
Agile Micro-Methodology for the Development of Software in Programming
Marathons (Hackathons)

L Guillermo CANTO-SUSTAITA

Héctor G PEREZ-GONZALEZ
Alberto S NUÑEZ-VARELA

Francisco E MARTINEZ-PEREZ
Department of Computer Science, Universidad Autónoma de San Luis Potosí,

San Luis Potosí, S.L.P, México

ABSTRACT

This paper describes our experiences using and evaluating a
methodology for the development of applications in extremely
short periods of time, such as programming in Hackathons. A
hackathon is by definition, a programming event that includes a
component of competition, however, experience following some
methodology in such extreme situations could contribute to the
improvement of software processes when it requires extremely
short production times. A semi-formal qualitative study of the
use of the methodology was conducted, in order to evaluate the
success of the process, with a view to improving future similar
events. A real Hackathon event was used to evaluate mentioned
methodology and gather experience about the same.

Keywords: Hackathon, Software Development Methodology,
Agile, Scrum, Kanban.

1. INTRODUCTION

In the software development field, we find certain scenarios in
which the time required to generate a (software) product
represents one of the most important restrictions to achieve it.
This refers to situations in which it is required in extremely short
periods of time to add a new feature, or to make a correction or
update. This situation forces the development team to breach the
guidelines of a conventional methodology to solve the problem.
A specific example of such development work is presented at
events known as programming marathons or Hackathons in
which a self-managed development team [10] must obtain a
product in a short period of time (72, 48 or even less hours).
These types of scenarios present a great challenge for
conventional methodologies and even for well-known agile
methodologies. Such is the case of Scrum [3], in which process
iterations (Sprints) [4] with an average duration of 15 days are
recommended. A hackathon is by definition, an event that
includes a component of competition, however, experience
following some methodology in such extreme situations could
contribute to the improvement of software processes when it
requires extremely short production times. This type of situation
arises in normal software industry for example, in the generation
of security patches or expedited corrections, the production of
additional features resulting from changes in requirements or
urgent business needs, or the inclusion of functionalities such as
incremental improvement or solution of problems that affect
users in real time.
The proposed research question is:

“What are the benefits of implementing an extremely fast
development methodology for hackathons?”

The objective of this work is to propose and evaluate the use of a
"Micro-methodology" for the development of applications in
extremely short periods of time, such as programming
Hackathons. Section 2 presents an overview of conventional and
agile software process models. Section 3 describes the
hackathons. Section 4 describes the proposed micro-
methodology and its application in a particular case. Section 5
shows the results of applying the evaluation queries on the use of
the micro-methodology. The article concludes with the
discussion of the results, conclusions and future work.

2. SOFTWARE DEVELOPMENT METHODOLOGIES

A software development model or methodology (SDM) is the
abstract representation of a software process seeing from a
particular point of view [5]. In the same way an SDM commonly
reflects the evolution of the process and the product (software)
trough the time according the peculiarities of the model.
Furthermore, an SDM defines a framework for the core activities
of the project, the inputs and outputs, constraints and the role of
each one of the persons involved in the process [1].
The principal models that have influenced the definition and
design of the proposed methodology are: Rapid Application
Development (RAD) and Scrum + Kanban (Scrumban).

Rapid Application Development (RAD)
The key feature of this model is the rapid delivery of parts or
phases of the product to end users, in a way they can test and
suggest improvement according to the real needs and experience;
this kind of evaluation make the processes to be known as test
driven development [2]. Prototypes and code-generation
software, like Gradle or Visual studio, are strongly used in these
models so that sometimes these methodologies are also called
Prototyped and Software assisted processes. These tools provide
templates and full frameworks that allow an efficient incremental
development of the product.

Agile, Scrumb and Kanban
Agile methodologies are focused in getting a dynamic
development life cycle, seeing the development process more as
an iterative process than an incremental one. The agile basis
consists of the collaboration of self-managed and
multidisciplinary teams, involved in a shared short-term
decision-making process [12]. The core of the methodologies is
based on structured iterations that seek to deliver well-defined
functionality.

Scrum is possibly the best-known agile methodology today. It is
an iterative development model, with regular sprints every 2 to 4
weeks, with goals or features prioritized in a product stack

(backlog). At the end of each iteration, a partial delivery usable
by the customer is produced [5].

Kanban is a relatively new concept in the field of software
engineering; it was originally applied in Lean Manufacturing at
the Toyota production lines [6]. Kanban provides a flexible
workflow for teams and an easy traceable progress control,
limiting the work in progress (WIP) for each activity to a
maximum number of tasks or items at any given time. It provides
a clear display of the phases in the project using visual
dashboards. It is common to find Kanban foundations applied in
a variety of Project Management technologies which can be
successfully integrated with Agile Development process [16].

Scrumban. Recently, proposals have emerged with the idea to
integrate the similarities of different methodologies, as well as
strategies to mitigate their failures. One example of this is the
pair Scrum / Kanban which allow the two methods to be
combined by implementing some of the Scrum practices and
Kanban principles. Such a combination is known as Scrumban
[15], which takes advantages of the inherited capability of scrum
to be an iterative process divided in small tasks and the clear and
solid workflow visualization of Kanban.

3. PROGRAMMING MARATHONS (HACKATHONS)

A hackathon, also known as a codefest, is a programming or
coding event that brings together computer programmers and
other interested people to improve or create a new software
program. The word hackathon is a combination of the words
hacker (intelligent programmer and problem solver) and
marathon (event characterized by the resistance of its
participants). The duration of these events usually varies between
72, 48 or even less hours [11]. Currently, the use of Hackathons
has become popular for various purposes, whether for learning or
teaching [7], to encourage the use of new technologies [9] or to
promote new products or innovative ideas within a company [8].
According to the codeslaw, [14], a highly influential website in
the software industry, the most important hackathons today are:

 1) HackZurich,
 2) TechCruch Disrupt and
 3) hackNY.

HackZurich is the largest hackathon in Europe. This is an annual
non-stop coding competition held in Switzerland over a period of
40 hours.
TechCruch Disrupt is a collection of events that take place in
New York City, San Francisco and Berlin. It hosts a 24-hour
hackathon, which gives coders the opportunity to create new
products, interact with industry leaders, and connect with
investors.
hackNY is a New York City 24-hour hackathon for student
programmers from all universities, settings, and skill levels. It
takes place at New York University, or at Columbia University.

As observed, an especially important objective of hackathons in
this context is to become a link between academia and the
industry so that the latter finds new employees to fill their coder
needs. Because of this, it is important for students to have the
skills and abilities to best accomplish the intended goal.
According to related literature, there is no specific methodology
established for software development within the context of a
hackathon.

4. AGILE MICRO-METHODOLOGY FOR THE
DEVELOPMENT OF SOFTWARE IN HACKATHONS

This work proposes a short-term development methodology that
contributes to the realization of quality software. The
methodology is mainly based on the principles of Agile models,
such as Scrumban. We decided to take as foundations the agile
values: people over process and software over documentation;
and the principles: software as measure of progress and leverage
self-organized teams [12].

In addition to this, other principles like prototype usage from ot
RAD model are used to enrich the methodology. Additionally,
the generation of simple and frequent design documents is
proposed as modeling exercises.

The proposed methodology is based on the following principles:

1) Generation of concept or initial high-level design and
establishment of vision and design document.
2) Definition of high-level initial tasks organized in iterations;
this is a micro-backlog (similar to Scrum).

 3) Use of task tables (Kanban methodology)
 4) Use of frequent prototypes throughout the hackathon to
 encourage rapid proof of concepts and usability.

As shown in Fig. 1, in order to achieve these principles, the
methodology proposes three main hackathon phases:

 1) Design
 2) Creation and execution and
 3) Closure.

Every software system should ideally be the solution to a
problem. In a regular development process, the customer is who
explains this problem. However, in the case of a hackathon, the
precision of the problem explanation reaches exceptionally low
dimensions. This is because the organizers regularly raise a topic
and participants are asked to identify a possible problem within
the scope of that topic and propose a solution. In this situation,
developer skills such as creativity, ingenious and imagination
take on great relevance. The three phases of the proposed
methodology focus on the search for the enhancement of these
skills.

Figure.1 Hackathon Software Development Micro-methodology

Design phase
The design phase begins with the instrumentation of a scope-
shaping technique known as Elevator Pitch. [13]. Each team of
participants (from 3 to 5 members) presents the identified
problem and its proposed solution. This exposition is done to 2
or 3 evaluators inside a real elevator that goes up several floors
(7-10) without stopping on intermediate floors. The exposure
period is approximately half a minute. The evaluators take note
and do not ask the participants questions.
Once this step is completed, the participants are taken to the
hackathon headquarters to generate two highly relevant
deliverables: The Vision and the Design document. The teams
must spend the first hours to establish some of the points
presented in the vision document. It is in this way that we seek to
help the participants to concretize ideas and to define the style
and concrete objectives of the team. Within the first segment (12
to 24 hours), the team seeks to materialize their ideas by carrying
out design work and capturing on paper and computer the first
sketches of planning and design.

Creation and Execution Phase
The team displays their tasks on a visual board, they are assigned
to each member and the times are established for each task. The
team constantly updates its task board and if necessary, add more
or delete some. A review by the evaluation and approximate
research team is made at each completion of iterations. Every 4-
5 hours for a 32-hour hackathon. The team is free to display
artifacts, prototypes, diagrams, or any progress generated.

Closing phase
The closing phase consists of the delivery of results and
evaluation. This stage also shows very different characteristics
from the delivery phase of an industrial software product. How
the results are presented can be as important as the results
themselves. Participants' communication skills take on special
importance.
Delivery of physical and digital prototypes is important. Upon
completion of the hackathon the team is responsible for
delivering final board and digital artifacts.
To carry out the evaluation and consequent decision of the
winners of the hackathon, they are considered with different
weightings, the exposure in the elevator pitch, the vision and
design documents, the planning and execution boards, the
physical and paper prototypes and the verbal exposure of results.
The use of the proposed micro-methodology in a particular case
is described below.

Application of the Methodology
The Autonomous University of San Luis Potosí, Mexico has the
Computer Engineering academic program classified as the best
Computer Engineering degree in the country according to the
National Assessment Center (CENEVAL).
This institution has the experience of having organized three
hackathons in which two of them have applied the proposed
methodology.
The most recent hackathon “HackSLP” (Dec 06-07, 2019), with
more than 150 students and professionals, implemented this
methodology with the results presented in the following section.
Below are the artifacts that were considered core deliverables in
that edition.

1) Vision and Idea Document - Idea using the key words. The
document is presented in the first 6 hours and is saved as
historical. It was used as an evaluation factor. Content:
• Team vision

• Initial requirements of the contest (keywords)
• “Elevator pitch” paragraph
• Complete idea description
• General Objectives of the Project / Idea

2) Design Document- First sketch of the Idea using the key
words. A transcript of the elevator speech dynamics is included.
Content:
• Overview of the project
• Category of the software or problem to solve
• Brief Functionality Description
• Nuclear functionalities or features
• General rules and constraints
• Main interactions
• Technologies and platforms to use
• Development plan, initial tasks (high level)
• Team roles

3) Initial Backlog - It is not a document as such. It can be an
initial board or high-level tasks presented in a design document.
• High-level tasks according to the needs and planning of the

team.
• Classification of tasks into categories (buckets) according to

roles or activities.

4) Kanban board. It can be a paper document or digital
representation; in each session it is updated (iterations). Includes
at least the following lanes.
• to do
• doing
• Completed

5) Paper prototypes and design diagrams
• Any draft, sketch, in any medium (Physical / Digital)

Evaluation
Below is the list of essential physical deliverables
• Completeness level
• Usability reports (by experts)
• Functionality - no runtime / logic / broken mechanics errors
• Documents presented (best development process)
• User rating or evaluation (real tests on prototypes) (tests with

end users)

The hackathon was executed using the 3 phases mentioned
previously. All participants attended to a methodology
introduction talk and received a methodology kit (documents
templates, tasks boards examples, information about Kanban
board soft, etc.)
At the end of the first day (Dec 6), the Vision and Design
document were delivered by all teams. These are the only
documents required for the entire event since the value of
“people/software over documentation” is fundamental.
From the first hours of the second day and until the end of the
event, the progress of the teams was reviewed using prototypes
Kanban board of each one of them.

5. EVALUATION AND RESULTS

In this particular hackathon, only 40% of the teams delivered a
complete product with the requested characteristics (keywords
and base requirements); Only 20% of the teams delivered a
product that met the evaluation parameters of the expert panel.
Some of the characteristic details of the winning team's working
model were the following:

• Clear definition of Vision and Design Document
• Clear and systematic task management using the Kanban

Flow software.
• Prototype creation and evaluation

We got feedback from the teams, which deliver the expected
product, asking about the overall performance in the event and
the phase and artifact they found more valuable; all teams agreed
on the impact of the Task Management and the early creation of
a Design document.

Supporting this idea, we found an interesting fact: All
participating teams delivered the design documents in the
estimated time and with the expected content.

In order to acquire deeper feedback and sustainable information,
we designed the following set of questions, which were shared as
a survey with all the participants (Table 1):

Table 1. Questions (translated from Spanish) designed for
artifacts and phase evaluation.
QUESTION PHASE TO EVALUATE
Being 4 maximum value, how useful do you
think it was the "Design Day"

Design Phase
With your words, tell us what was do you
think about the "Design Day"

Design Phase
Being 4 maximum value, how clear do you
think the "Design Document" was

Design documents
Being 4 maximum value, how useful do you
think it was to create a "Design Document"

Design documents

Being 4 maximum value, how useful do you
think it was to have "task assignment and
management" in the process

Task and iteration
management

Being 4 maximum value, how easy do you
think it was to manage tasks with "Kanban
Flow" software

Task and iteration
management

Being 4 maximum value, how would you
grade the "24hrs of Development" phase

Execution Phase
With your words, tell us what was do you
think about the "24hrs of Development"
phase

Execution Phase

Please share with us which do you think was
your team main limitation during the
challenge.

General Performance

Of the surveyed participants, 83% think that the Design day is
really useful. The majority of the participants referred the
“Design Day” as something needed and a useful for the general
development. This aligns with the feedback provided by the
winner teams previously mentioned.
In the other hand, 58% considered that having a task management
was very useful, 42% considered it useful. Similarly, the impact
of the tools used during the process is considered important.
The result is interesting since 99 % considered the KanbanFlow
software as practical, 0.8% considered the software as
impractical.
Additionally, 43% of the users believe that the more exhausting
phase of the event was the 24 hrs. development (programming)
period.
In the same way, 42% of the participants mentioned the main
limitation for the team was lack of technical knowledge.

Finally, we were able to interview 12 participants who were part
of the 2 previous hackathons hosted by the UASLP. We asked
for their inputs about most notorious differences and

improvements with respect the previous events. 75% of the
interviewed participants agreed in the following points:
• Having a well-structured design day helped them to get more

advantage of the execution phase.
• Early definition of tasks and having a task-board truly

increased team performance.
• As an improvement deeper introduction talk should be

implemented to share benefits of the methodology at the
beginning of the event and not just provide a brief chat.

6. CONCLUSIONS AND FUTURE WORK

Our research question is: “What are the benefits of implementing
an extremely fast development methodology for hackathons?”
According to the study carried out, we can conclude with the
following list of possible benefits:

• Development of micro-iterable addressable products is

beneficial to reduce surprises.
• Explicit dedication of a number of hours to specific tasks

adds visibility to the process.
• The focus in the design stage increases the probability of

success of the project and the tranquility of the stakeholders.
• The use of software tools for works coordination improves

the process.
• Capability of process control when a very small time of

deliver is a requirement.

An interesting subject to develop in the future, would be the
deeper analysis of the Kanban boards and task management,
seeking to strengthen the results already presented and to find a
relationship between the deliverable cycle and task management.
In the same way, it would be very informative to study the
relationship between the dispersion of ideas and the progression
of the deliverable.

Finally, this work could be a foundational piece for a bigger and
more focalized work using future hackathon events in which the
scalability of the methodology could be evaluated.

9. REFERENCES

[1] Peters, J. F., & Pedrycz, W. Software engineering:

 An engineering approach. New York: John Wiley. 2000.
[2] Martin, James “Rapid Application Development”
 MacMillan Publishing Co., ed.  1990.
[3] K Schwaber, J Sutherland - The scrum guide, Scrum

Alliance, 2011   
[4] Schwaber K. SCRUM Development Process.

In:Business Object Design and Implementation.Springer,
London 1997 

[5] Barrientos Acosta, Juan Manuel “Aprendizaje de la
Ingeniería de Software utilizando Simuladores basados
en Sistemas Multiagente”.   UASLP 2010.

[6] Ahmad, M.O., Markkula, J., Oivo, M. Kanban in software
development: A systematic literature review. In 39th
EUROMICRO Conference on Software Engineeringand
Advanced Applications (SEAA), pp. 9–16. IEEE Press
2013  

[7] C. Guerrero, M. del Mar Leza, Y. González and A. Jaume-i-
Capó, "Analysis of the results of a hackathon
in the context of service-learning involving students and
professionals"

International Symposium on Computers in Education (SIIE),
Salamanca, 2016, pp. 1-6.  2016  

[8] S. Saravi et al., "A Systems Engineering Hackathon –
A Methodology Involving Multiple Stakeholders to Progr
ess Conceptual Design of a Complex Engineered Product,
" in IEEE Access, vol. 6, pp. 38399-38410, 2018. 

 [9] Serrano-Laguna Á., Rotaru DC., Calvo-Morata A., Torrente
J., Fernández-Manjón B. Creating Interactive Content in
Android Devices: The Mokap Hackaton.
In:User Development. IS-EUD 2015. Lecture Notes
in Computer Science, vol 9083. Springer, Cham  2015

[10] M. Komssi, D. Pichlis, M. Raatikainen, K. Kindström and
J. Järvinen, "What are Hackathons for?," in IEEE
Software, vol. 32, no. 5, pp. 60-67, Sept.-Oct. 2015.   

[11] Arnab Nandi and Meris Mandernach.
 Hackathons as an Informal Learning Platform.
In Proceedings of the 47th
ACM Technical Symposium on Computing Science Educati
on (SIGCSE '16). ACM, New York, NY, USA, 346-
351. 2016

[12] Agile Manifesto, official site
 https://agilemanifesto.org/ , last seen July 2020

 [13] R. F. Ciriello, A. Richter and G. Schwabe, "When
Prototyping Meets Storytelling: Practices and
Malpractices in Innovating Software Firms,"
IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track
(ICSE-SEIP), Buenos Aires, 2017, pp. 163-172. 2017

[14] Codeslaw Official Site, “The 5 Best Hackathons
 Programmers Should Attend“
https://codeslaw.com/insight/the-5-best-hackathons-
programmers-should-attend-943185

[15] Banijamali A., Dawadi R., Ahmad M.O., Similä J., Oivo M.,
Liukkunen K. Empirical Investigation of Scrumban in
Global Software Development.
MODELSWARD 2016. Communications in Computer and
Information Science, vol 692. Springer 2017

[16] D. Parsons, R. Thorn, M. Inkila and K. MacCallum,
"Using Trello to Support Agile and Lean Learning with
Scrum and Kanban in Teacher Professional
Development,"
2018 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE),
Wollongong, NSW, 2018, pp. 720-724.

