifiers used in this research. It

can be observed that it is quite stable for all subsets. Using Subset(4), there is only around

4% loss in accuracy and 7% loss in recall. Although there is some loss, the results are

better than other classifiers. For Subset(7), the results are almost the same as the baseline.

Similar results are obtained with the Generalized linear model, where Subset(4) loses the

same percentage in accuracy and recall, and Subset(7) is very close to the baseline.

Although Naïve Bayes does not have results such as Deep learning, it could also be

considered a stable model, since training the algorithm with Subset(4) has a loss of only

1% in accuracy and 3% in recall. Finally, the performance metrics of Subset(4) in k-NN

are higher than the baseline, with an increase of 11% in accuracy and 23% gain in recall.

This increment could mean that the selected attributes are indeed relevant.

After analyzing these results, it is possible to conclude that the four selected risk fac-

tors: the patient’s age (agegrp), whether she had undergone hormone therapy (hrt_new),

her type of menopause (surgmeno_new), and her menopausal status (menopause_new);

are relevant for the classification of positive cancer cases. Also, the next three risk factors:

whether the patient has had a breast procedure (brstproc), the patient’s breast density

(density), and whether she has first-degree relatives with breast cancer (nrelbc); should

also be further analyzed.

4.3 Results Comparison

Based on the results obtained in this research, this section presents a comparison of the

results and methods presented in five related works. Such a comparison is focused on

key aspects of each work, in terms of the overall goal, the dataset, the feature selection

methods, the classification methods, resampling techniques, and the obtained results.

The following is a summary of the five papers selected in terms of the key aspects to be

evaluated:

Fahrudin et al. [41]: Focused on determining breast cancer risk factors for patients in

Indonesia and identified differences against patients in the United States, using a
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private dataset with 1907 records and 21 attributes (containing demographic and

pathology and therapy information). They used three features selection methods:

i) Information gain, ii) Fisher’s discriminant, and iii) Chi-squared test, to select the

best attributes (risk factors). They also applied Hierarchical K-means clustering

to remove attributes that have the lowest contribution. Do not use classification

methods or resampling techniques. As a result, out of the 21 original attributes, 14

relevant attributes were obtained .

Fu et al. [45]: Proposed a prognosis model framework to predict Invasive Disease-Free

Survival (i.e., the length of time after the primary treatment ends and no signs of

cancer appear again) for early-stage breast cancer patients. They used a private

dataset with 12,119 records and 89 attributes of the Clinical Research Center for

Breast (CRCB) from West China Hospital of Sichuan University. The attributes

consist of demographic, diagnosis, pathology, and therapy information. A Stratified

Feature Selection was used by calculating the importance score using five methods

based on the type of the individual feature: i) Kolmogorov-Smirnov (KS) statistical

test to feature with Interval scale, ii) The independent sample T-test to feature with

notable influence on the 5-year iDFS is separated from others, iii) The Wilcoxon

Mann-Whitney statistical test used to feature with Ordinal scale, but whose distri-

bution is not normally distributed, and, iv) Chi-squared test for the Nominal scale

feature. To predict the 5-year iDFS of breast cancer, the ensemble learning algo-

rithm Gradient boosting decision tree (XGBoost) is used to construct the prediction

model. Do not use resampling techniques. One of their results is a selection of 23

attributes, including some risk factors.

Kabir and Ludwig [44]: Focused on improve the classification performance of the stan-

dard machine learning algorithms towards the prediction of the important or minor-

ity class by using different resampling techniques (random under-sampling, random

over-sampling, and a hybrid of over- and under-sampling) on a real-world breast

cancer risk factors data set. They used the public Risk Factors dataset by the

BCSC with 6,318,638 cases and 13 attributes. To evaluate the results of each of the
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resampling approaches, the authors used three different classification algorithms:

Decision tree, Random forest, and XGBoost. Their results showed that performance

improves when resampling techniques are used compared to when no techniques are

applied.

Kabir et al. [43]: Generated risk factor rules by means of Association Rule Mining

(ARM), using the Breast Cancer Surveillance Consortium’s (BCSC) Risk Factors

dataset. This public dataset contains 6,318,638 cases and 13 attributes. The Logit

model was used to select those factors that may affect the likelihood of breast cancer.

Do not use resampling techniques. A set of 5 rules was obtained for breast cancer

cases and 4 rules for non-cancer cases.

Li et al. [40]: Present a prevention and control system for breast cancer by means of

Item Rule Association (IRA) algorithms applied on a private dataset with 2,966

records and 83 attributes. An important characteristic of their work is the creation

of their own dataset by interviewing patients from 22 hospitals over a one-year

period and storing clinical, personal, and socio-economical information. Do not use

feature selection methods or resampling techniques. Three types of rules defining

the more relevant risk factors were identified; 35 rules were obtained using a single

factor, 19 rules were obtained combining two factors, and 9 rules were obtained

combining three factors.

Table 4.8: Results Comparison.

Aspect Fahrudin
et al. [41]

Fu et
al. [45]

Kabir and
Ludwig [44]

Kabir et
al. [43] Li et al. [40]

Goal Similar Different Different Different Different
Dataset Different Different Similar Similar Different

Feature Selection Similar Similar Not used Different Not used
Resampling Not used Not used Different Not used Not used
Classification Not used Similar Similar Different Different

Results Similar Different Different Different Different

Table 4.8 summarizes the similarities and differences between the previous related

works and this research. The main difference of this research with respect to all five is
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that in this research makes use of feature selection methods, resampling techniques, and

classification for validation. In particular, the use of ensemble methods, since Kabir and

Ludwig [44] are the only ones that perform resampling but at the data-level, while we

resample at the algorithmic-level. Our goal and that of Fahrudin et al. [41] are similar,

in the sense that, based on risk factors we both try to predict the likelihood of cancer.

They apply association rules, and we apply seven different classifiers. Also, they do not

directly handle the class imbalance problem, they had to adjust the algorithm to try to

compensate the positive cancer class. No classification nor resampling was performed

in the process. Our work is similar in that we also use Chi-squared test and Mutual

information for feature selection; however, we use resampling and classification methods

for validation. The main difference between our work and [40] is the creation of their own

dataset, that provides more information and control. Since rule association algorithms

were implemented, there is no need to apply feature selection methods. Although the risk

factors appearing in the obtained rules could be defined as being the most relevant, the

authors did not explicitly specify their relevance.

It is difficult to make a comparison in terms of results, not just because of the methods

being used, but mainly because the datasets and the type of information they contain.

Datasets may contain clinical, personal, demographical, or pathological information. The

availability of this information and the number of attributes of each type will affect the

results we might obtain.
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Chapter 5

Conclusions

Predicting the risk of breast cancer occurrence is an important challenge for clinical on-

cologists as this has a direct influence on their daily practice and clinical service. In this

research, it is proposed the study of risk factors for breast cancer as an alternative that

has been investigated to create control and risk assessment strategies in women. The

main objective of this research is to identify relevant risk factors that could accurately

predict whether a woman can develop breast cancer or not. To construct the solution in

this research, compared to other work done so far, this research analyzed three different

elements: i) feature selection, ii) ensemble learning, and iii) classification algorithms. Our

research explores feature selection techniques, namely Chi-square test and Mutual infor-

mation, combined with an ensemble method (Bagging) to detect breast cancer cases with

information on risk factors.

During the course of this investigation, we were able to see that the study of risk

factors brings with it different advantages and disadvantages from a computationally point

of view. One of the most notable advantages is that it is less expensive both medically

and computationally compared to other types of breast cancer research. Because most of

these investigations are dedicated to the processing and analysis of medical images (such

as mammograms, ultrasounds or magnetic resonances), these studies represent a higher

cost since specialized medical equipment is required to generate them. Computationally,

it also represents a higher cost in terms of time and resources.

In contrast, most breast cancer risk factor information can be easily collected through
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an interview or a form, for the generation of this data, no specialized medical equipment

is required. In computational terms, during this research we identified different challenges

that arise. One of the main challenges identified from the early stages of this research was

the limited number of public datasets on breast cancer risk factors. Additionally, the few

datasets that were available contain information of a small number of factors, considering

that the literature provides a long list of them. The computational challenges presented

in this research are partly related to the deficiencies of datasets. One of them was to

identify the optimal way to handle the dirty data (data noise, incomplete, inconsistent

and missing values) in the dataset. In this sense, the Knowledge Discovery in Databases

process is a methodology suitable for this type of problems, where it is not only sought

to obtain knowledge of the data, but it is also important to ensure that the knowledge

obtained comes from a reliable source with certain parameters of data quality.

Another major challenge is the unbalance of existing data in diseases such as breast

cancer, this problem has attracted the attention of researchers in many other contexts,

not only medical. In this research an ensemble method is proposed as a solution to the

imbalance in breast cancer risk factor data, this alternative is one of the most supported

and used in recent years in the literature. However, little has been used in similar works.

Based on the results obtained in this research, it represents a good alternative when using

algorithms of classification in breast cancer risk factor data.

Main Findings

Throughout this thesis, we found that the most relevant risk factors in breast cancer cases,

according to the dataset analyzed, are the patient’s age, whether she had undergone

hormone therapy, her type of menopause, and her menopausal status. These four risk

factors were validated by means of seven classification algorithms. We conclude that

is possible to obtain a predictive performance similar to that obtained using all the 11

attributes of the dataset. It is still necessary to validate these results with medical experts

in the field.
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Future Work

Diverse aspects of the risk factors of breast cancer problem have been analyzed in this

thesis, revealing future research opportunities to extend this research. The future work

below arises as a response to the main challenges identified in this thesis:

1. Work with physicians to create a more complete risk factors dataset. This is proba-

bly one of the most important issues, if not the most important, to further advance

our understanding in topics as relevant such as this. In order to have a better un-

derstanding of how certain risk factors affect certain populations. It is important

to start generating the data sets with the appropriate characteristics to perform a

deep and complete analysis and in this way, to create prevention and risk control

strategies appropriate to the population.

2. To complement the previous point, it would later be sought to perform an analysis

of the data similar to the one presented in this thesis and even explore the different

objectives of discovery raised by KDD, as well as the methods used for the data

mining stage.

3. Investigate, apply, and evaluate other data imbalance solution approaches (at the

data level or hybrids) to determine which methods are useful for the breast cancer

context.

71



References

[1] Global Cancer Observatory, Cancer Today. [Online]. Available: https://gco.iarc.

fr/today/online-analysis-pie (visited on 06/25/2021).

[2] Cancer.Net, Breast Cancer: Risk Factors and Prevention, 2021. [Online]. Available:

https://cancer.net/cancer- types/breast- cancer/risk- factors- and-

prevention (visited on 11/25/2021).

[3] D. M. Ikeda and M. Kanae K., Breast Imaging, Third edit. Elsevier, 2017, p. 479,

isbn: 978-0-323-32904-0.

[4] P. H. Abreu, M. S. Santos, M. H. Abreu, B. Andrade, and D. C. Silva, “Predicting

Breast Cancer Recurrence Using Machine Learning Techniques”, ACM Computing

Surveys, vol. 49, no. 3, pp. 1–40, Dec. 2016, issn: 0360-0300. doi: 10.1145/2988544.

[Online]. Available: https://dl.acm.org/doi/10.1145/2988544.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “Knowledge discovery and data

mining: Towards a unifying framework”, in Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, ser. KDD’96, Portland, Ore-

gon: AAAI Press, 1996, pp. 82–88.

[6] M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY: Springer

New York, 2013, isbn: 978-1-4614-6848-6. doi: 10.1007/978-1-4614-6849-3.

[Online]. Available: http://link.springer.com/10.1007/978-1-4614-6849-3.

[7] The American Cancer Society Medical and Editorial Content Team, What is breast

cancer?, 2021. [Online]. Available: http://www.cancer.org/cancer/breast-

cancer/about/what-is-breast-cancer.html (visited on 06/25/2021).

72

https://gco.iarc.fr/today/online-analysis-pie
https://gco.iarc.fr/today/online-analysis-pie
https://cancer.net/cancer-types/breast-cancer/risk-factors-and-prevention
https://cancer.net/cancer-types/breast-cancer/risk-factors-and-prevention
https://doi.org/10.1145/2988544
https://dl.acm.org/doi/10.1145/2988544
https://doi.org/10.1007/978-1-4614-6849-3
http://link.springer.com/10.1007/978-1-4614-6849-3
http://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html
http://www.cancer.org/cancer/breast-cancer/about/what-is-breast-cancer.html


[8] World Health Organization, Breast cancer, 2021. [Online]. Available: https : / /

www.who.int/news- room/fact- sheets/detail/breast- cancer (visited on

05/11/2022).

[9] The American Cancer Society Medical and Editorial Content Team, ACS Breast

Cancer Screening Guidelines, 2022. [Online]. Available: https://www.cancer.org/

cancer/breast-cancer/screening-tests-and-early-detection/american-

cancer-society-recommendations-for-the-early-detection-of-breast-

cancer.html (visited on 05/11/2022).

[10] ——, What Is a Mammogram?, 2022. [Online]. Available: https://www.cancer.

org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms.

html (visited on 05/11/2022).

[11] ——, Mammogram Results, 2022. [Online]. Available: https://www.cancer.org/

cancer/breast-cancer/screening-tests-and-early-detection/mammograms/

understanding-your-mammogram-report.html (visited on 05/11/2022).

[12] G. Parmigiani, D. A. Berry, and O. Aguilar, “Determining carrier probabilities for

breast cancer-susceptibility genes BRCA1 and BRCA2”, American Journal of Hu-

man Genetics, vol. 62, no. 1, pp. 145–158, 1998, issn: 00029297. doi: 10.1086/

301670.

[13] D. J. Schaid, “Probability of carrying a mutation of breast-ovarian cancer gene

BRCA1 based on family history.”, Journal of the National Cancer Institute, vol. 89,

no. 21, pp. 1632–1634, 1997, issn: 00278874. doi: 10.1093/jnci/89.21.1632-a.

[14] A. C. Antoniou, A. P. Cunningham, J. Peto, et al., “The BOADICEA model of

genetic susceptibility to breast and ovarian cancers: Updates and extensions”, British

Journal of Cancer, vol. 98, no. 8, pp. 1457–1466, 2008, issn: 15321827. doi: 10.

1038/sj.bjc.6604305.

[15] M. H. Gail, L. A. Brinton, D. P. Byar, et al., “Projecting Individualized Probabilities

of Developing Breast Cancer for White Females Who Are Being Examined Annu-

ally”, JNCI: Journal of the National Cancer Institute, vol. 81, no. 24, pp. 1879–1886,

73

https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms/understanding-your-mammogram-report.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms/understanding-your-mammogram-report.html
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms/understanding-your-mammogram-report.html
https://doi.org/10.1086/301670
https://doi.org/10.1086/301670
https://doi.org/10.1093/jnci/89.21.1632-a
https://doi.org/10.1038/sj.bjc.6604305
https://doi.org/10.1038/sj.bjc.6604305


Dec. 1989, issn: 0027-8874. doi: 10.1093/jnci/81.24.1879. [Online]. Available:

https://doi.org/10.1093/jnci/81.24.1879.

[16] J. Tyrer, S. W. Duffy, and J. Cuzick, “A breast cancer prediction model incor-

porating familial and personal risk factors”, Statistics in Medicine, vol. 23, no. 7,

pp. 1111–1130, 2004. doi: https://doi.org/10.1002/sim.1668. [Online]. Avail-

able: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1668.

[17] G. Meenalochini and S. Ramkumar, “Survey of machine learning algorithms for

breast cancer detection using mammogram images”, Materials Today: Proceedings,

vol. 37, no. Part 2, pp. 2738–2743, 2021, issn: 22147853. doi: 10.1016/j.matpr.

2020.08.543. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S2214785320364257.

[18] I. Sechopoulos, J. Teuwen, and R. Mann, “Artificial intelligence for breast can-

cer detection in mammography and digital breast tomosynthesis: State of the art”,

Seminars in Cancer Biology, vol. 72, no. November 2019, pp. 214–225, Jul. 2021,

issn: 1044579X. doi: 10.1016/j.semcancer.2020.06.002. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1044579X20301358.

[19] I. Syarif, “Dimensionality Reduction Algorithms on High Dimensional Datasets”,

EMITTER International Journal of Engineering Technology, vol. 2, no. 2, pp. 28–

38, 2014. doi: 10.24003/emitter.v2i2.24. [Online]. Available: https://emitter.

pens.ac.id/index.php/emitter/article/view/24.

[20] L. Xie, Z. Li, Y. Zhou, Y. He, and J. Zhu, “Computational Diagnostic Techniques

for Electrocardiogram Signal Analysis”, Sensors, vol. 20, no. 21, p. 6318, Nov. 2020,

issn: 1424-8220. doi: 10.3390/s20216318. [Online]. Available: https://www.

mdpi.com/1424-8220/20/21/6318.

[21] J. Brownlee, How to Choose a Feature Selection Method For Machine Learning,

2020. [Online]. Available: https : / / machinelearningmastery . com / feature -

selection-with-real-and-categorical-data/ (visited on 02/25/2022).

74

https://doi.org/10.1093/jnci/81.24.1879
https://doi.org/10.1093/jnci/81.24.1879
https://doi.org/https://doi.org/10.1002/sim.1668
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.1668
https://doi.org/10.1016/j.matpr.2020.08.543
https://doi.org/10.1016/j.matpr.2020.08.543
https://linkinghub.elsevier.com/retrieve/pii/S2214785320364257
https://linkinghub.elsevier.com/retrieve/pii/S2214785320364257
https://doi.org/10.1016/j.semcancer.2020.06.002
https://linkinghub.elsevier.com/retrieve/pii/S1044579X20301358
https://doi.org/10.24003/emitter.v2i2.24
https://emitter.pens.ac.id/index.php/emitter/article/view/24
https://emitter.pens.ac.id/index.php/emitter/article/view/24
https://doi.org/10.3390/s20216318
https://www.mdpi.com/1424-8220/20/21/6318
https://www.mdpi.com/1424-8220/20/21/6318
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/


[22] H. Liu and R. Setiono, “Chi2: Feature selection and discretization of numeric at-

tributes”, in Proceedings of 7th IEEE International Conference on Tools with Arti-

ficial Intelligence, 1995, pp. 388–391. doi: 10.1109/TAI.1995.479783.

[23] D. S. Shafer and Z. Zhang, Introductory Statistics. Saylor.org, 2010.

[24] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. USA:

Cambridge University Press, 2002, isbn: 0521642981.

[25] M. I. Prasetiyowati, N. U. Maulidevi, and K. Surendro, “Determining threshold

value on information gain feature selection to increase speed and prediction ac-

curacy of random forest”, Journal of Big Data, vol. 8, no. 1, p. 84, Dec. 2021,

issn: 2196-1115. doi: 10.1186/s40537-021-00472-4. [Online]. Available: https:

//journalofbigdata.springeropen.com/articles/10.1186/s40537- 021-

00472-4.

[26] J. R. Quinlan, “Induction of decision trees”, Machine learning, vol. 1, no. 1, pp. 81–

106, 1986. doi: https://doi.org/10.1007/BF00116251.

[27] W. Iba and P. Langley, “Induction of One-Level Decision Trees”, in Machine Learn-

ing Proceedings 1992, Elsevier, 1992, pp. 233–240. doi: 10.1016/B978-1-55860-

247 - 2 . 50035 - 8. [Online]. Available: https : / / linkinghub . elsevier . com /

retrieve/pii/B9781558602472500358.

[28] T. K. Ho, “Random decision forests”, in Proceedings of 3rd International Conference

on Document Analysis and Recognition, vol. 1, IEEE Comput. Soc. Press, 1995,

pp. 278–282. doi: 10.1109/ICDAR.1995.598994. [Online]. Available: http://

ieeexplore.ieee.org/document/598994/.

[29] IBM Cloud Education, What is deep learning?, 2020. [Online]. Available: https:

//www.ibm.com/cloud/learn/deep-learning (visited on 11/10/2021).

[30] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models”, Journal of

the Royal Statistical Society. Series A (General), vol. 135, no. 3, pp. 370–384, 1972,

issn: 00359238. doi: https://doi.org/10.2307/2344614. [Online]. Available:

http://www.jstor.org/stable/2344614.

75

https://doi.org/10.1109/TAI.1995.479783
https://doi.org/10.1186/s40537-021-00472-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00472-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00472-4
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00472-4
https://doi.org/https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/B978-1-55860-247-2.50035-8
https://doi.org/10.1016/B978-1-55860-247-2.50035-8
https://linkinghub.elsevier.com/retrieve/pii/B9781558602472500358
https://linkinghub.elsevier.com/retrieve/pii/B9781558602472500358
https://doi.org/10.1109/ICDAR.1995.598994
http://ieeexplore.ieee.org/document/598994/
http://ieeexplore.ieee.org/document/598994/
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning
https://doi.org/https://doi.org/10.2307/2344614
http://www.jstor.org/stable/2344614


[31] T. Cover and P. Hart, “Nearest neighbor pattern classification”, IEEE transactions

on information theory, vol. 13, no. 1, pp. 21–27, 1967. doi: 10.1109/TIT.1967.

1053964.

[32] D. V. Lindley, “Fiducial distributions and bayes’ theorem”, Journal of the Royal

Statistical Society. Series B (Methodological), pp. 102–107, 1958. doi: 10.1111/J.

2517-6161.1958.TB00278.X.

[33] R. Kohavi and F. Provost, “Glossary of terms”, Machine Learning, vol. 2, pp. 271–

274, Jan. 1998. doi: 10.1023/A:1017181826899.

[34] A. Naik and L. Samant, “Correlation Review of Classification Algorithm Using

Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime”, Procedia

Computer Science, vol. 85, pp. 662–668, 2016, issn: 18770509. doi: 10.1016/j.

procs.2016.05.251. [Online]. Available: https://linkinghub.elsevier.com/

retrieve/pii/S1877050916306019.

[35] A. K. Das, S. K. Biswas, A. Mandal, and M. Chakraborty, “A Neural Expert System

to Identify Major Risk Factors of Breast Cancer”, in 2020 IEEE International Con-

ference for Innovation in Technology (INOCON), IEEE, Nov. 2020, pp. 1–4, isbn:

978-1-7281-9744-9. doi: 10.1109/INOCON50539.2020.9298261. [Online]. Available:

https://ieeexplore.ieee.org/document/9298261/.

[36] Y. Khourdifi and M. Bahaj, “Feature Selection with Fast Correlation-Based Fil-

ter for Breast Cancer Prediction and Classification Using Machine Learning Algo-

rithms”, in 2018 International Symposium on Advanced Electrical and Communica-

tion Technologies (ISAECT), IEEE, Nov. 2018, pp. 1–6, isbn: 978-1-5386-7328-7.

doi: 10.1109/ISAECT.2018.8618688. [Online]. Available: https://ieeexplore.

ieee.org/document/8618688/.

[37] H. Kutrani, S. Eltalhi, and N. Ashleik, “Predicting factors influencing survival of

breast cancer patients using logistic regression of machine learning”, in The 7th

International Conference on Engineering & MIS 2021, New York, NY, USA: ACM,

76

https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1111/J.2517-6161.1958.TB00278.X
https://doi.org/10.1111/J.2517-6161.1958.TB00278.X
https://doi.org/10.1023/A:1017181826899
https://doi.org/10.1016/j.procs.2016.05.251
https://doi.org/10.1016/j.procs.2016.05.251
https://linkinghub.elsevier.com/retrieve/pii/S1877050916306019
https://linkinghub.elsevier.com/retrieve/pii/S1877050916306019
https://doi.org/10.1109/INOCON50539.2020.9298261
https://ieeexplore.ieee.org/document/9298261/
https://doi.org/10.1109/ISAECT.2018.8618688
https://ieeexplore.ieee.org/document/8618688/
https://ieeexplore.ieee.org/document/8618688/


Oct. 2021, pp. 1–6, isbn: 9781450390446. doi: 10.1145/3492547.3492590. [Online].

Available: https://dl.acm.org/doi/10.1145/3492547.3492590.

[38] R. Dhanya, I. R. Paul, S. Sindhu Akula, M. Sivakumar, and J. J. Nair, “A Com-

parative Study for Breast Cancer Prediction using Machine Learning and Feature

Selection”, in 2019 International Conference on Intelligent Computing and Control

Systems (ICCS), IEEE, May 2019, pp. 1049–1055, isbn: 978-1-5386-8113-8. doi:

10.1109/ICCS45141.2019.9065563. [Online]. Available: https://ieeexplore.

ieee.org/document/9065563/.

[39] D. Jain and V. Singh, “Diagnosis of Breast Cancer and Diabetes using Hybrid

Feature Selection Method”, in 2018 Fifth International Conference on Parallel, Dis-

tributed and Grid Computing (PDGC), IEEE, Dec. 2018, pp. 64–69, isbn: 978-

1-7281-0646-5. doi: 10.1109/PDGC.2018.8745830. [Online]. Available: https:

//ieeexplore.ieee.org/document/8745830/.

[40] A. Li, L. Liu, A. Ullah, et al., “Association Rule-Based Breast Cancer Prevention and

Control System”, IEEE Transactions on Computational Social Systems, vol. 6, no. 5,

pp. 1106–1114, Oct. 2019, issn: 2329-924X. doi: 10.1109/TCSS.2019.2912629.

[Online]. Available: https://ieeexplore.ieee.org/document/8713389/.

[41] T. M. Fahrudin, I. Syarif, and A. R. Barakbah, “The determinant factor of breast

cancer on medical oncology using feature selection based clustering”, in 2016 In-

ternational Conference on Knowledge Creation and Intelligent Computing (KCIC),

IEEE, Nov. 2016, pp. 232–239, isbn: 978-1-5090-5231-8. doi: 10.1109/KCIC.2016.

7883652. [Online]. Available: http://ieeexplore.ieee.org/document/7883652/.

[42] S. Maskery, Yonghong Zhang, Hai Hu, C. Shriver, J. Hooke, and M. Liebman,

“Caffeine Intake, Race, and Risk of Invasive Breast Cancer Lessons Learned from

Data Mining a Clinical Database”, in 19th IEEE Symposium on Computer-Based

Medical Systems (CBMS’06), vol. 2006, IEEE, 2006, pp. 714–718, isbn: 0769525172.

doi: 10.1109/CBMS.2006.64. [Online]. Available: http://ieeexplore.ieee.org/

document/1647655/.

77

https://doi.org/10.1145/3492547.3492590
https://dl.acm.org/doi/10.1145/3492547.3492590
https://doi.org/10.1109/ICCS45141.2019.9065563
https://ieeexplore.ieee.org/document/9065563/
https://ieeexplore.ieee.org/document/9065563/
https://doi.org/10.1109/PDGC.2018.8745830
https://ieeexplore.ieee.org/document/8745830/
https://ieeexplore.ieee.org/document/8745830/
https://doi.org/10.1109/TCSS.2019.2912629
https://ieeexplore.ieee.org/document/8713389/
https://doi.org/10.1109/KCIC.2016.7883652
https://doi.org/10.1109/KCIC.2016.7883652
http://ieeexplore.ieee.org/document/7883652/
https://doi.org/10.1109/CBMS.2006.64
http://ieeexplore.ieee.org/document/1647655/
http://ieeexplore.ieee.org/document/1647655/


[43] M. F. Kabir, S. A. Ludwig, and A. S. Abdullah, “Rule Discovery from Breast Can-

cer Risk Factors using Association Rule Mining”, in 2018 IEEE International Con-

ference on Big Data (Big Data), IEEE, Dec. 2018, pp. 2433–2441, isbn: 978-1-

5386-5035-6. doi: 10.1109/BigData.2018.8622028. [Online]. Available: https:

//ieeexplore.ieee.org/document/8622028/.

[44] M. F. Kabir and S. Ludwig, “Classification of Breast Cancer Risk Factors Using

Several Resampling Approaches”, in 2018 17th IEEE International Conference on

Machine Learning and Applications (ICMLA), IEEE, Dec. 2018, pp. 1243–1248,

isbn: 978-1-5386-6805-4. doi: 10.1109/ICMLA.2018.00202. [Online]. Available:

https://ieeexplore.ieee.org/document/8614227/.

[45] B. Fu, P. Liu, J. Lin, L. Deng, K. Hu, and H. Zheng, “Predicting Invasive Disease-

Free Survival for Early Stage Breast Cancer Patients Using Follow-Up Clinical

Data”, IEEE Transactions on Biomedical Engineering, vol. 66, no. 7, pp. 2053–2064,

Jul. 2019, issn: 0018-9294. doi: 10.1109/TBME.2018.2882867. [Online]. Available:

https://ieeexplore.ieee.org/document/8543186/.

[46] Z. Matjaz and S. Milan, Breast cancer data set, University Medical Center, Insti-

tute of Oncology, 1988. [Online]. Available: http://archive.ics.uci.edu/ml/

datasets/Breast+Cancer.

[47] W. H. Wolberg, N. Street, and O. L. Mangasarian, Breast cancer wisconsin (diag-

nostic) data set, University of Wisconsin, General Surgery Dept, Computer Sciences

Dept, 1995. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/

breast+cancer+wisconsin+(diagnostic).

[48] ——, Breast cancer wisconsin (prognostic) data set, University of Wisconsin, Gen-

eral Surgery Dept, Computer Sciences Dept, 1995. [Online]. Available: https://

archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(Prognostic).

[49] W. E. Barlow, E. White, R. Ballard-Barbash, et al., “Prospective Breast Cancer Risk

Prediction Model for Women Undergoing Screening Mammography”, JNCI: Journal

of the National Cancer Institute, vol. 98, no. 17, pp. 1204–1214, Sep. 2006, issn:

78

https://doi.org/10.1109/BigData.2018.8622028
https://ieeexplore.ieee.org/document/8622028/
https://ieeexplore.ieee.org/document/8622028/
https://doi.org/10.1109/ICMLA.2018.00202
https://ieeexplore.ieee.org/document/8614227/
https://doi.org/10.1109/TBME.2018.2882867
https://ieeexplore.ieee.org/document/8543186/
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(Prognostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(Prognostic)


1460-2105. doi: 10.1093/jnci/djj331. [Online]. Available: http://academic.

oup.com/jnci/article/98/17/1204/2521747/Prospective-Breast-Cancer-

Risk-Prediction-Model.

[50] The American Cancer Society Medical and Editorial Content Team, Types of Breast

Cancer, 2021. [Online]. Available: https://www.cancer.org/cancer/breast-

cancer/about/types-of-breast-cancer.html (visited on 06/25/2021).

[51] Breast Cancer Surveillance Consortium (BCSC), Risk factors dataset, 2017. [On-

line]. Available: https://www.bcsc-research.org/data/rf.

[52] ——, Hormone therapy and breast cancer incidence, 2003. [Online]. Available: https:

//www.bcsc-research.org/data/ht.

[53] ——, Digital mammography dataset, 2008. [Online]. Available: https://www.bcsc-

research.org/data/mammography_dataset.

[54] World Health Organization, A healthy lifestyle, 2010. [Online]. Available: https://

www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---

who-recommendations (visited on 06/13/2022).

[55] G. Rekha, A. K. Tyagi, N. Sreenath, and S. Mishra, “Class Imbalanced Data: Open

Issues and Future Research Directions”, in 2021 International Conference on Com-

puter Communication and Informatics (ICCCI), IEEE, Jan. 2021, pp. 1–6, isbn:

978-1-7281-5875-4. doi: 10.1109/ICCCI50826.2021.9402272. [Online]. Available:

https://ieeexplore.ieee.org/document/9402272/.

[56] K. M. Hasib, M. S. Iqbal, F. M. Shah, et al., “A survey of methods for managing the

classification and solution of data imbalance problem”, Journal of Computer Science,

vol. 16, no. 11, pp. 1546–1557, Nov. 2020. doi: 10.3844/jcssp.2020.1546.1557.

[Online]. Available: https://thescipub.com/abstract/jcssp.2020.1546.1557.

[57] H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced

Data Challenges in Machine Learning”, ACM Computing Surveys, vol. 52, no. 4,

pp. 1–36, Jul. 2020, issn: 0360-0300. doi: 10.1145/3343440. [Online]. Available:

https://dl.acm.org/doi/10.1145/3343440.

79

https://doi.org/10.1093/jnci/djj331
http://academic.oup.com/jnci/article/98/17/1204/2521747/Prospective-Breast-Cancer-Risk-Prediction-Model
http://academic.oup.com/jnci/article/98/17/1204/2521747/Prospective-Breast-Cancer-Risk-Prediction-Model
http://academic.oup.com/jnci/article/98/17/1204/2521747/Prospective-Breast-Cancer-Risk-Prediction-Model
https://www.cancer.org/cancer/breast-cancer/about/types-of-breast-cancer.html
https://www.cancer.org/cancer/breast-cancer/about/types-of-breast-cancer.html
https://www.bcsc-research.org/data/rf
https://www.bcsc-research.org/data/ht
https://www.bcsc-research.org/data/ht
https://www.bcsc-research.org/data/mammography_dataset
https://www.bcsc-research.org/data/mammography_dataset
https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
https://doi.org/10.1109/ICCCI50826.2021.9402272
https://ieeexplore.ieee.org/document/9402272/
https://doi.org/10.3844/jcssp.2020.1546.1557
https://thescipub.com/abstract/jcssp.2020.1546.1557
https://doi.org/10.1145/3343440
https://dl.acm.org/doi/10.1145/3343440


[58] N. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying Sys-

tems, 1965.

[59] R. E. Schapire, “Using Output Codes to Boost Multiclass Learning Problems”,

in Proceedings of the Fourteenth International Conference on Machine Learning,

ser. ICML ’97, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997,

pp. 313–321, isbn: 1558604863. [Online]. Available: https://www.researchgate.

net / publication / 2453554 _ Using _ Output _ Codes _ to _ Boost _ Multiclass _

Learning_Problems.

[60] D. H. Wolpert, “Stacked generalization”, Neural Networks, vol. 5, no. 2, pp. 241–259,

Jan. 1992, issn: 08936080. doi: 10.1016/S0893-6080(05)80023-1. [Online]. Avail-

able: https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231.

[61] L. Breiman, “Bagging Predictors”, Machine Learning, vol. 24, no. 2, pp. 123–140,

1996, issn: 1573-0565. doi: 10.1023/A:1018054314350. [Online]. Available: https:

//doi.org/10.1023/A:1018054314350.

80

https://www.researchgate.net/publication/2453554_Using_Output_Codes_to_Boost_Multiclass_Learning_Problems
https://www.researchgate.net/publication/2453554_Using_Output_Codes_to_Boost_Multiclass_Learning_Problems
https://www.researchgate.net/publication/2453554_Using_Output_Codes_to_Boost_Multiclass_Learning_Problems
https://doi.org/10.1016/S0893-6080(05)80023-1
https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350

	Introduction
	Motivation
	Research Questions
	Research Goals
	General goal
	Specific goals

	Research Methodology
	Thesis Contribution
	Thesis Outline

	Background on Breast Cancer and Data Mining
	Breast Cancer
	Mammograms
	Risk factors

	Knowledge Discovery in Databases
	KDD Process
	Data extraction methods

	Feature selection methods
	Chi-squared test
	Mutual information

	Classification algorithms
	Decision tree
	Decision stump
	Random tree
	Deep learning
	Generalized linear model
	K-nearest neighbor
	Naïve Bayes

	Performance Metrics
	Development Tools
	Related Work
	Summary

	Dataset and Preprocessing
	Dataset Selection
	Dataset Description
	Preprocessing
	Simple conversion operations
	Attribute transformation
	Attribute removal
	Elimination of records with unknown values

	Summary

	Selection and Validation of Risk Factors
	Feature Selection
	Chi-squared test
	Mutual information
	Definition of subsets of relevant attributes

	Risk Factors Validation
	Imbalance classification problem
	Ensemble learning methods
	Bagging implementation
	Risk factor validation with the defined subsets

	Results Comparison

	Conclusions
	References

