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Abstract

Convolutional Neural Networks (CNN) has gained much attention for the solution of numerous
vision problems including disparities calculation in stereo vision systems. In this paper, we
present a CNN based solution for disparities estimation that builds upon a basic module (BM)
with limited range of disparities that can be extended using various BM in parallel. Our
BM can be understood as a segmentation by disparity and produces an output channel with
the memberships for each disparity candidate, additionally the BM computes a channel with
the out–of–range disparity regions. This extra channel allows us to parallelize several BM
and dealing with their respective responsibilities. We train our model with the MPI Sintel
dataset. The results show that ModuleNet, our modular CNN model, outperforms the baseline
algorithm Efficient Large-scale Stereo Matching (ELAS) and FlowNetC achieving about a 80%
of improvement.



Resumen

Las redes neuronales convolucionales (CNN) han ganado mucha atención por la solución de
numerosos problemas de visión, incluido el cálculo de disparidades en sistemas de visión
estéreo. En este artículo, presentamos una solución basada en CNN para la estimación de
disparidades que se basa en un módulo básico (MB) con un rango limitado de disparidades
que se puede ampliar utilizando varios MB en paralelo. Nuestro MB puede entenderse como
una segmentación por disparidad y produce un canal de salida con las membresías para cada
candidato de disparidad, además, el MB calcula un canal con las regiones de disparidad fuera
de rango. Este canal extra nos permite paralelizar varios BM y hacer frente a sus respectivas
responsabilidades. Entrenamos nuestro modelo con el dataset MPI Sintel. Los resultados
muestran que ModuleNet, nuestro modelo modular de CNN, supera al algoritmo de referencia
Efficient Large-scale Stereo Matching (ELAS) y FlowNetC logrando aproximadamente un 80 %
de mejora.
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Chapter 1

Paper

This chapter contains the front part and details of the conference proceedings and then the paper
as appeared in the proceedings.

Renteria-Vidales O.I., Cuevas-Tello J.C., Reyes-Figueroa A., Rivera M. (2020)
ModuleNet: A Convolutional Neural Network for Stereo Vision. In: Figueroa Mora
K., Anzurez Marín J., Cerda J., Carrasco-Ochoa J., Martínez-Trinidad J., Olvera-
López J. (eds) Pattern Recognition. MCPR 2020. Lecture Notes in Computer
Science, vol 12088, pp 219-228. Springer, Cham, ISBN: 978-3-030-49075-1,
eISBN: 978-3-030-49076-8, DOI: 10.1007/978-3-030-49076-8_21
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Abstract. Convolutional Neural Networks (CNN) has gained much
attention for the solution of numerous vision problems including dis-
parities calculation in stereo vision systems. In this paper, we present a
CNN based solution for disparities estimation that builds upon a basic
module (BM) with limited range of disparities that can be extended using
various BM in parallel. Our BM can be understood as a segmentation by
disparity and produces an output channel with the memberships for each
disparity candidate, additionally the BM computes a channel with the
out–of–range disparity regions. This extra channel allows us to parallelize
several BM and dealing with their respective responsibilities. We train
our model with the MPI Sintel dataset. The results show that Mod-
uleNet, our modular CNN model, outperforms the baseline algorithm
Efficient Large-scale Stereo Matching (ELAS) and FlowNetC achieving
about a 80% of improvement.

Keywords: Stereo vision · Convolutional Neural Networks · U-Net ·
Census transform · Deep learning

1 Introduction

The purpose of an stereo system is to estimate the scene depth by comput-
ing horizontal disparities between corresponding pixels from an image pair (left
and right) and has been intensively investigated for several decades. There is a
wide variety of algorithms to calculate these disparities that are complicated to
include them all in one methodology or paradigm. Scharstein and Szeliski [13]
propose a block taxonomy to describe this type of algorithms, following steps
such as matching cost calculation, matching cost aggregation, disparity calcula-
tion and disparity refinement. One example is ELAS, an algorithm which builds
a disparities map by triangulating a set of support points [8].

We present a CNN based solution for disparities estimation that builds upon
a basic module (BM) with limited range of disparities that can be extended
using various BM in parallel. Our BM can be understood as a segmentation

c© Springer Nature Switzerland AG 2020
K. M. Figueroa Mora et al. (Eds.): MCPR 2020, LNCS 12088, pp. 219–228, 2020.
https://doi.org/10.1007/978-3-030-49076-8_21
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220 O. I. Renteria-Vidales et al.

by disparity and produces an output channel with the memberships for each
disparity candidate, additionally the BM computes a channel with the out–of–
range disparity regions. This extra channel allows us to parallelize several BM
and dealing with their respective responsibilities. We list our main contributions
as follows: i) We propose ModuleNet, which is a novel modular model to measure
disparities on any range, which is inspired on FlowNet and U-Net. ii) We use a
low computational time algorithm to measure cost maps. iii) The architecture of
our model is simple, because it does not require another specialized networks for
refinement as variants of FlowNet do for this problem. iv) Our model improves
the baseline model ELAS and FlowNetC (the correlation version of FlowNet)
with about 80% of unbiased error.

The paper is organized as follows: Sect. 2 presents the related work. At Sect. 2
are the algorithms FlowNet, Census transform and ELAS. The proposed model
is in Sect. 3. Section 4 describes the dataset used in this research. At the end are
our results, conclusions and future work.

2 Related Methods

In recent years, Convolutional Neural Networks (CNN) have made advances
in various computer vision tasks, including estimation of disparities in stereo
vision. Fischer et al. propose a CNN architecture based on encoder-decoder
called FlowNet [6]. This network uses an ad hoc layer for calculating the nor-
malized cross-correlation between a patch in the left image and a set of sliding
windows (defined by a proposed disparity set) of the right window and uses Full
Convolutional Network (kind encoder-decoder architecture) for estimate the reg-
ularized disparity [11]. Park and Lee [9] use a siamese CNN to estimate depth
for SLAM algorithms. Their proposal is to train a twin network that transforms
patches of images and whose objective is to maximize the normalized cross cor-
relation between corresponding transformed patches and minimize it between
non-corresponding transformed patches. To make the inference of the disparity
in a stereo pair, a left patch and a set of displaced right patches are used, then
the normalized cross correlation between the twin networks transformed patches
and the disparity is selected using a Winner–Takes–All (WTA) scheme. Other
authors use a multi-scale CNN, where the strategy is to estimate the disparity
of the central pixel of a patch by processing a pyramid of stereo pairs [4]; and
the reported processing time for images in the KITTI database is more than
one minute [7]. A state of the art method with really good results is reported by
Chen and Jung [3], they use a CNN that is fed with patches of the left image and
a set of slipped patches of the right image (3DNet). Then, for a set of proposed
disparities, the network estimates the probability that each of the disparities
corresponds to the central pixel of the left image patch that requires of evaluate
as many patches as pixels, so it is computationally expensive.

In this section, we present FlowNet, an architecture designed for optical
flow, and it can be used for stereoscopy. Also, this section introduces the Census
Transform.
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2.1 FlowNet

FlowNet is composed by two main blocks. The network computes the local vec-
tor that measure the dissimilarity between each pixel (x, y) in the left image
Il and its corresponding candidate pixel (x + δ, y), for a given disparity δ, in
the right image Ir; where δ ∈ d with d = [d1, d2, . . . , dh] and di is an integer
value. This block is deterministic (not trainable) and produces a dissimilarity
map (tensor) D of size equal to (h, nrows, ncolumns). FlowNet is based on the
U-Net [11]. The network computes the regularized disparities d∗; with dimen-
sion equal to (1, nrows, ncolumns). The main disadvantage of this method is the
computational cost of the normalized cross-correlation layer and it also produces
blurred disparity maps [6], see in Fig. 1 the FlowNetC architecture.

Fig. 1. FlowNet architecture.

2.2 Census Transform

Differently to FlowNet, that uses normalized cross-correlation to measure the
cost maps, an alternative is Census Transform [15]. Other algorithms for this
task are Sum of Absolute Differences (SAD) [14], Sum of Square Differences
(SSD) [14], Normalized Cross-Correlation [5]. Because a low complexity cost
function is desirable, we chose the Census Transform [15]. Figure 2 exemplify the
Census algorithm, where it transforms the values of the neighbors. The values
of the neighbors of a pixel are encoded within a binary chain (it is assigned “1”
when they are greater than or equal to the central pixel, or “0” otherwise). This
chain is called census signature, the signature retains spatial information of each
neighbor given the position within the string where each bit is stored.

For a 3 × 3 window, the census signature contains eight values and can be
saved in one byte, this transformation can be computed with:

Cl(x, y) = Bitstring(i,j)∈w(Il(i, j) ≥ Il(x, y)) (1)

for the case of the left image Il; and in a similar is computer the census transform
Cr for the right image Ir. To obtain the level of correspondence, the Hamming

6



222 O. I. Renteria-Vidales et al.

Fig. 2. Census transform

distance (H) is used to count how many bits are different between two census
signatures:

Dm(x, y; d) = H(Cl(x, y), Cr(x + dm, y)) (2)

We can denote this stage by the representational function Fc that trans-
forms the information in the images Il and Ir into the distance tensor D =
[D1,D2, . . . , Dh]:

D = Fc(Il, Ir; d) (3)

where the parameters are the set of candidate disparities, d.

3 ModuleNet: Modular CNN Model for Stereoscopy

Our proposed model (ModuleNet) builds upon U-Net blocks and is inspired on
the FlowNet. First, we describe the general block U-Net (see Fig. 3) that can find
disparities in a range d. Second, we introduce the cascade U-Net for refinement,
see Fig. 4. Finally, the modular CNN model (ModuleNet) for disparities out of
the range d is presented, see Fig. 5.

3.1 General Block: U-Net U-Net Module

Our neural network for stereo disparity estimation is composed with blocks based
on the UNet. Indeed, the most basic construction block can be seen as a simpli-
fied version of the FlowNet where the Disparity Map D is computed with the
Hamming distances between the Census transformed patches (the fixed and the
δ-displaced one). Another difference between our basic block and the FlowNet
model is that, instead of computing directly a real valued map of disparities, we
estimate the probability that a particular candidate disparity δ is the actual one
at each pixel. We also compute an additional layer that estimates outliers: the
probability that the actual disparity in each pixel is not included in the set of
disparities d. As input to the U-Net, we have h channels of distances correspond-
ing to the h candidate disparities and, as output, we have h+1 probability maps;
see Fig. 3. We can represent this U-Net block by the representational function
F1 that transforms the information in the distance tensor D = [D1,D2, . . . , Dh]
into the probabilities tensor P = [P1, P2, . . . , Ph, Ph+1]:

P = F1(D, θ1) (4)

where θ1 are the network weight set.
7
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Fig. 3. General block (U-Net)

The representational U-Net F1 (4) can be seen as a regularizer of the noisy
Census-distance maps. We observed that the output of the basic (trained) block
can be refined by a second U-Net. This second U-Net (in cascade) is trained using
as input the census cost maps, the initial estimation of the disparity probabilities
maps and the outliers’ probability map and produces as output refined versions
of the inputs. We represent this U-Net block by the representational function F2

that refine probabilities tensor P using also as input the distance tensor D:

Ŷ = F2(P,D, θ2) (5)

where θ2 are the weight set. We denote our basic module for disparity estimation
by

D = Fc(Il, Ir; d) (6)

Ŷ = F (D)
def
= F2(F1(D),D). (7)

where we omitted the parameters θ1 and θ2 in order to simplify the notation.
Once we have trained a basic module (7), it can be used for estimating disparities
into the range defined by the disparity set d. The regions with disparities outside
such a range are detected in the outliers’ layer. Figure 4 depicts our block model
based on two cascaded U-Nets (general blocks, see Fig. 3).

Fig. 4. Our Basic Block composed with two U-Net in cascade.

8
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3.2 ModuleNet: Modular CNN Model

Assume, we have a trained basic module for the disparities into the interval
[d1, dh] and the actual range of disparities, in the stereo pair, lays into the interval
[d1, 2dh]. We can reuse our basic model for processing of such a stereo pair
if we split the calculations for the disparities sets d(0) = [d1, d2, . . . , dh] and
d(1) = [dh+1, dh+2, . . . , d2h]. Then, we can compute two census distance tensors
D(0) = Fc(Ir, Il; d

(0)) and D(1) = Fc(Ir, S{Il, h}; d(1) − h); where we define the
shift operator

S{I, dh} def
= I(x + dh, y). (8)

Thus, we can estimate the probability that the disparity is in the set d(0) with
Ŷ (0) = F (D(0)) and in the set d(1) with Ŷ (1) = F (D(1)); where F is our basic
module 7.

This idea can be extended for processing stereo pair with a wide range of
disparities. First we define the k-th set of disparities as

D(k) = Fc(Ir, S{Il, kh}; d(k) − kh) (9)

for k = 1, 2, . . . ,K. Second, we estimate, in parallel, the K tensor of probability:

Ŷ (k) = F (D(k)) (10)

Note that the network F is reused for processing the K modules. The CNN
transforms the representation D(k) into Ŷ (k): the probability that disparities
δ(k) of the module k at the pixel (x, y) are the correct displacement. To estimate
the tensor Ŷ that integrates the individual probability tensors Ŷ (k)’s, we use the
additional layer with the probability that the correct displacement of each pixel
is not the k-th interval:

Ŷ(kh+i) = Ŷ
(k)
i �

(
1 − Ŷ

(k)
h+1

)
(11)

for i = 1, 2, . . . , h, k = 0, 1, . . . , K − 1 and � denotes the element-wise product.
Finally, the disparity estimation, d∗ is computed by applying a WTA procedure
in the disparities map Ŷ :

d∗(x, y) = arg max
l

Ŷl(x, y) (12)

for l = 1, 2, . . . ,Kh. Figure 5 depicts ModuleNet – our modular model.

9
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·
·
·

Fig. 5. ModuleNet: Modular CNN Model

4 Dataset and Training Parameters

We used the MPI Sintel dataset for train our model. The MPI Sintel-stereo
dataset is a benchmark for stereo, produced from the open animated short film
Sintel produced by Ton Roosendaal and the Blender Foundation [1]. This dataset
contains disparity maps for the left and right image, occlusion masks for both
images. The dataset consist of 2128 stereo pairs divided in clean and final pass
images. The left frame is always the reference frame. For our experiments, we
use the clean subset pairs that consist of 1064 pairs; 958 for training and 106
for testing. See example in Fig. 6, the disparity map is the ground truth. Our
training set consisted on patches (256×256 pixels) randomly sampled from of 958
stereo pairs (1024 × 460 pixels) and 106 stereo pairs were leave-out for testing.

We change the number of filters distributions across the layers according to
Reyes-Figueroa et al. [10]. It has been shown that in order to have more accurate
features and to recover fine details, more filters are required in the upper levels
of U-Net and less filters in the more encoded levels. Our model’s architecture
is summarized in Fig. 3. We trained our model during 2000 epochs with mini-
batches of size eight.

We used data augmentation by randomly resizing the frames (random scaling
factor into the range [.6, 1]), adding Gaussian noise (mean zero with standard
deviation equal 1% the images’ dynamic range). The ADAM optimization algo-
rithm was used with fixed lr = 1 × 10−4 and β = [0.9, 0.999]. For processing the
data set, we used a basic block with sixteen disparities (h = 16) and K = 24
parallels blocks.

10



226 O. I. Renteria-Vidales et al.

Fig. 6. Example of MPI Sintel data: left and right images and disparity map.

5 Results

In Fig. 7 are shown the results from seven scenes by using the MPI Sintel dataset.
We show a single image per scene for illustrating the algorithm’s performance.
We compare the results from our model versus ELAS and FlowNetC. Visually,
one can see that the proposed model is closer to the ground truth than ELAS
and FlowNetC.

Fig. 7. Results from MPI Sintel dataset on selected scenes

In Table 1 is the comparison of results from applying a Total–Variation poten-
tial for edge–preserving filtering to the Distance Tensor D (here named TV–
Census) [2], ELAS, FlowNetC and our proposal (ModuleNet); in bold font the
best results. We use the metric Mean Absolute Error (MAE) in non-occluded
areas to measure the results quantitatively. Our proposed model outperforms
the compared methods. The advantage of the MPI Sintel dataset is that the
ground truth is provided, so the accuracy (MAE) is unbiased. Show particular
results from seven representative stereo pairs and the average over the total of
frames. Additionally we tested our method with the Middlebury Stereo Datasets
2014 [12] which consist of 33 image pairs, divided in 10 evaluation test sets with
hidden ground truth, 10 evaluation training sets with ground truth and 13 addi-
tional sets, the first 20 sets are used in the new Middlebury Stereo Evaluation.
Figure 8 shows a visual comparison of the computed results.

11
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Table 1. MAE results from MPI Sintel dataset on selected scenes

Scene FlowNetC ELAS TV–Census Proposed

alley 1 2.98 2.98 0.92 0.44

bamboo 1 2.91 2.39 0.63 0.51

bandage 2 14.09 12.77 2.60 2.14

cave 2 3.95 3.10 1.85 0.65

market 2 1.94 2.07 0.54 0.43

temple 2 2.26 2.44 0.60 0.38

temple 3 6.09 2.85 0.74 0.43

All test images 24.3 14.1 1.7 1.5

Fig. 8. Results from Middlebury dataset on selected stereo pairs

6 Conclusions and Future Work

We proposed a new model called ModuleNet for disparities estimation that can
be applied in stereoscopy vision. Our model is build upon FlowNet, U-Net and
Census transform. The modularity of our method allows generating disparity
maps of any size simply by adding more blocks. The extra layer, for detecting
pixels with disparities out of range, helps us to classify pixels that usually adds
noise since these pixels are outside the range of work or are pixels of occluded
regions. Our results show that qualitatively and quantitatively our model out-
performs Census–Hamming approach (robustly filtered), ELAS and FlowNetC;
which are baseline methods for disparities estimation. The unbiased error was
improved by about 80%.

Our future work will focus on extend the training set with real stereo pairs,
conduct more exhaustive evaluations and implement our model on an embedded
system (e.g. NVIDIA R© Jetson NanoTM CPU-GPU and Intel R©MovidiusTM USB
stick). We plan to compare the performance of our model with other state-of-
the-art methods, regardless the complexity and computational time with GPU
hardware. As most of the methods, the texture-less regions are difficult to iden-
tify. So an algorithm to detect such textures is desired.

12
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Disparity and depth

Disparity and depth
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Applications 
With these disparities, the depth of each pixel can be calculated to generate a 3D 
scene. Multiple applications include the scanning of 3D objects, reconstruction of 
navigation maps for autonomous robots, among others.

93D escene Navigation using 3D information 

Disparity calculation taxonomy

Scharstein and Szeliski propose a block taxonomy to describe this type of 
algorithms:

● Matching cost calculation
● Matching cost aggregation
● Disparity calculation 
● Disparity refinement

10
Scharstein, D., Szeliski, R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. 2015 19



Cost Calculation

Cost calculation

Reference Target
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Cost calculation

A very popular cost function due to its low computational level, is the transformed 
census:

13
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. 1994

Cost calculation

Input image Census transform

1421



Cost calculation

The hamming distance is used to obtain the cost map, consist in to count the 
number of different bits

1 0 0 1 1 0 1 1

0 0 1 1 1 0 1 0

1 0 1 0 0 0 0 1

XOR

Cost 3
15

WTA

The final displacement map consists of taking the pixel with the lowest cost in 
each map D, this technique called WTA (winner takes all).

Left

Right

Cost map for each 
displacement WTA
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Convolutional Neural Networks

Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take in an 
input image, assign importance (learnable weights and biases) to various aspects/objects in 
the image and be able to differentiate one from the other.

18
A CNN sequence to classify handwritten digits
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Convolutional Neural Networks
The origin of de CNN is the "neocognitron". Introduced by Kunihiko Fukushima in 1980. The 
neocognitron introduced the two basic types of layers in CNN: convolutional layers, and 
downsampling layers. A convolutional layer contains units whose receptive fields cover a patch of 
the previous layer. The weight vector (the set of adaptive parameters) of such a unit is often called 
a filter.

19Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. 
Cybernetics 36, 193–202 (1980).
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Convolutional Neural Networks
The origin of de CNN is the "neocognitron". Introduced by Kunihiko Fukushima in 1980. The 
neocognitron introduced the two basic types of layers in CNN: convolutional layers, and 
downsampling layers. A convolutional layer contains units whose receptive fields cover a patch of 
the previous layer. The weight vector (the set of adaptive parameters) of such a unit is often called 
a filter.

21

Convolution example

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. 
Cybernetics 36, 193–202 (1980).

Convolutional Neural Networks
Spatial Pooling (also called subsampling or downsampling) reduces the dimensionality of each 
feature map but retains the most important information. Spatial Pooling can be of different types: 
Max, Average, Sum etc.

22

Pooling example
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Convolutional Neural Network
In general, the more convolution steps we have, the more complicated features our network will be 
able to learn to recognize.

23

 Learned features from a Convolutional Deep Belief Network

Honglak Lee, et al, “Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations”

Convolutional Neural Networks Evolution
● Neocognitron (1980)
● LeNet (1990s)
● AlexNet (2012)
● ZF Net (2013)
● GoogLeNet (2014)
● VGGNet (2014)
● ResNets (2015)
● DenseNet ( 2016)
● YOLO V2 (2017) 
● YOLO V3 (2018)
● EfficientNet (2019)

2426



Cost calculation using
Convolutional Neural Networks

Cost calculation using CNN

The main focus in various CNN proposals is the calculation of similarity costs, that 
is to find the relevant pixels for each displacement. This can be seen as a 
segmentation problem:

Left Right Disparity levels 2627



Semantic Segmentation

27

U-Net

U-Net architecture is separated in 3 parts:

1. The contracting/downsampling path
2. Bottleneck
3. The expanding/upsampling path

28
Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation".28



U-Net

29
Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation".

Cost calculation using CNN

We take inspiration in a U-Net like netwok called FlowNetC.

This architecture utilizes two independent streams for the images and to combine 
them at a later stage, With this architecture the network is constrained to first 
produce meaningful representations of the two images separately and then 
combine them on a higher level. To aid the network to find correspondences 
between images, the network utilizes a custom ‘correlation layer’ that performs 
multiplicative patch comparisons between two feature maps.

30
A. Dosovitskiy et al., "FlowNet: Learning Optical Flow with Convolutional Networks," 201529



Cost calculation using CNN

31
A. Dosovitskiy et al., "FlowNet: Learning Optical Flow with Convolutional Networks," 2015

FlowNetC

Predicted coarse map

Image 0

Image 1
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ModuleNet

V-Net

34

Reyes-Figueroa, A., Rivera, M.: Deep neural network for fringe pattern filtering and normalisation (2019)31



V-Net

Left image U-Net V-Net Ground–truth
35

General Block: U-Net U-Net Module
The most basic construction block in our proposal it is a Encoder-Decoder network 
(U-Net type) where the Disparity Map D is computed with the Hamming distances 
between the Census transformed patches:

3632



General Block: U-Net U-Net Module

Hamming cost maps Probability maps

Outliers

d1

dh

1

h

h+1
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General Block: U-Net U-Net Module

Noisy Filtered
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General Block: U-Net U-Net Module

Hamming 
cost maps Refined maps

Primary
U-Net

outputs

Second
U-Net

+
Input cost maps
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General Block: U-Net U-Net Module
Differently to FlowNet which computes directly a real valued map of disparities, we 
estimate the probability that a particular candidate disparity δ is the actual one at 
each pixel.

4034



Disparity calculation for arbitrary ranges
Assume, we have a trained basic module for the disparities into the interval
[d1, dh]  and the actual range of disparities, in the stereo pair, lays into the interval 
[d1, 2 dh ]. We can reuse our basic model for processing of such a stereo pair if we 
split the calculations for the disparities sets.

41

h
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Disparity calculation for arbitrary ranges
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Disparity calculation for arbitrary ranges

Dataset and training
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Dataset and Training Parameters
The MPI Sintel-stereo dataset is a benchmark for stereo, produced from the open 
animated short film Sintel produced by Ton Roosendaal and the Blender 
Foundation. For our experiments, we use the clean subset pairs that consist of 
1064 pairs; 958 for training and 106 for testing.

Pair example with ground truth
45

Dataset and Training Parameters
We trained our basic block with 16 disparities, during 2000 epochs with 
mini-batches of size 8.
The ADAM optimization algorithm was used with fixed learning lr = 0.0001 and 
β =  [0.9,0.999]

4637



Results

Results
We compare results against FlowNetC and Census-Hamming with total variation 
denoising (TV-Census). We also compare against Efficient Large-Scale Stereo 
Matching (ELAS) which builds disparities by forming a triangulation on a set of 
support points.

48Chambolle, A. "An algorithm for total variation minimization and applications" (2004).
Geiger A., Roser M., Urtasun R. Efficient Large-Scale Stereo Matching (2011).38



Results
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Results

Middlebury Stereo Datasets 5039



Results

Mean Absolute Error
51

Conclusions
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Conclusions
● We proposed a new model called ModuleNet for disparities estimation that 

can be applied in stereoscopy vision
● Can generate disparity maps of any size simply by adding more blocks
● Detects pixels with disparities out of range or pixels of occluded regions
● Outperforms Census–Hamming approach (robustly filtered), ELAS and 

FlowNetC

53

Future Work

54

● Work on a new model that does not require the use of CENSUS
● Optimize the network to reduce processing times
● Use pyramid techniques to make the net more resistant to textureless areas 

and repeated patterns.
● Adapt the network to calculate optical flow

41
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Appendix A

Convolutional Neural Networks

This appendix introduces Convolutional Neural Networks (CNN), U-Net and ModuleNet.

A.1 Introduction

A CNN is a Deep Learning algorithm where an image is the input, then CNN assign importance
(learnable weights and biases) to various aspects/objects in the image and is able to differentiate
one from the other. The pre-processing required in a CNN is much lower as compared to other
classification algorithms. While in primitive methods filters are hand-engineered, with enough
training, ConvNets have the ability to learn these filters/characteristics.

The design of CNN was natural inspired and clearly based on the seminal work of Hubel
and Wiesel [6] that study the presence of receptive fields and functional architecture in the
visual cortex of cats. In this work, electrical signals were captured from the brain of cats to
study how their visual cortex respond to stimulus, see Fig. A.1. In fact, the study showed that
the visual cortexes of cats are composed of areas specialized in responding to particular visual
stimulus, the so-called biological receptive fields, see Fig. A.2. The mentioned work showed
that each portion of the visual cortex is responsible for responding to specific local regions
of the visual fields. In other words, a particular neuron is unaware of what happens to visual
signals that are not is its local areas of particular interest

43



Figure A.1 Experimental setup for study of the visual cortex of cats [6]

Figure A.2 Demonstration of the existence of receptive fields in visual cortex of cats. Only
specific neurons activate each time (right) while the bar moves (left) [6]

One of the first work in neural networks inspired by this papers was the Neocognitron
proposed by Kunihiko Fukushima [5]. The Neocognitron (see Fig. A.3) consists of multiple
types of cells, the most important of which are called S-cells and C-cells. The local features



are extracted by S-cells, and these features’ deformation, such as local shifts, are tolerated by
C-cells. Local features in the input are integrated gradually and classified in the higher layers.

Figure A.3 The architecture of the Neocognitron [5].

The Neocognitron established the two basic layers of any CNN, the convolutional layer
(local feature extraction) and the pooling layer (global feature extraction)

A.2 Convolution Layer

The objective of the Convolution Operation is to extract the high-level features such as edges,
from the input image. CNN need not be limited to only one Convolutional Layer. Conventionally,
the first ConvLayer is responsible for capturing the Low-Level features such as edges, color,
gradient orientation, etc.

Convolution is a mathematical operation on two functions ( f and g) that produces a third
function f ∗g that expresses how the shape of one is modified by the other. The operation is
fairly simple, the function f (named kernel) slides over the function g (data), performing an
elementwise multiplication with the part of the input it is currently on, and then summing up
the results into a single output, see Fig. A.4.



Figure A.4 Convoluting a 5×5×1 image with a 3×3×1 kernel to get a 3×3×1 convolved
feature

The kernel repeats this process for every location it slides over, converting a 2D matrix of
features into yet another 2D matrix of features. The output features are essentially, the weighted
sums (with the weights being the values of the kernel itself) of the input features located roughly
in the same location of the output pixel on the input layer, see Fig. A.5.

Figure A.5 Example of the image Lena [1] with a edge detector kernel



The kernel (also called filter) generates a filtered representation of the input data, the values
of the kernel are learned during training and specialize on filter features relevant to the model.
This features are locally because the value of a pixel depend of the values of their neighbors,
therefore the size of a kernel defines the neighbor window around a pixel.

A.3 Pooling Layer

The Pooling layer is responsible for reducing the spatial size of the Convolved Feature. This
is to decrease the computational power required to process the data through dimensionality
reduction. Furthermore, it is useful for extracting dominant features, which are rotational and
positional invariant, thus maintaining the process of effectively training of the model.

There are two types of Pooling: Max Pooling and Average Pooling. Max Pooling returns
the maximum value from the portion of the image covered by the Kernel, see Fig. A.6. On the
other hand, Average Pooling returns the average of all the values from the portion of the image
covered by the Kernel.

Figure A.6 Types of Pooling



A.4 Conv Block

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a Convolutional
Neural Network (sometimes called Conv Block). Depending on the complexities in the images,
the number of such layers may be increased for capturing low-levels details even further, see
Fig. A.6, but requiring more computational resources.

Figure A.7 The combination of more conv blocks derives on more complex features [7]

Now we have a network which is capable of learn how to filter an image in a a way relevant
to solve a problem. The output can be used directly for tasks as segmentation or add a fully
connected layer (Multi-Layer Perceptron) for classification tasks, see Fig. A.8.



Figure A.8 Minimal model of a CNN for multi-classification [2]

A.5 U-Net

Over the years, many CNN architectures have been proposed to improve the image classification
problem, as well as novel proposals to solve other types of vision tasks, such as segmentation.

In Image Segmentation, the machine has to partition the image into different segments, each
of them representing a different entity, see Fig. A.9.

Figure A.9 Semantically-segmented image, with areas labeled “dog”, “cat” and “background”
[4]



Image segmentation is useful in many fields from self-driving cars to medical imaging.
CNN gave decent results in easier image segmentation problems but it has not made any good
progress on complex ones until the apparition of U-Net.

U-Net was designed especially for medical image segmentation, were the subtleties in
those images are quite complex and sometimes even challenging for trained physicians. This
architecture showed such good results that it used in many other fields.

A.5.1 The idea behind U-Net

The purpose of a CNN is to learn the feature mapping of an image and exploit it to make more
nuanced feature mapping. This works well in classification problems as the image is converted
into a vector (flatten layer) which used further for classification, see Fig. A.8. But in image
segmentation, we not only need to convert feature map into a vector but also reconstruct an
image from this vector. This is a very difficult task because it is a lot tougher to convert a vector
into an image than vice versa. The whole idea of U-Net is revolved around this problem.

While converting an image into a vector, we already learned the feature mapping of the
image so why not use the same mapping to convert it again to image. This is the recipe
behind U-Net. Use the same feature maps that are used for contraction to expand a vector to a
segmented image. This would preserve the structural integrity of the image which would reduce
distortion.



Figure A.10 U-Net architecture as shown in the original paper [9]

The architecture visually looks like a “U” which justifies the name. This architecture
consists of three sections: the contraction, the bottleneck, and the expansion path. The
contraction path is made of many contraction blocks. Each block takes an input and applies two
3 convolution layers followed by a 2×2 max pooling. The number of kernels or feature maps
after each block doubles so that architecture can learn the complex structures effectively. The
bottommost layer mediates between the contraction layer and the expansion layer. It uses two
3×3 CNN layers followed by 2×2 up convolution layer.

Similar to contraction layer, the expansion layer it also consists of several expansion
blocks. Each block passes the input to two 3×3 CNN layers followed by a 2×2 upsampling
layer. Also after each block number of feature maps used by convolutional layer get half to
maintain symmetry. However, every time the input is also get appended by feature maps of the
corresponding contraction layer. This action would ensure that the features that are learned
while contracting the image will be used to reconstruct it. The number of expansion blocks is
as same as the number of contraction block. After that, the resultant mapping passes through
another 3×3 CNN layer with the number of feature maps equal to the number of segments
desired.



A.5.2 Pixel-wise Classification

A pixel-wise softmax is applied on the resultant image which is followed by cross-entropy loss
function. So each pixel is classified into one of the classes. The idea is that even in segmentation
every pixel have to lie in some category and we just need to make sure that they do. So we just
converted a segmentation problem into a multiclass classification, see Fig. A.11.

Figure A.11 Example of the prediction of the U-Net (note the borders in the segments) [9]

A.6 ModuleNet

In a stereo system we have two images, each one has a view of the same scene but each view is
slightly moved (horizontally). Given the perspective, in order to pair both images it requires
different levels of displacement, in each displacement only some regions will match.



Figure A.12 Example of a binded stereo pair, at different displacements, different regions will
match [3]

The level of displacement required to match a region in both images defines how far or
close it is to the camera.

There are an infinity of algorithms to measure matching regions between images, in our
work we choose the Census tansform combined with the Hamming cost, this algorithm gives
acceptable accuracy and requires less computation power. The principal problem it is generates
noisy maps, see Fig. A.13.



Figure A.13 The Hamming cost produces a map in which the lower the cost (black areas),
bigger the match between pixels

A.6.1 Filtering noise with ModuleNet

The basic objective of the ModuleNet model is to filter noisy Hamming maps in a smart
way. ModuleNet it is composed of two main parts, the input generator and the U-Net U-Net
Module, the input generator it is composed by two custom layers called Census Layer and
Hamming layer, the first layer takes the two images (left and right) and applies them the census
transform. the resulted census images enters into the Hamming Layer in which the Hamming
cost is calculated. ModuleNet is capable of generate N filtered maps (in the paper, we defined
16 maps) so the model requires N input Hamming maps, the Hamming Layer generates such
maps moving the right census map one pixel at a time to the right, then calculates the Hamming



cost between the left static and right moved census images. This process repeats N times in
order to generate the N maps required. The Census and Hamming layers are fixed operations,
whereby they do not require training.

The U-Net U-Net Module is composed of two U-Net connected in series, see Fig. A.14,
the first U-Net generates a segmented version of the input maps. The network learns how to
maximize the high correlation zones, meanwhile ignoring the noisy ones in areas with low
correlation, inherent to the Census and Hamming cost.

Stereo pair Refined layers

Figure A.14 The main block of the ModuleNet [8]

The second U-Net model refines the outputs, generating high quality segmentations, see
Fig. A.15.



Figure A.15 The Hamming cost produces a map in which the lower the cost (black areas),
bigger the match between pixels [8]

ModuleNet only can generate a fixed amount of disparities maps at a time (16 maps), in
some small images is enough, but in bigger images this fixed range is insufficient to cover all
the displacements.

To circumnavigate this limitation, we can run several ModuleNet modules in parallel, see
Fig. A.16, each modules will take care of process a different range of disparities. Lets say our
stereo pair has a disparities range of R = 64, and our ModuleNet only can see N = 16 disparities,
we require R/N modules in parallel in order to cover the entire range (in this example, we need
4 models).



·
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Left and right 
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Models Layer 
Predictions
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Figure A.16 We can stack several ModuleNet for extended disparities ranges [8]

This is accomplished by moving the right image N pixels to the right before feed it to the
network, in the example of 4 modules, the four modules receives the same left image, but the
first module receives the right image moved N ∗0 pixels, the second module the right image
moved N ∗1, the third module the right image moved N ∗2, etc. At first glance this seems like
a waste of memory because, apparently you need to load the module several times in order
to cover the needed range. In reality you run only one module, but it is executed in batches.
The final part is only stack all the output maps and apply a simple WTA (Winner Takes All) to
generate the final Disparities map, see Fig A.17.



Figure A.17 Final result of WTA colored with Jet palette [8]
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