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Resumen

El problema de horarios educativos basados en curŕıculos (CB-CTT, por sus siglas

en inglés) es un problema periódico en las instituciones de educación superior de to-

do el mundo, el cual ha demostrado ser del tipo NP-dif́ıcil (en inglés, NP-hard) en la

práctica. Debido a su relevancia, este problema ha sido estudiado por comunidades de

investigación que han propuesto una amplia variedad de métodos de solución dentro de

diferentes contextos educativos. Sin embargo, ningún de ellos ha demostrado ser supe-

rior a los demás en todas las instancias del espacio del problema. En la última década,

se han propuesto diversas estrategias como la hibridación y las hiper-heuŕısticas para

integrar métodos de solución en diferentes problemas combinatorios. En contraste, es-

ta tesis propone un enfoque alternativo para mejorar la calidad de la soluciones para

instancias del problema CB-CTT: seleccionar, de un conjunto de meta-heuŕısticas, el

método de solución con el mejor desempeño esperado para resolver una instancia dada.

Para la construcción del modelo de selección, se analizan formalmente cuatro elementos

del problema CB-CTT (i. e., instancias, caracteŕısticas, algoritmos y medidas de desem-

peño) de acuerdo con el marco de meta-aprendizaje (en inglés, meta-learning). Como

resultado, se realizan cuatro contribuciones relevantes al estado del arte: i) el diseño de

un generador de instancias del problema CB-CTT, ii) la formulación de métricas para

caracterizar instancias y soluciones, iii) la evaluación del desempeño de los algoritmos

y metaheuŕısticas, iv) el diseño de un modelo de selección de algoritmos por instancia.

Los resultados experimentales muestran que la implementación del modelo de selec-

ción propuesto produce mejores soluciones que las obtenidas con el algoritmo de mejor

desempeño. Por tanto, el modelo propuesto puede aplicarse para integrar métodos de

solución en el área de los problemas de horarios.



Abstract

The Curriculum-Based Course Timetabling (CB-CTT) is a real-world problem pe-

riodically solved in higher education institutions worldwide, which has proved to be

NP-hard in practice. Because of its practical relevance, it has been studied by research

communities that have proposed a wide variety of solution methods within different

educational contexts. Still, none of them has proved to outperform the others across all

instances of the overall problem space. In the last decade, various strategies have been

proposed to integrate the strengths of existing solution methods in combinatorial prob-

lems such as hybridization and hyper-heuristics. Instead, to improve the quality of the

solution for CB-CTT instances, this thesis proposes an alternate approach to automati-

cally select, from a meta-heuristics portfolio, the solution method with the best-expected

performance to solve a given CB-CTT problem instance. For the construction of the

selection model, four elements of the CB-CTT problem (i.e., instances, features, algo-

rithms, and performance measures) are formally analyzed following the meta-learning

framework. As a result, four relevant contributions are made to the current state of

the art: i) the design of a CB-CTT instance generator, ii) the formulation of metrics to

describe both instances and their solutions, iii) the performance evaluation of algorithms

and meta-heuristics, iv) the design of a per-instance algorithm selection model. The ex-

perimental results show that implementing the proposed selection model increases the

quality of the solutions compared to a single-best solution method. Hence, it can be

applied to integrate the strengths of solution methods in the timetabling domain in a

useful manner.
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1.1 Formulación Matemática . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Formatos de Datos para Horarios Educativos . . . . . . . . . . . . . . . . 13

1.2.1 Formato Extendido de Horarios Educativos . . . . . . . . . . . . . 13

1.2.2 Formato XML de Horarios Educativos . . . . . . . . . . . . . . . 14

1.2.3 Comparación de Formatos de Horarios Educativos . . . . . . . . . 15

1.3 Métodos de Solución para Horarios Educativos . . . . . . . . . . . . . . . 17
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Introduction

Human resources have a significant role in service-oriented organizations. Therefore,

managers and supervisors have developed diverse methodologies to optimize the schedul-

ing of tasks assigned to employees [3] —a planning problem known as timetabling.

The elements considered for timetabling varies across different fields of application.

Timetabling in educational institutions differs from other related problems as it consid-

ers not only the scheduling of human resources (i.e., professors) but also the scheduling

of customers (i.e., students). Hence, it is concerned about finding a plan to ensure that

both professors and students can attend to a set of assigned academic events without

clashes (i.e., overlapping times).

Educational timetabling is a combinatorial optimization problem that institutions

solve frequently. At its basic concept, it involves the assignment of resources and time

slots to a defined set of academic events (i.e., classes), according to a series of hard

(mandatory) and soft (optional) constraints. However, because of the diverse conditions

that defines educational timetabling, it has been divided into three related problems [4]:

Examination Timetabling (Ex-TT): Schedules exams sessions of a given duration

into a number of periods while satisfying a number of hard constraints.

Post Enrollment Course Timetabling (PE-CTT): Generates timetables in such

a way that all students can attend to all the classes on which they have previously

enrolled.

Curriculum-Based Course Timetabling (CB-CTT): Schedules predefined sets of

classes in which groups of students are to be enrolled.
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Figure 1: Timetabling solution approaches in the current state of the art.

Because of their educational models, many universities must solve the CB-CTT prob-

lem to produce feasible timetables that maximize both professor/student satisfaction

and resource usage. However, as this problem has proved to be NP-hard in practice [5],

finding an optimal solution is difficult to accomplish.

Since its first formal definition [6], a wide range of algorithms and heuristics have

been proposed to find practical solutions for instances (i.e., concrete formulations) of

educational timetabling problems. According to the number of methods applied in the

solution process, they can be grouped into two broad approaches: single-models and

multi-models (as shown in Figure 1):

On the one hand, the single-model approach refers to analytical methods (e.g., lin-

ear programming), heuristic-based strategies (e.g., tabu search), and population-based

heuristics (e.g., genetic algorithms), that rely on the implementation of a single strat-

egy to solve entire timetabling instances. On the other hand, the multi-model approach

refers to strategies that solve timetabling instances by different combinations of solu-

tion methods. In the current state of the art, two prevalent multi-model strategies are:

i) hybrid-methods, that divide instances into sub-problems sequentially solved by at least

two different single-models, and ii) hyper-heuristics, that automatically combine a set

of low-order heuristics to solve distinct stages of timetabling instances.
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Figure 2: General process used to solve instances applying per-instance algorithm selection
models.

A third multi-model strategy that has not been applied for the solution of CB-CTT

instances is the construction of a Per-instance Algorithm Selection Model1 (per-instance

ASM). Per-instance ASMs differ from other multi-model approaches in that they do not

combine solution methods to solve sub-problems of instances but select on a per-instance

basis the apparent best method to solve entire instances.

Figure 2 presents the general process used to solve problem instances applying per-

instance ASMs. As shown, the process starts with a problem instance that is described

by the calculation of relevant features. Then, these features are employed by the per-

instance ASM to predict the algorithm that is likely to perform the best to solve the

instance. Finally, the algorithm selected from the portfolio is executed to get the solu-

tion.

Due to the success of algorithm portfolios in international competitions, per-instance

algorithm selection has become a relevant solution approach. Starting with SATzilla [7],

constructed to solve instances of the propositional satisfiability problem (SAT), this

multi-model approach has proved to be effective on diverse combinatorial problems,

such as multi-mode resource-constrained project scheduling [8] and maximum satisfi-

ability [9]. Selection models have proved to be robust solution approaches, able to

integrate the complementary strengths of algorithms for the solution of hard problems.

1In the current state of the art, there is no clear consensus about the term to refer to the com-
putational tools for algorithm selection. In this thesis, we employ the word model, commonly used
in the publications of the international research group on configuration and selection of algorithms
(COSEAL).
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However, to be useful, they require to be suited to the specific conditions that charac-

terize different problem domains.

Because of its proven effectiveness in related combinatorial fields, this thesis fo-

cuses on the development of a per-instance algorithm selection model for the solution

of Curriculum-Based Course Timetabling (CB-CTT) instances. Therefore, it is mainly

involved with the following research fields: combinatorics, optimization, and machine

learning.

The rest of this introduction proceeds as follows. First, a brief review of the findings

that motivated this thesis are discussed. Second, the research goals are summarized.

Third, the challenges and research questions are defined. Fourth, the main contributions

of the thesis are listed. Finally, the global structure of the thesis is outlined.

Motivation

Due to its NP-hard nature, many heuristic-based approaches have been proposed to

get good solutions for CB-CTT problem instances in practical applications. Recent

surveys [10–12] show an increment in the number and diversity of the proposed solution

methods. However, as most of them are designed to suit the constraints of particular

educational institutions, they can be considered competent only within small CB-CTT

problem sub-spaces.

At this moment, the available methods (i.e., algorithms and heuristics) in optimiza-

tion and combinatorics are diverse enough to produce competent solutions in a wide

range of real applications [13]. However, as the problem subspaces in which these meth-

ods are competent are often unknown, selecting the best solution approach for a par-

ticular instance is a complex computational problem, known as per-instance algorithm

selection.

As stated by the No Free Lunch Theorem [14], there is no single algorithm able to

produce the best solution for all the instances of a problem domain. Therefore, selecting

the best algorithm to solve a particular instance (or sub-space of instances) has become

4



a crucial factor to improve the quality of the solutions.

Per-instance algorithm selection is a complex task that requires both: i) professional

experience in the problem domain, and ii) knowledge about machine learning approaches

[15] . Therefore, despite its relevance in the solution process of combinatorial problems,

in practice, it is often performed based on empirical approaches rather than with formal

analysis.

In the context of educational timetabling, per-instance algorithm selection is a prob-

lem not formally addressed in the current state of the art. Therefore, to analyze its suit-

ability for the solution of CB-CTT instances, this thesis describes the construction of a

per-instance algorithm selection model following the meta-learning framework proposed

by Brazdil et al [2]. Within the context of algorithm selection, the goal of meta-learning

is to apply machine learning approaches to generate a selection mapping between the

relevant features of a problem domain and the performance of a set of solution meth-

ods. Due to its flexibility, which allows the implementation of varying machine learning

approaches, this framework has proved to be useful across different problem domains in

the construction of accurate selections models, without adding significant computational

effort to the solution process of the instances [16].

It is important to notice that two problems will be analyzed throughout this thesis:

i) the CB-CTT problem (properties and solution methods), and the ii) per-instance

algorithm selection problem (data analysis and machine-learning methods).

Research Questions

This research is based on the meta-learning framework, which have proved to be compet-

itive on solving optimization problems in different application fields [17, 18]. However,

the fact that most of the current meta-learning research focuses on describing its im-

plementation within forecasting areas and continuous-domain problems, leads to two

important research questions addressed in this thesis:

� How can machine learning approaches be used to accurately relate the relevant

5



features of CB-CTT instances to the performance of algorithms?

� How can a per-instance algorithm selection model be generated to apply the best

algorithm to solve a given CB-CTT instance?

Research Goals

General

To construct a per-instance algorithm selection model based on the meta-learning frame-

work to select from a portfolio of algorithms the one that generates the best solution

for a particular CB-CTT instance.

Specific

1. To select the proper data format to represent CB-CTT instances.

2. To generate a representative dataset of CB-CTT instances.

3. To formulate a set of relevant features to characterize the different CB-CTT prob-

lem sub-spaces.

4. To select a set of algorithms to build the algorithm portfolio.

5. To define a set of performance measures to describe the solving effectiveness of

the algorithms over a representative number of CB-CTT instances.

6. To build a machine learning-based model to perform the per-instance algorithm

selection task.

Thesis Contributions

According to the research goals described above, the following is the list of contributions

from this thesis.
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� The design of a parameterized CB-CTT instance generator to increase the size of

benchmarking datasets which can be used to analyze the performance of future

solving approaches.

� The formulation of a set of complexity metrics able to distinguish CB-CTT in-

stance sub-spaces that share similar solving difficulty.

� The performance evaluation of a set solution methods proposed to solve CB-CTT

instances.

� A per-instance algorithm selection model (based on the meta-learning framework),

constructed to predict from a portfolio of algorithms, the one with the best-

expected performance to solve a given CB-CTT instance.

Research Methodology

To organize all activities related to this research project, we followed the methodology

shown in Figure 3. As observed, it consists of three main phases summarized next.

Research definition: It consists of the activities for delimiting the scope and goals

of our research. It is involved with: i) problem understanding, a comprehensive

analysis of the elements associated with educational timetabling and algorithm

selection; ii) literature review, a broad revision of the current state of the art; and

iii) research opportunities, a formal definition of the research gaps to be addressed

in our work.

Model construction: It focuses on performing the activities required to construct our

per-instance algorithm selection model. It includes: scope of the model, defining

the goal and general operation of the model; ii) components development, creating

the elements required for the model; and iii) components integration, linking the

elements to construct the model.
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Figure 3: Research methodology.

Model evaluation: It concentrates on evaluating the performance of the per-instance

algorithm selection model. It comprises: i) testing, defining computational experi-

ments to evaluate the model; ii) performance assessment, selecting and calculating

performance measures; and iii) conclusions, interpreting the performance of the

model to identify its strengths and weaknesses.

Thesis Outline

The rest of this thesis is structured according to the construction process of the per-

instance algorithm selection model. Next, a brief summary of the subsequent chapters

are presented to the reader:

Chapter 1: This chapter presents a general description of the CB-CTT problem (for-

mulations and data formats). The set of solution methods available in the current

state of the art are also described.

Chapter 2: This chapter describes the conceptual foundations of algorithm selection.

It presents a survey of recent approaches that have been applied to build algorithm

selection models for combinatorial optimization problems and introduces the meta-

learning framework employed in this research.

Chapter 3: This chapter presents the design of the instance generator employed to

create the dataset for the per-instance algorithm selection model. It describes

8



the structure of the instances, the parameters to be defined, and introduces the

concept of empirical hardness (difficulty of solution).

Chapter 4: This chapter presents the sets of features defined to characterize the gen-

erated instances and describes the feature selection process applied to evaluate

their relevance. As a result, it also provides an experimental interpretation of the

empirical hardness of CB-CTT instances.

Chapter 5: This chapter describes the set of solution methods selected to conform the

algorithm portfolio. It presents their performance and discusses their variation

across the defined instance space.

Chapter 6: This chapter contrasts the machine learning-based approaches commonly

applied to solve algorithm selection problems. Then, it presents the per-instance

algorithm selection model, its experimental setup, and the results related to its

performance.

Conclusions: This chapter summarizes the main findings obtained from the construc-

tion of the per-instance algorithm selection model. These findings are interpreted

in the context of previous researches. The theoretical, and practical relevant im-

plications of the findings are also considered. Finally, the chapter addresses the

strengths and limitations of the study and proposes areas for future research.
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Chapter 1

Curriculum-Based Course

Timetabling

In this section, the mathematical foundations of the Curriculum-Based Course Timetabling

problem are introduced. Next, the standardized formats proposed to represent instances

are discussed. Finally, a literature review of the solution methods proposed to find good

solutions for educational timetabling instances is presented.

1.1 Mathematical Formulation

Curriculum-Based Course Timetabling (CB-CTT) is a relevant problem within the edu-

cational timetabling field, which has been formulated and represented in different ways

to suit the particular needs of diverse educational contexts. However, to encourage

research collaboration, in 2007 was defined in a standardized manner for the Second

International Timetabling Competition (ITC-2007).

As defined for the ITC-2007, the CB-CTT problem can be described as the weekly

scheduling of lectures for several classes (i.e., academic events) given a number of teach-

ers, rooms, and time periods, in which the conflicts between classes are set according to

the curricula set by the university [19]. The concept of curriculum is particularly relevant

because it differentiates the CB-CTT problem from two related timetabling problems:

Examination Timetabling (Ex-TT) and Post Enrolment Course Timetabling (PE-CTT).

10



In this context, curriculum refers to a set of classes defined to be taken together by a

group of students.

According to its standard definition, the elements commonly required to define a

CB-CTT instance (i.e., a concrete formulation of the CB-CTT problem) are:

� A set of teaching days D (where a day d ∈ D); and a set of teaching intervals per

day Id, (where an interval id ∈ Id).

� A set of time slots TS composed of a day and a teaching interval 〈d, id〉.

� A set of teachers T , where each teacher t ∈ T has a limited weekly workload

wt ∈ N.

� A set of rooms R, where each room r ∈ R has a limited weekly availability ar ∈ N.

� A set of classes C, where each class c ∈ C has a total weekly duration dc ∈ N,

which can be split in different lectures (i.e., meetings). A class requires at least

three resources: a teacher, a room, and a group of students.

� A set of curricula Q, where a curriculum q ∈ Q is a group of classes that shares

a group of students. Therefore, this group of classes cannot be scheduled at the

same times.

Thus, in general terms, the solution to a CB-CTT instance consists on assigning

the required time slots and resources to all lectures, according to a set of constraints.

There are two types of constraints: i) hard constraints, which are mandatory (i.e., they

must be fulfilled in order to produce a feasible solution); ii) soft constraints, which are

optional (i.e., their fulfillment only increases the quality of a feasible solution.)

To represent the elements just described, consider the example illustrated in Fig-

ure 1.1. The given example presents the timetable of a curriculum in the field of social

sciences. This curriculum includes two classes from different courses, “Politics”, and

“Ethics”. The class, “Politics”, with a weekly duration of three teaching intervals, has

11
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Figure 1.1: Illustration of the elements commonly involved in the mathematical formulation
of a CB-CTT instance.

already been split into three lectures and scheduled 1 in a timetable of twenty time slots

(four teaching intervals per day). Besides, their required resources (a teacher and a

room) have been allocated to its lectures. The class “Ethics”, with a weekly duration

of two teaching intervals, has not assigned times slots or resources. Depending on the

constraints defined, it can be scheduled in the timetable as a single lecture (with a

duration of two teaching intervals) or as two lectures (with a duration of one teaching

interval). As shown in the figure, two teachers and two rooms can be allocated to its

lecture(s), taking into account the resources already allocated to the class “Politics”

to avoid clashes of resources. Thus, if “Room 2” is allocated to the class “Ethics”, it

cannot be scheduled in the time slots : Mon-1, Wed-1, and Fri-1, as doing so implies a

violation of a constraint considered as a hard in timetabling instances.

As explained by Bettinelli et al. [20], the CB-CTT is a combinatorial problem in-

herently related to the graph coloring problem, which is a well-known NP-hard compu-

tational problem. If we represent the CB-CTT problem using a graph in which each

vertex represents a lecture and each edge a pair of lectures that cannot be simultaneously

scheduled because they share a resource (i.e., a teacher, a room, or a curriculum). Then,

suppose we consider a different color for each time slot. In that case, the core problem

of CB-CTT is assigning one color to each vertex so that adjacent vertices are assigned

different colors. The complexity of this problem is relevant because NP-hard problems

are not solvable by deterministic algorithms in polynomial time; therefore, they require

1Within the current literature, there are not standard terms to distinguish between the assignment
of time slots and resources to classes. In this thesis, the term schedule refers to the assignment of time
slots, and allocation, to the assignment of resources.
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Rooms: <RoomID> <Capacity> <Site>

Curricula: <Curriculum Id> <# Courses> <CourseID> ... <CourseID>

Room_Constraints: <CourseID> <RoomID>

Unavailability_Constraints: <CourseID> <Day> <Day_period>

Courses: <CourseID> <Teacher> <# Lectures> <MinWorkingDays> <# Students> <Double Lectures>

Figure 1.2: Structure of the Extended Course Timetabling format ECTT.

the formulation of alternative solution approaches to find relative good solutions.

1.2 Timetabling Data Formats

The solution of CB-CTT instances requires a proper mathematical formulation of vari-

ables and constraints, but also an appropriate representation of these elements in a

format that can be used by a computer.

In the literature, at least two data formats have been used to represent CB-CTT

problems: the Extended Course Timetabling format (ECTT ), and the XML High School

Timetabling format (XHSTT ).

1.2.1 Extended Course Timetabling Format

Bonutti et al. [21] proposed the ECTT format to extend the representation capacity

of the course timetabling data format (CTT ), developed to handle the instances of the

ITC 2007 [19]. The ECTT format represents the data of timetabling instances according

to the following five sections (see Figure 1.2):

� Courses: Classes to be scheduled, that are labeled with an ID and defined by

the following five fields: teacher, number of lectures, minimum number of days in

which lectures must be given, maximum number of students, and specification of

double lectures.

� Rooms: Set of available classrooms, labeled with an ID and described in terms

of their capacity and location.

� Curricula: Events shared by a group of students, labeled with an ID and de-

scribed by the number and ID of the courses, which belong to the curricula.

13



<HighSchoolTimeTableArchive Id= >

       <Instances>

              <Instance Id= >

                     <Metadata>

                            <Name></Name>

                            <Contributor></Contributor>

                            <Date></Date>

                            <Country></Country>

                     </Metadata>

                     <Times>

                            <TimeGroups>

                                      ···

                            </TimeGroups>

                            <Time Id= >

                                   ···

                            <\Time>

                     </Times>

                     <Resources>

                            <ResourceTypes>

                                         ···

                            </ResourceTypes>

                            <ResourceGroups>

                                          ···

                            </ResourceGroups>

                            <Resource Id= >

                                      ···

                            </Resource>

                     </Resources>

                     <Events>

                            <EventGroups>

                                       ···

                            </EventGroups>

                            <Event Id= >

                                  ···

                            </Event>

                     </Events>

                     <Constraints>

                               ···

                     </Constraints>

              <\Instance>

       <\Instances>

</HighSchoolTimeTableArchive>

Figure 1.3: General structure of the XML schema that defines the High School Timetabling
format XHSTT.

� Unavailability constraints: Set of time slots in which courses cannot be allo-

cated.

� Room constraints: Classrooms in which courses must be allocated.

1.2.2 XML High School Timetabling Format

The XHSTT data format was selected by the Euro Working Group on Automated

Timetabling (Euro WATT) as the standard to be used on the ITC 2011 [22]. The struc-

ture of this format is defined by an XML schema (illustrated in Figure 1.3), composed

of four entities [23]:
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� Times: Set of possible time slots in which events can be scheduled. These time

slots are often grouped into time groups (e.g., days or weeks).

� Resources: Set of available resources that can be assigned to the events. Each

resource belongs to a specific resource type (e.g. teacher, rooms, etc.), and can be

grouped into resource groups for administration purposes.

� Events: Set of classes to be scheduled. Each event has a duration, which repre-

sents the amount of time slots that must be scheduled, and a demand of a set of

resources. Events can also be grouped into event groups.

� Constraints: Set of constraints that must be fulfilled during the scheduling of

events. Each constraint can be defined as hard or soft, and it is evaluated ac-

cording to two parameters: i) a cost that indicates the penalty value of a single

violation and ii) a cost function that defines how the penalty values are added

to the objective function to be minimized. Table 1.1 summarizes the 16 types of

constraints available in this format.

1.2.3 Comparison of CB-CTT Data Formats

The two data formats described above differ in their structure and in their representa-

tion capability. On the one hand, the ECTT format operates based on a text file which

encodes instances according to a fixed data order. In addition to the basic resource allo-

cation and task scheduling constraints, it allows the representation of CB-CTT problems

that are limited by only two types of constraints: unavailable times of courses and al-

location of rooms. On the other hand, the XHSTT format structures data according

to an XML schema, which relates four entities to define scheduling problems based on

a set of sixteen types of constraints that can be applied to represent a diverse set of

real-life conditions.

For this thesis, the XHSTT format was selected for two main reasons: i) its organized

structure that allows syntactical validation of the instances, and ii) its broader capacity

to represent real-life conditions that cannot be encoded using the ECTT format (such
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Table 1.1: Description of the 16 types of constraints available in the XHSTT format.

Name Acronym Description

1 Assign Resource Con-
straint

ARC Requires that all the resources required by
the classes be assigned

2 Assign Time Constraint ATC Requires the assignment of time slots to
classes

3 Split Events Constraint SEC Limits the number of lectures that can be
derived from a given class and their duration

4 Distribute Split Events
Constraint

DSEC Limits the number of lectures of a particular
duration that can be derived from a given
class

5 Prefer Resources Con-
straint

PRC Specifies that some resources are preferred
to be assigned to some classes

6 Prefer Times Constraint PTC Specifies that some time slots are preferred
to be assigned to some classes

7 Avoid Split Assignments
Constraint

ASAC Specifies that the resources assigned to
all non-consecutive lectures derived from a
given class must not vary

8 Spread Events Constraint SPEC Specifies how non-consecutive lectures
should be spread out in different time slots

9 Link Events Constraint LEC Specifies that certain set of classes must be
assigned the same time slots

10 Order Events Constraint OEC Specifies that the time slots of two classes
must be assigned in such a way that the first
class ends before the second begins

11 Avoid Clashes Constraint ACC Specifies that certain resources must have no
clashes; that is, they should not be assigned
to two or more classes simultaneously

12 Avoid Unavailable Times
Constraint

AUTC Specifies that some resources are unavailable
to be assigned to any class at certain times

13 Limit Idle Times Con-
straint

LITC Limits the number of time slots that re-
sources are idle within a time group (e.g.,
limit the daily idle time slots of teachers)

14 Cluster Busy Times Con-
straint

CBTC Limits the number of time groups a resource
is busy (e.g., limit the number of days a
teacher gives lectures per week)

15 Limit Busy Times Con-
straint

LBTC Limits the number of time slots within a
time group that a resource is busy (e.g.,
limit the daily number of time slots a teacher
gives lectures)

16 Limit Workload Con-
straint

LWC Limits the total workload assigned to a re-
source

as, allocating rooms to courses and defining working shifts for teachers). An additional

benefit of using this format is its markup language, which employs human-readable

tags to define the elements of an instance; thus, it is easier to interpret than plain-text

formats.
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Figure 1.4: Timetabling solution approaches in the current state of the art.

1.3 Timetabling Solution Methods

The diversity of constraints defined by educational institutions worldwide has led to

a broad range of formulations and solution methods for educational timetabling, none

of which —given the NP-hard nature of the problem— guarantee finding an optimal

solution for an instance. Within the current state of the art, the set of algorithms and

heuristics is extensive, making the selection of solution approaches a problem on its own.

The first formal formulation of school timetabling, proposed by Gotlieb in 1963 [24],

considered only three sets of related variables: teachers, classrooms, and time slots.

However, because of the number of practical applications reported in the literature,

periodical surveys are performed to keep researchers up-to-date in this problem domain.

Next, a brief review of common methods applied for the solution of timetabling instances

is presented according to the categories shown in Figure 1.42

1.3.1 Single-Model Approaches

Single-model approaches encompass solution methods of different nature applied to solve

entire timetabling instances. According to their mathematical foundation, they can be

2Same as Figure 1 presented in the Introduction, but reproduced here for convenience.
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categorized into: analytical methods, heuristic-based strategies, and population based-

heuristics.

1.3.1.1 Analytical Methods

Analytical methods are formulations of timetabling instances based on mathematical

methods that iteratively search the optimal value of objective functions, defined to cal-

culate the number and cost of constraint violations. Some common methods of this type

are: Graph coloring, Integer programming, and Constraint satisfaction programming.

Graph Coloring

A few years after Gotlieb proposed the first timetabling formulation, Welsh & Powell [25]

modeled timetabling instances as graph coloring problems obtaining good results. How-

ever, due to its limited modeling capabilities (which allows the representation of a short

set of constraints), its application has been limited to solve basic instances that only

require that events and resources not be overlapped.

Graph coloring uses a sequential approach to assign activities, one by one, starting

with those more difficult to be assigned. However, it becomes impractical as the number

of nodes to solve increases.

Linear Programming

Because of its common usage among researchers, linear programming was used in the

first studies related to the automatic generation of timetables in 1969 [26].

In its basic form, the linear programming model considers four basic entities: times,

events, resources, and constraints. Each event requires allocating a set of resources that

must meet a specific set of requirements of time and functionality. These requirements

link them with a set of constraints that must be satisfied to minimize a cost function

that adds up the penalty values of hard and soft constraint violations.

The main advantage of modeling timetabling instances as linear programming prob-

lems is that they can be solved using conventional software applications that do not
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require advanced computational knowledge. However, it still requires a deep under-

standing of principles for mathematical modeling.

Constraint Satisfaction Programming

Constraint satisfaction programming is a type of mathematical modeling that considers

constraints as boundaries, which restricts the values considered as feasible to a set of

decision variables. According to Hentenryck & Saraswat [27], by following this reasoning,

a problem can be modeled as a function of three elements CSP = (X,D,C) where:

X is a finite set of variables X = x1, x2, ..., xn; D is a finite set of domain values,

D = d1 × d2×, ...,×dn that the variables can take; and, C is a finite set of constraints,

C = c1, c2, ..., cm coming from logical relationships between the subsets of variables. The

final solution is obtained by assigning feasible values to each variable while satisfying

the entire set of defined constraints. An example of the implementation of this method

can be found in the timetabling study case solved by Zhang & Lau [28].

1.3.1.2 Heuristic-Based Strategies

Heuristic-based strategies work by first generating an initial solution for a problem

instance. Then, iteratively modifying such an initial solution until certain criteria are

met. Some common strategies that follow this solution approach are: Tabu search,

Simulated annealing, Hill climbing, and Variable neighborhood search.

Tabu Search

Tabu search was proposed by Glover in 1986 [29], and it emerges to provide local search

algorithms with some type of “intelligence”, to explore the solution space. The method

starts with an initial solution that is improved trough iterative movements to neighbor

points with better solution values. Each movement in the solution space is included

in a tabu list, a record of all the previously considered neighbors, which is updated to

avoid analyzing the same solutions many times. Searching movements in the solution

space conclude when a termination condition is met. The design and implementation
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of a software package based on this solution method can be found in the research work

of Alvarez et al. [30].

Simulated Annealing

Simulated annealing is a method proposed by Kirpatrick et al. [31] to find the global

minimum of a cost function with several local minima. Its basic idea is to simulate

the heating process and the temperature reduction of a material during the tempering

process. Each iteration selects a random point according to a probability distribution.

The algorithm analyzes new points that increases the value of the objective function,

but also (with a certain probability) points that diminish its value, thus avoiding being

trapped in local minima.

The process starts with the generation of a random initial solution, which is iter-

atively replaced based on a random probabilistic function, guided by the temperature

progression formula: Ti+1 = Ti × β. It is important to point out that the temperature

change β and the initial temperature value T are relevant parameters usually defined

based on human experience. A representative example of this method can be found in

the work of Aycan & Ayan [32], in which they compare and combine different searching

strategies using simulated annealing.

Hill Climbing

Hill climbing method relies on the analogy of considering an objective function as the

highest peak of a mountain that is to be climbed. Thus, at each step (iteration), a

“climber” must choose the move that “leads him uphill” in the least possible time. At

each iteration of the search, a step is given only if it improves the value of the objective

function, or it reduces the distance to feasibility.

One of the most basic implementations of this method is the Steepest Hill Climb-

ing (SHC). SHC selects from the defined neighborhood of the current solution, the step

that better optimizes the objective function, and accepts the step only if it is an im-

proving one. Its stopping criteria is given by a maximum number of steps that must be
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performed. The effectiveness of hill climbing and other local search methods is analyzed

in the work of Schaerf & Di Gaspero [33].

Variable Neighborhood Search

The variable neighborhood search (VNS) was proposed by Mladenović and Hansen [34]

as a way to improve the performance of local search methods by proceeding to a system-

atic change of neighborhoods within a defined solution space. According to its authors,

the main advantage of the VNS method is that “it does not follow a trajectory, but ex-

plores increasingly distant neighborhoods of the current incumbent solution, and jumps

from there to a new one if and only if an improvement was made.”

The general operation of the VNS consists of two phases: i) a perturbation phase,

to explore as much as possible dissimilar solutions in different neighborhoods, and ii) a

descent phase, to find the local optimum in each explored neighborhood. An example

of the operation of this solution method can be found in the research work of Abdullah

et al. [35].

1.3.1.3 Population-based heuristics

Population-based heuristics work from a set of initial solutions (initial population), that

after each iteration is analyzed by a selection mechanism to determine the best current

set of solutions (best individuals). Subsequently, the overall population is manipulated

(depending on the type of methodology used) to replace the current individuals with

better ones, until, with each new cycle, the desired solution is reached. Some common

heuristics are: Genetic algorithms, Ant colony optimization, and Memetic algorithms.

Genetic Algorithms

Genetic algorithms, proposed by Holland [36], simulate the processes of evolution of

the species, through the mechanism of natural selection, to optimize the value of math-

ematical models, expressed by a fitness (objective) function. According to Babaei et

al. [37], the common basic steps that must be considered when implementing a genetic
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algorithm are the following.

� Selection: Evaluates the fitness of individuals to determine which solutions de-

serve to be preserved to be reproduced and which must be discarded.

� Regeneration: Applies reproduction operations, crossover and mutation, on par-

ents to produce children (new individuals).

� Replacement: Replaces the least-fit individuals of the current population with

new individuals.

These steps are repeated until a termination condition (e.g. a number of generations,

or an objective value) is reached. As an example of the implementation of genetic

algorithms in the timetabling field we refer to the reader to the research work of Alsmadi

et al. [38].

Ant Colony Optimization

Dorigo and his team were the first to introduce the first optimization algorithm based

on ant colonies in the early 1990s [39]. By mimicking the natural ability of ants for

searching food, based on its social communication via pheromones (known as stigmergy),

they were able to solve optimization problems.

In its most basic form, ant colony optimization methods generates artificial ants

which look for the shortest path between the nest and its source of food. The process

they follow implies marking its trail with pheromones that evaporate as time passes.

After some iterations, it is possible to identify the routes with a higher concentration of

artificial pheromones, that is, the ones which were most frequently selected by the ants.

Using this approach allows to define routes with different level of attractiveness for the

next ants, thus, making evident the optimal solutions that must be selected. Nothegger

et al. [40] applied this solution method for solving timetabling instances of the ITC-2007

obtaining good results.
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Memetic Algorithms

The concept of Memetic algorithms was introduced in the late 1980s [41] to denote

a family of heuristics that are focused on the hybridization of heuristic scanning and

local search methods. The heuristic scanning works by looking for good potential re-

gions within the solution space, and the local search methods explore those regions by

iteratively proving different combinations of values for the problem variables.

The main difference between memetic and genetic algorithms is the concept of meme,

which is the basic element used for evolving solutions. A meme differs from a gene be-

cause when transmitted to future generations, each individual adapts it, while the gene is

transmitted without any changes. Therefore, memetic algorithms can be considered as a

type of cultural algorithm, which uses a process of dual inheritance to micro-evolutionary

and macro-evolutionary level. At a micro-evolutionary level, cultural algorithms con-

sider the transmission of behaviors or traits between individuals in a population, and at

a macro-evolutionary level, the formation of generalized beliefs based upon individual

experiences. An implementation of this type of algorithms for the solving timetabling

instances in universities can be found in the research work of Jat & Jang [42].

1.3.2 Multi-model

So far, a brief review of single-model approaches applied to solve entire educational

timetabling instances has been presented; now, the strategies employed by multi-model

approaches are described (see Figure 1.4). Multi-model approaches include knowledge

areas that seek to exploit the main advantages of the analytical and heuristic methods

(and others, like combinatorial optimization and fuzzy logic) by automatically combining

them to intervene at different stages of the timetabling solution process. Depending on

their nature, they can be categorized into hybrid methods and hyper-heuristics.

1.3.2.1 Hybrid Methods

According to Jourdan et al. [43], when facing NP-hard problems, a category to which

most of the combinatorial optimization problems belong, researchers usually select one
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of two approaches, depending on the size of the problem at hand. For small instances,

they implement exact methods known to be time expensive. However, when instances

are too large, they often solve them by using stochastic methods (i.e., heuristics), which

usually entails a higher variation in the quality of the solutions. An alternative ap-

proach, frequently applied to overcome the limitations of both solution approaches, is

hybridization.

Hybridization refers to any combination of methods (algorithms and heuristics) that

are sequentially applied to solve a problem instance —striving to reduce the negative

effect of their limitations. For example, Kotusch [44] employs a hybrid method that

generates initial timetables using a sequential heuristic; then, this initial timetable is

later improved using a simulated-annealing heuristic.

Despite its popularity for solving combinatorial optimization problems, three rele-

vant factors could limit the effectiveness of hybrid approaches. The first factor is the

large possible number of combinations between the single-model approaches to be tested

to find the best hybrid model to solve a particular instance space (i.e., a similar group

of instances). The second factor is the potentially hard process required to link (trans-

fer information) algorithms of different nature, which might require employing distinct

mathematical formulations at each stage of the solution process. The third factor is the

static nature of the hybrid approach; once the sequence of the solution process has been

set, it cannot be easily adjusted to solve other instance spaces.

1.3.2.2 Hyper-heuristics

The concept of hyper-heuristics was first introduced by Cowling et al. [45] to refer to

strategies designed to select heuristics to solve combinatorial problems. Now, the term

is used to refer to any approach designed to select, combine or adapt low-level heuristics

to construct solution methods —known as high-level heuristics— for solving problem

instances.

The main goal of hyper-heuristics is to find the sequence of low-level heuristics that

optimizes the solution of a given problem instance. Therefore, unlike the previously
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described approaches, it is not static (i.e., defined before the solution process), but

dynamic, (i.e., defined during the solution process).

Despite their adaptive nature, a significant drawback of timetabling hyper-heuristics

is their computational cost [46]. For each instance to be solved, a different high-level

heuristic is constructed, involving computational tasks related to the iterative selec-

tion and testing of low-level heuristics. However, as with the other described solution

methods, there is no guarantee to find an optimal solution.

1.3.3 Discussion of solution methods

In the presented literature review, two types of solution approaches for timetabling

instances have been described: single-models and multi-models. As described, single-

model approaches (applied to solve entire instances) include i) analytical methods, which

based on exact formulations have proved to be useful to find optimal solutions for small-

size instances, and ii) stochastic heuristics (both solution and population-based), which

explores the solution spaces using varying strategies to avoid being stuck in local optima.

An alternative approach is the application of multi-models, designed to combine the

strengths of different solution methods, either statically —using hybrid methods— or

dynamically —using hyper-heuristics.

As presented in Figure 1.4, a third multi-model strategy, not formally applied within

the context of the CB-CTT problem, is per-instance algorithm selection. This strategy

differs from hybrid methods in that it can integrate algorithms without information

transference, thus reducing the computational effort required to solve instances. Besides,

though being an adaptive approach —dynamically suited to the features of each instance

to be solved— it is not concerned with the construction of high-level heuristics (as hyper-

heuristics are), but with the selection of algorithms and heuristics, to provide more time

to the solution process per se.
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1.4 Summary

This chapter presented the theoretical foundation for the solution of CB-CTT instances,

organized into three parts. The first part explained the mathematical formulation of the

problem and illustrated the main elements required to define an instance. This formu-

lation is relevant for a clear understanding of the combinatorial nature of the problem

and its related solving complexity. The second part described two data formats defined

as international standards to represent timetabling instances and compared their struc-

tures and modeling capabilities. As a result, the reasons for selecting the XHSTT data

format were pointed out, providing a general overview of the set of constraints consid-

ered for this thesis. Finally, the third part provided a brief review of solution approaches

already applied in the educational timetabling field, indicating relevant differences with

the per-instance algorithm selection model approach employed in this thesis. In the

next chapter, this approach is described in detail.
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Chapter 2

Per-Instance Algorithm Selection

The previous chapter presented the mathematical formulation of the Curriculum-Based

Course Timetabling (CB-CTT) problem and a literature review of the available data for-

mats and solution approaches. This chapter focuses on a multi-model solution approach

still not applied within the context of educational timetabling: per-instance algorithm

selection.

Unlike other solution methods, discussed in the previous chapter, per-instance algo-

rithm selection aims to integrate the strengths of algorithms without requiring complex

processes to link algorithms —as hybrid methods— or complex ensembling methods to

build algorithms —as hyper-heuristics. Hence, it can be regarded as an adaptive method,

which aims to integrate the strengths of algorithms and heuristics in a computationally

efficient manner.

Per-instance algorithm selection has achieved significant improvements in the solu-

tions of well-known combinatorial optimization problems, where the goal is to find the

best solution for a given objective function or to determine if there exists a solution able

to satisfy certain constraints. Some of these problems include propositional satisfiabil-

ity (SAT) [7], the quadratic assignment problem (QAP) [47], and the traveling salesman

problem (TSP) [48]. Therefore, given the proven effectiveness in combinatorial opti-

mization problems and its goal to combine the strengths of different solution methods

(i.e., algorithms and heuristics), in this thesis, we defined the per-instance algorithm
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selection approach to improve the solution of CB-CTT instances.

As an introduction to this multi-model solution approach, in this chapter, we de-

scribe three aspects required to formalize the construction of any per-instance algorithm

selection model (per-instance ASM): i) formulation of per-instance ASM, ii) design of

per-instance ASM, iii) methodology of per-instance ASM.

2.1 Formulation of Per-Instance ASM

Research communities of well-studied problem domains have long observed that differ-

ent algorithms perform best over different instance spaces. Thus, no single algorithm

dominates the others across entire problem spaces [49]. This phenomenon, known as

performance complementarity, gives rise to a relevant computational problem: how to

integrate the strengths of different algorithms to obtain better solutions?

Current research works have proposed diverse alternatives to answer this ques-

tion [17]. Most of these works make use of a general strategy: trying to predict the

performance of a set of algorithms as a function of relevant instance features. This

strategy has been suited to the particular needs of different problem domains using

various methods that constitute the state of the art of algorithm selection.

According to Kerschke [49], to avoid confusion of related terms, it is crucial to

distinguish between three approaches related to algorithm selection: i) algorithm con-

figuration, ii) per-instance algorithm selection, and iii) algorithm schedules.

� Algorithm configuration aims to choose the best values for a set of parameters in

order to optimize the execution of an algorithm.

� Per-instance algorithm selection aims to select, from a set of algorithms, the one

with the best expected performance for a given instance.

� Algorithm schedules aims to define the sequence and running time for a set of

algorithms.

Decades ago, Rice [6] was the first to formally define the per-instance selection
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approach using the term algorithm selection problem. However, within the current lit-

erature, this is now a broad term used to also refer to other related but conceptually

different approaches. To avoid confusion, this thesis employs the original formulation

proposed by Rice but it makes use of the more precise term per-instance algorithm

selection problem to refer to it.

The formal definition of the per-instance algorithm selection problem requires the

four basic elements described next.

Problem space (P): A representative set of instances of the problem under study.

Feature space (F): A set of features describing the characteristic properties of the

problem space.

Algorithm space (A): A set of algorithms able to solve the problem.

Performance space (Y): A set of performance metrics of the algorithms (e.g., run-

ning time), or its solutions (e.g., value of the objective function), across the prob-

lem space.

From these elements, the per-instance algorithm selection problem is stated as fol-

lows. Given a problem instance x ∈ P , described by a set of relevant features f(x) ∈ F ,

and solved by a set of algorithms A, find the selection mapping S(f(x),A) of features

to algorithms, in order to select the algorithm α ∈ A that optimizes the performance

metric y(α(x)) ∈ Y .

Despite its apparent simple formulation, per-instance algorithm selection is a ro-

bust computational approach involving multiple data-processing tasks. Diverse machine

learning approaches have been proposed to analyze the large amount of data required for

the construction of selection models in different problem domains. In the combinatorial

optimization field, two research works have proved useful for the design and construction

of algorithm selection models in real applications. The first one, useful for the design of

per-instance ASM, is the survey performed by Kotthoff [1], which describes the model-

ing decisions to be considered for the overall configuration of this type of model. The

29



Assembly

Static

Dynamic

Selection 
time

Offline

Online

Prediction

Label

Performance 
metric

Setting

Hybrid

Per-algorithm

Per-portfolio

Figure 2.1: Modeling decisions to be addressed for the design of algorithm selection models
in the combinatorial field, according the survey performed by Kotthoff [1].

second one, defined as a general methodology, is the meta-learning framework proposed

by Brazdil et al. [2], which describes the elements and sequence of tasks to construct

this type of model. The next sections discuss these research works and explain their

relevance to this thesis.

2.2 Design of Per-Instance ASM

The construction of an per-instance algorithm selection model is a complex process that

involves more than putting together a set of algorithms. It comprises diverse statistical

analyses and prediction tasks that need to be addressed in a structured manner to define

the overall configuration of the selection models.

According to the survey about algorithm selection for combinatorial problems made

by Kotthoff [1], there are four modeling decisions that must be addressed to define

the overall structure of any per-instance algorithm selection model in the combinatorial

field. These modeling decisions, presented in Figure 2.1, are briefly explained next.

Assembly: The first major decision to be made regarding the design of a per-instance

algorithm selection model is defining the assembly approach for the algorithm

portfolio. Two approaches can be used: assembly the algorithm portfolio before

any instance is solved, or while the solution process is running. The first of these

approaches is said to be static since the composition of the portfolio remains

unchanged during the solving process, that is, unaffected by the instance being
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solved. The second approach is said to be dynamic, since it can change either the

composition or configuration of the constituent algorithms, according to instances

properties.

Selection time: Similarly to the assembly of an algorithm portfolio, the selection of

an algorithm can be performed in two different times: before the instance is solved

(offline), or while it is being solved (online). The online approach is more flexi-

ble since it monitors the execution of the chosen algorithm to confirm that it is

performing as expected. However, this selection flexibility entails a higher compu-

tational effort.

Setting: The computational effort required to select an algorithm depends mainly on

the settings defined to structure the model. According to their complexity, they

can be grouped into three types. Per-portfolio settings are designed to predict

the performance of entire portfolios (as a group), without a clear understanding of

the individual performance of the algorithms. Per-algorithm settings are designed

to predict the individual performance of the algorithms across a problem space,

and by comparing these predictions, selecting the best algorithm to be applied

for a particular instance. Hybrid settings combine per-portfolio and per-algorithm

models in sequential or hierarchical order to get more accurate predictions, at the

cost of more computationally expensive models.

Prediction: The final output used to select the algorithm depends on the setting de-

fined for the model. On the one hand, per-portfolio settings select algorithms in

a direct manner, representing algorithms as labels that are predicted with clas-

sification models. On the other hand, per-algorithm settings select algorithms in

an indirect manner, predicting the performance of the algorithms (in a numeric

scale) and then choosing the one with the best expected performance.

The presented modeling decisions define the overall configuration of per-instance

selection models and, as a consequence, both their usefulness and computational com-

plexity. Complex models usually make more accurate algorithm selections. However, if
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they become computationally more expensive than actually solving the instances, they

become unpractical. Ultimately, there is no point in performing a per-instance algorithm

selection that requires more resources than solving the instances.

2.3 Methodology of Per-Instance ASM

Besides defining the overall configuration to construct a per-instance algorithm selection

model, another major task to be addressed is choosing the right methodology to conduct

the data-processing flow required to build the selection mapping S(f(x),A), of instance

features to the performance of algorithms.

Across different problem domains, multiple methods have been used to create such

mapping S [1, 50]. As observed in international algorithm selection competitions [16],

some examples include: regression models, that predict the performance of individual

algorithms; unsupervised clustering, that partitions instances into clusters and assigns

an algorithm to each cluster; pairwise classification, that compares the performance of

each pair of algorithms and selects the one with most “victories” in the overall com-

parisons; stacking, that combine the predictions of machine learning models of different

nature to make the final selection. However, one way or another, most of them have

been built using the process that Brazdil et al. [2] formally defined as meta-learning.

As shown in Figure 2.2, the meta-learning framework starts with a repository of

instances representative of a problem domain. Each instance is used as a training

example to perform the features-to-algorithm mapping. Thus, such instances are used to

generate the required meta-data that stores both, relevant features of the problem (meta-

features), and information about the performance of the algorithms applied to solve the

instances (algorithms’ performance). This meta-data is used to train a machine learning

method (meta-learner) to build the algorithm selection model for a given problem.

The following is a brief review of the implementation strategies available in the

current state of the art for each stage of the meta-learning process.

Data repository: Because of their practical applications, many benchmarking datasets
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Figure 2.2: Meta-learning framework for algorithm selection models (adapted from [2]).

have been proposed to compare the effectiveness of solution methods for different

combinatorial optimization problems, such as the traveling salesman problem [51]

and graph coloring [52]. However, if these datasets are not available, researchers

usually require to gather a significant amount of instances about a specific prob-

lem [53, 54], or artificially generate enough instances to represent a particular

problem domain [55].

Characterization of problem instances: The performance of meta-learning-based

models directly depends on selecting significant features (meta-features) in or-

der to represent relevant properties of problem instances. Most meta-features are

obtained by extracting morphological characteristics from the data. According

to Reif et al. [56] these characteristics can be categorized, as: simple (directly

observed), statistical (e.g., mean, variance), information-theoretic (e.g., Shannon

entropy), model-based (extracted from complex learning algorithms), and land-

marking (obtained from light-learning algorithms).

Algorithms performance evaluation: Because of its generalization capability, meta-

learning has been applied to algorithm selection in a wide variety of fields related

to prediction, classification, and optimization tasks. Depending on its purpose,
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the performance of algorithms has been evaluated in different ways such as: pre-

diction errors [54, 57, 58], intra-cluster measures [59], classification accuracy [60],

value of objective functions [51], and solution times [61].

Meta-learning: The selection mapping S(f(x),A) is usually built using supervised

learning. The current literature contains examples of three main approaches to

build meta-learners: prediction, classification, and ranking. In prediction, a re-

gression model is used to select the algorithm with the highest expected perfor-

mance [8]. In classification, a classifier is built to predict the label that indicates

the best algorithm for a given instance [62]. Finally, when ranking is used, either

regression models or classifiers are applied to predict not only the best algorithm

to solve a problem, but also the relative order in which the algorithms could be

applied [63,64].

Algorithm selection model: Once the meta-learning process is complete, the algo-

rithm selection model designed for a problem can be evaluated. According to

the type of meta-learner, two types of metrics, commonly applied to evaluate the

performance of the selection models, are used: accuracy and concordance. On

the one hand, accuracy measures summarize the proportion of selection errors for

prediction [8] and classification [65] approaches. On the other hand, concordance

measures, such as Spearman’s coefficient [59], evaluate the relationship between

the predicted and the ideal ranking of algorithms.

As noticed, the implementation of the meta-learning process covers a wide range

of conceptual and technical decisions that requires both, expertise in machine learning

methods and professional experience in the problem domain. Hence, a successful imple-

mentation demands not only a systematic application of computational tools but mainly

of a well-designed data processing flow.
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2.4 Summary

As presented in this chapter, the decisions required to construct accurate per-instance

algorithm selection models involve diverse aspects related to i) the definition of four

related spaces (i.e., problem, feature, algorithm, and performance), and ii) the configu-

ration of the computational models employed to build the selection mapping S(f(x),A).

In the current literature, different strategies have been proposed to analyze these

aspects in diverse problem domains. However, due to their flexibility and usefulness in

the combinatorial optimization field, in this thesis, we employed the described modeling

decisions and meta-learning framework to formalize the construction process of the

CB-CTT per-instance algorithm selection model.

In the overall process, the modeling decisions were taken into account to not add

more computational effort to the solution of CB-CTT instances, and the meta-learning

framework to guide the tasks related to the data analyses required by the performance

mapping.

The following chapters describe the overall meta-learning methodology for the con-

struction of a per-instance algorithm selection model, able to integrate a portfolio of

algorithms for the solution of CB-CTT instances. As this is a multi-model approach not

yet applied for solving educational timetabling problems, each chapter points out the

main contributions of this thesis at each stage of the construction process. Chapter 3 de-

scribes the generation process of the repository of problem instances; Chapter 4 presents

the meta-features formulated to characterize the instances; Chapter 5 describes the al-

gorithm portfolio and evaluates its performance; Chapter 6 describes the per-instance

algorithm selection model.
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Chapter 3

Instance Generator

The previous chapter presented a general overview of elementary aspects to construct a

per-instance algorithm selection model. As explained, the construction process involves

diverse data-processing tasks related to four related spaces: Problem space (P), Feature

space (F), Algorithm space (A), and Performance space (Y). To perform the required

data-processing tasks in a logical manner, for this thesis, we selected the meta-learning

framework. As illustrated in Figure 3.1, this framework defines a sequence of activities

that considers all the essential elements of per-instance algorithm selection models. This

chapter describes the first of these elements, a representative data repository of instances

for the Curriculum-Based Course Timetabling (CB-CTT) problem.

In Section 1.2, two formats were evaluated to represent the CB-CTT instances re-

quired for this thesis in a standard manner, namely the ECTT and the XHSTT data

formats. As explained, the XHSTT format was selected because of two factors: its

hierarchical tag-based structure, and its broader modeling capacity. The XHSTT data

format represents timetabling instances based on an XML schema (illustrated in Figure

1.3) that requires four entities, sequentially defined as follows: times, resources, events,

and constraints. Explaining in detail the syntax of the format is out of the scope of this

thesis. However, we refer to the reader to two useful sources: i) the official webpage of

the XHSTT format1, containing a full specification of its syntax, and ii) the Appendix B

at the end of this thesis, illustrating the modeling process of a real timetabling problem

1http://jeffreykingston.id.au/cgi-bin/hseval.cgi?op=spec

36



Data Repository

Characterization 

of  problem 

instances

Algorithms’ 

performance 

evaluation

Meta-

features

Algorithms’ 

performance

Meta-data

Meta-learning

Algorithm 

selection model

Figure 3.1: Meta-learning framework for the construction of the CB-CTT per-instance al-
gorithm selection model (adapted from [2]). For reference purposes, the first element, Data
repository, related to the Problem space (P), is highlighted in red.

into an XHSTT instance.

Within educational timetabling, at present, there is only one available standard

benchmarking dataset modeled according to the XHSTT format, namely the XHSTT-

2014 dataset hosted by the Centre of Telematics and Information Technology (CTIT)

of the University of Twente [66]. The dataset consists of a collection of 25 real-world

instances that are encoded according to the XML schema proposed by Post et al. [23].

However, because of its size, such a dataset contains a rather small number of instances,

which may limit the findings of this thesis.

To overcome the current lack of CB-CTT instances, as one of the contributions

of this thesis, we designed a customizable generator using the ElementTree library of

the Python programming language. This generator was further applied to generate

multiple XHSTT instances with different combinatorial properties, representing as much

as possible the diversity of conditions found in real problems. For explanation purposes,

in this chapter, the design and setting of the instance generator are explained first, then

the generation process of the instances is described.
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3.1 Design of the CB-CTT Instance Generator

The general strategy defined for the design of the instance generator was structured

in two stages, according to the essential information required to define a educational

timetabling instance: a curricular plan (Stage 1), and a set of particular conditions (Stage

2). On the one hand, curricular plans are general descriptions of academic programs,

and in a broad sense define: i) the set of obligatory and optional courses, ii) the se-

quence of these courses, and iii) their duration and required resources. On the other

hand, Particular conditions are institutional regulations that must be followed for the

scheduling of times and allocation of resources within a determined educational context.

3.1.1 Stage 1 - Curricular Plan

The first element created in the generation process is the curricular plan, which de-

scribes the set of courses to be considered to formulate a timetabling instance. The

generator creates a different curricular plan for each instance, defined by a curricular

grid and a set of courses’ requirements. At a macro level, the curricular grid is set by

specifying the number of terms (e.g., semester, trimesters, quarters) required to study

a bachelor’s degree and the number of courses on each term. At the micro level, the

courses’ requirements are set by specifying the duration and resources required by each

course in the curricular grid.

Once the curricular map is set, the generator selects a set of courses from the cur-

ricular grid to create the classes that will be included in the timetabling instance. The

number of classes to be scheduled are defined based on two parameters: active terms,

and number of groups. The first parameter refers to a subset of terms, from the curric-

ular plan, planned to be available for student enrollment. The second parameter refers

to the number of classes to be generated for each course of those active terms.

Figure 3.2 presents a graphical example of a five-term curricular plan. Each square

represents a course, defined in terms of three parameters randomly generated: weekly

duration, type of professor required, and type of room required. For example, the re-
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Figure 3.2: Graphical representation of a five-term curricular plan, where terms 1, 3 and 5
are available for student enrollment, and each square represents a course defined by its name,
weekly duration, type of professor and type of room required.

quirements of a course called “Matemathics”, could be defined as follows: <Course

name><Mathematics>; <Weekly duration><5>; <Type of professor required><Science

teacher>; <Type of room required><Classroom>. As observed in the figure, three terms

colored in white (first, third and fifth) are defined as active terms, hence if the param-

eter number of groups is set as <number of groups><2>, the generator will include

24 classes in the instance; two classes (with the same requirements) for each one of the

courses represented as white squares.

3.1.2 Stage 2 - Particular Conditions

After all the classes (created from the courses in the curricular plan) are included in the

instance, the generator defines the particular conditions for the assignment of times and

resources to those classes. These conditions are related to three entities of the XHSTT

format: times, resources, and constraints.

Times

The instance generator represent times as a list of non-overlapping time intervals, called

time slots, that are grouped into different sets of days and working shifts. The number
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of days and time slots define the dimensions of the time grid in which the classes will

be scheduled; this time grid is then equally divided in different working shifts. For

example, a time grid consisting of four morning time slots and four evening time slots,

from Monday to Friday, would be modeled with the following parameters, <time slots

per day><8>; <days><5>; <shifts><2>.

Each class has a weekly duration that indicates the number of time slots that it

must be scheduled. According to their duration, classes can be split into lectures and

then scheduled using different configurations. For example, a class called “Ethics” with

a weekly duration of two time slots, could be scheduled using the following lecture

configurations : a single two-times slots lecture (2), or two one-time slot lectures (1-1).

The larger the duration of a class, the more the possible lecture configurations.

Resources

Resources are elements that have to be present during all the lectures of a class. Our

instance generator considers three types of resources:

� Curricula: In timetabling, curriculum refers to a set of classes that are shared

by a group of students. This type of resource is used by education planners to

ensure that students can enroll in their classes without clashes. For example, to

ensure that fifth-semester students can attend to all their common classes. Our

instance generator defines the curricula of an instance based on the parameters

active terms and number of groups explained above. For example, if two groups

are considered for the courses in the active terms shown in Figure 3.2, the instance

generator will define six curricula: Term 1 Group A, Term 1 Group B, Term 3

Group A, Term 3 Group B, Term 5 Group A, and Term 5 Group B. Using this

strategy, the classes assigned to each curriculum are required to be scheduled at a

different time.

� Teachers: Professors are grouped based on three attributes: preferred working

shift (e.g. morning, evening), knowledge area (e.g. math, science, management,

etc.) and, type of contract (full-time or part-time teacher).

40



� Rooms: The physical spaces in which lectures take place are categorized according

to their equipment as classrooms or laboratories.

Constraints

Constraints are mathematical expressions that limit the assignment of times and re-

sources to the lectures. In our generator, the set of available constraints that are applied

to model real conditions are defined using three general parameters:

� Status: Specifies if the constraint will be “turned on” or “turned off”, that is,

whether or not it will be included in the instance.

� Penalty type: Specifies if the constraint will be considered as hard (mandatory)

or soft (optional) in the cost function.

� Weight: Specifies the penalty value which will be added to the cost function if

the constraint is violated.

Based on the values defined for these parameters, a total of 27 real conditions can

be modeled by the constraints included in our instance generator. Some examples of

these real conditions are:

� Prefer room: Require the assignment of a specific type of laboratory for a class.

� Weekly workload of full-time teachers: Limit the weekly working hours of a

full-time teacher.

� Working shift: Require that the lectures of a teacher be scheduled only on one

of two possible shifts: morning or afternoon.

� Single lecture: Require that all lectures of a class be scheduled in different days.

The full set of real conditions modeled by the instance generator is described in

Appendix A.
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3.1.3 Pre-assignment

As explained in Section 1.1, solving a CB-CTT instance requires the assignment of times

and resources to all the lectures, according to a set of constraints. However, in real-life

situations, the times or resources of certain lectures might be known in advance, thus

being pre-assigned before the solution process. Lectures with pre-assigned times and

resources reduce the size of the search space to solve an instance, an important aspect

also considered in the design of our generator.

To analyze the effect of pre-assignment in the solution process of an instance both

time of pre-assignments are performed by the generator as follows. Time pre-assignment

is performed by defining a proportion of events to be randomly assigned to a set of

consecutive time slots. Resource pre-assignment is performed by defining a proportion

of events to which either a teacher or a room is randomly assigned, according to the

requirements of each course.

3.2 Setting up the Instance Generator

Setting up the parameters of the instance generator is, in itself, a time-consuming task.

It involves selecting from a domain of possible values the ones that guarantee logical

relationships between the elements of an instance. A wrong selection of these parameters

can lead to the generation of defective instances, without feasible solution spaces. To

prevent a wrong setting of parameters, the generator was designed to automatically

avoid two types of errors: i) insufficiency of resources, and ii) over-constraining.

3.2.1 Insufficiency of Resources

Insufficiency of resources is an error that occurs when the demand for resources required

by the lectures surpasses the available supply. For example, requiring eight rooms to

allocate the lectures planned for an instance but having only six rooms.

To ensure that it is possible to allocate the required resources to all the lectures,

the generator calculates the total demand for each type of teacher and room. Then,
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according to the weekly workload defined for each type, it generates the minimum

number of teachers and rooms necessary to balance the supply and demand of resources.

3.2.2 Over-constraining

Over-constraining is an error that occurs when the fulfillment of a constraint implies

the violation of another one. For example, requiring that a laboratory be used only

four days a week, but assigning it to classes defined to be scheduled daily (five days

a week). The generator avoids over-constraining errors using a hierarchical approach

to define the particular conditions for the assignment of times and resources; first, the

basic conditions, then the additional.

On the one hand, basic conditions are those always defined as hard (mandatory)

constraints in the instances. These conditions, numbered according to their order in the

Appendix A, are the following: Assign teachers (1), Assign rooms (2) and Assign times

(3) to all lectures; Avoid clashes (4) of resources ; Prefer teachers (7) and Prefer rooms

(8) to be allocated according the courses requirements; ensure Teachers stability (10),

Rooms stability (11) and Courses stability (12); avoid assigning teachers and curricula

out of their respective Working shifts (16) and Study shifts (17). On the other hand,

additional conditions correspond to the rest of the ones listed in the the Appendix A.

Additional conditions are included (randomly as hard or soft constraints), one by one,

only if their inclusion does not cause conflict with the basic ones.

3.3 CB-CTT Instance Dataset

The described CB-CTT instance generator was designed to create a diverse set of in-

stances, both in size and constraint density. As explained, it works in two stages: Stage 1

defines the curricular map (i.e., courses and their requirements); while Stage 2 the par-

ticular conditions for the assignment of times and resources (i.e., times, resources, and

constraints). As a mean to define the experimental space without incurring in logical er-

rors, in this thesis the parameters of the CB-CTT instance generator were set according
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the five-steps suggested by Barr et al. [67] to perform computational experiments. These

steps are: i) defining relevant parameters, ii) setting boundaries for the parameter val-

ues, iii) defining modeling scenarios, iv) generating instances, v) verifying consistency

and diversity of the instances.

3.3.1 Defining Relevant Parameters

The instance generator provides a set of 152 parameters that can be tuned to define

a CB-CTT instance. From these parameters, 26 are related to lectures, times, and

resources; and 126 are related to constraints. In order to generate a diverse CB-CTT

dataset, all of the 152 parameters were considered relevant and required to be set in the

instance generation process2

3.3.2 Setting Boundaries for the Parameters Values

The values of the parameters were limited to represent conditions that are commonly

found in real university timetabling problems, thus specifying the domain of the random

values to be generated. For example, the domain of values for the parameter <Terms

of the curricular plan>, which defines the number of terms of a curricular plan, was

set to {8, 9, 10, 11}. Therefore, the generator created curricular plans ranging from a

duration of 8 to 11 terms (i.e., semesters, trimesters or quarters).

3.3.3 Defining Modeling Scenarios

A structured manner to analyze the effects that different combinations of parameter val-

ues can have over the complexity of an instance is defining modeling scenarios. Modeling

scenarios work by partitioning the domain of each parameter into ranges of values with

an expected similar complexity. For example, it is known that including a more diverse

set of resources on an instance increases the number of constraints to be applied. Thus,

2This thesis focuses on presenting a general description of the performed tasks to construct a per-
instance algorithm selection model for solving CB-CTT instances. We plan to include all details
related to the instance generator, CB-CTT dataset, and instance features in a set of technical reports.
Meanwhile, we have created the following Github repository to update the resources related to this
research project https://github.com/Felipedlr/CB-CTT-dataset.
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to analyze the effect of the diversity of classrooms in the complexity of an instance, the

following three scenarios were defined: <Types of classrooms>: <1>, <2>, or <3>. In

a similar way, different modeling scenarios were defined for each parameter required by

the generator.

3.3.4 Generating Instances

After defining the domains and modeling scenarios, the values of the parameters were

produced from a uniform probability distribution using pseudo-random number gener-

ators. The designed generator was run on a desktop PC with an Intel Core i7-6700

processor at 3.4 GHz and 16 GB of RAM, running Microsoft Windows 10. A dataset of

10,000 instances were generated in a total running time of 21,315 seconds; that is, 2.13

seconds per instance.

3.3.5 Verifying Consistency and Diversity of the Instances

As described in Section 1.2, the XHSTT data format was proposed in 2011 as an inter-

national standard to represent timetabling instances from different countries. However,

at the moment, not many solvers have been proposed to support this format.

In the current state of the art, two types of XHSTT instance solvers can be dis-

tinguished: i) solvers proposed to generate initial solutions and ii) solvers proposed to

improve initial solutions. To estimate the empirical hardness (i.e., apparent solving com-

plexity) of the generated instances, the KHE timetabling engine [68] —a solver that has

proved to be effective to generate initial solution in current research works [69–73]—

was employed to accomplish two goals: i) validate the structural consistency of the

generated instances, and ii) measure their empirical hardness.

If the KHE timetable engine is able to generate an initial solution for an instance,

then this validates the structural consistency of such an instance. As part of the so-

lution, the KHE timetable engine returns a report describing both the total cost of

violations of hard constraints (infeasibility value) and, the total cost of violations of soft

constraints (objective value). In this thesis, we combined these values into a single cost
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called penalty value, which —as defined for many instances in international timetabling

competitions— assigns a cost value of 1,000 to each violation of a hard constraint, and

a cost value of 1, to each violation of a soft constraint.

The penalty value was used to measure the empirical hardness of the instances, and

to evaluate the diversity of the dataset. Based on an empirical statistical analysis of

histogram plots, instances were grouped into five categories according to their penalty

values:

� Very Easy: Instances with a penalty value between [0 - 1,000).

� Easy: Instances with a penalty value between [1,000 - 10,000).

� Medium: Instances with a penalty value between [10,000 - 50,000).

� Hard: Instances with a penalty value between [50,000 - 100,000).

� Very Hard: Instances with a penalty equal or greater than 100,000.

The generated dataset of 10,000 instances was classified according to these ranges

of penalty values, revealing an uneven distribution of instances among the five defined

categories. In this distribution, the categories Very Easy and Easy exhibited a signifi-

cantly higher number of instances than the rest. Hence, to avoid dealing with problems

related to unbalanced datasets in subsequent stages of the meta-learning process, 1200

instances of each category were selected for the final CB-CTT instance dataset (i.e., a

total of 6,000 instances).

3.4 Summary

The first requirement to create a useful algorithm selection model is having a diverse

collection of instances properly resembling the conditions found in real-life situations.

In the current state of the art, different collections of timetabling instances have been

proposed as benchmarking datasets for researchers. Still, only one of them (consisting

of 25 instances) employs the XHSTT data format used for this thesis. To address the
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current lack of XHSTT instances in the timetabling domain, in this thesis, we created

a hierarchical instance generator able to model a set of 27 common conditions.

In this chapter, the design of our instance generator was presented first; then, the

generation process of the required CB-CTT instances was explained in detail. It is

important to point out that because of the large amount of parameters (152) to be

set in the generator, we were able to create a highly-diverse dataset of 6,000 instances

(ranging from very easy to very hard). This dataset —validated using a well-known

XHSTT instance solver— was defined as the problem space for the construction of our

per-instance algorithm selection model and described according to the set of features

presented in the next chapter.
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Chapter 4

Feature Selection

In the previous chapter, the generation process of the instance dataset for the Curriculum-

Based Course Timetabling (CB-CTT) problem was described. As explained, it is a

dataset balanced according five different instance types that indicate the initial solving

complexity of the instances, ranging from Very Easy to Very Hard. The dataset includes

6,000 instances, 1,200 of each type.

According to the meta-learning framework shown in Figure 4.1, the next step for

the construction of our per-instance algorithm selection model is the characterization

of the generated instance dataset in terms of a set of meta-features, that is, measurable

properties able to describe the main characteristics of the CB-CTT problem. To achieve

this goal we propose a collection of features to describe the generated instances (modeled

according to the XHSTT format described in Section 1.2.2) into numerical values. The

relevance of these features depends on their effectiveness to predict the performance

of algorithms across the CB-CTT problem domain. Hence, to evaluate the proposed

collection of features —called CB-CTT metrics— we also present an assessment of its

predictive power based on the concepts of empirical hardness model and feature selection.

As defined by Leyton et al. [74], empirical hardness models are statistical predictors

built to estimate the performance that a given algorithm will achieve when solving a

given problem instance. Due to its statistical nature, these predictors are often formu-

lated as regression models, which can be analyzed to develop new solving approaches
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Figure 4.1: Meta-learning framework for the construction of the CB-CTT per-instance algo-
rithm selection model (adapted from [2]). For reference purposes, the elements Characteriza-
tion of problem instances and Meta-features, related to the Feature space (F), are highlighted
in red.

and improve the theoretical understanding of a problem domain.

As a contribution to the understanding of the CB-CTT problem, in this chapter,

besides the formulation of a collection of features (CB-CTT metrics) to characterize

instances in the XHSTT format, we present the analysis of empirical hardness mod-

els following the feature selection methodology shown in Figure 4.2. The goal of this

methodology is selecting and interpreting the set of features (Relevant CB-CTT met-

rics) that better predicts the solving difficulty of the instances. The applied methodology

includes the four processes described next:

1. Instance description: It involves describing the CB-CTT instance dataset in

terms of representative numerical values calculated from the formulated CB-CTT

metrics (collection of features).

2. Performance prediction: It involves creating empirical hardness models to pre-

dict the solving difficulty of the CB-CTT instances (measured in terms of the

penalty value1).

1As explained in Section 3.3.5, the penalty value is the sum of the cost of hard and soft constraint
violations incurred in the solution of an instance
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Figure 4.2: Feature selection methodology used to identify the metrics that better describe
the empirical hardness of CB-CTT instances.

3. Metrics assessment: It involves analyzing the composition of the created em-

pirical hardness models to determine the relevance of each metric (or feature) in

the prediction task.

4. Metrics interpretation: It involves explaining the practical implications of the

most relevant CB-CTT metrics in the solution process of the instances.

The remaining of this chapter is organized based on the presented feature selection

methodology. All elements are described in detail.

4.1 CB-CTT Metrics

Formulating features to characterize instances on a problem domain is a laborious task

which requires a combination of general and domain-specific knowledge. However, once a

descriptive set of features has been formulated, it can be used by the research community

as a starting point to propose new solving methods and drive research forward [1].

Features within the combinatorial optimization field can be exploited in different

ways, for example: to choose the best algorithm to solve a given instance [8, 51]; to

guide the selection of the best operator to be applied at each iteration of an hyper-

heuristic approach [46,75]; to improve the searching strategies of meta-heuristics [10,76].

However, their effectiveness to perform these tasks cannot be a priori guaranteed, since

it depends on their descriptive capability over the problem space.
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Currently, one set of features that has been proposed to characterize instances within

the university timetabling domain is the set of 32 features formulated by Smith-Miles &

Lopes [77]. The set considers four types of features: 3 size-related features, 2 landmark-

ing features, 21 graph-coloring features, and 6 timetabling features. However, as it is

mainly based on the properties of conflict graphs G(V,E) (where V is a set of vertices

corresponding to events that need to be timetabled, and E is a set of edges connecting

any two vertices when the events cannot occur at the same time), the set is not suitable

to describe the full set of constraints considered by our CB-CTT instance generator

(explained in Chapter 3). To overcome this limitation, this thesis proposes four types

of features to characterize timetabling instances within the CB-CTT domain, and as

each type measures different properties of the problem (e.g., solution space, conflicts of

resources), they are called metrics.

The proposed CB-CTT metrics consists of: i) 74 simple metrics that provide a

basic notion of the size of the elements that compose an instance; ii) 44 solution space

metrics that, based on counting functions, measure the size of possible combinations for

task scheduling and resource allocation; iii) 17 feature ratios that calculate numerical

relationships between some simple and solution space metrics; and iv) 14 constraint

density indexes2 defined by Kingston [68]. Therefore, the set consists of a total of 149

CB-CTT metrics or features that are described next.

4.1.1 Simple Metrics

We define simple metrics as observable data that provides a basic notion of the size

of an instance. As instances are modeled using the XHSTT format, simple metrics

are calculated by parsing XML trees to perform counting processes regarding the basic

elements that compose an instance. For example, total number of classes, total number

of teachers, total number of rooms, total number of constraints, etc.

In order to explain the set of 74 simple metrics, we make use of two tables (Table

2These 14 constraint indexes are the only ones not formulated by us, but as part of the KHE
Timetabling Engine (the solver applied to obtain the initial solutions for our instance dataset), they
were included to complement our metrics.
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Table 4.1: Simple constraint-related metrics used to describe each one of the 14 types of
constraints used by the CB-CTT generator.

Metric Description

1 Constraints Number of constraints of a certain type that are applied
to an instance

2 Points of application Number of elements that needs to be evaluated to verify
the fulfillment of a type constraint

3 Soft penalty value Hard penalty value that is going to be added to the cost
function if all points of application fail incurs at least
in one constraint violation.

4 Hard penalty value Hard penalty value that is going to be added to the cost
function if all points of application fail incurs at least
in one constraint violation.

4.1 and 4.2). Table 4.1 presents four metrics that are used to describe each one of

the 14 types of XHSTT constraints considered by our instance generator3 —a total of

56 metrics. For example, if two Limit Workload Constraints (LWC) defined as hard

(mandatory) are included on an instance, one to limit to 20 the working hours of a set

of 8 part-time teachers, the other to limit to 15 the working hours of a set of 10 full-time

teachers, then, the simple constraint-related metrics for such type of constraint (LWC)

are as follows, Constraints : 2, Points of application: 18, Soft penalty value: 0, Hard

penalty value: 18,000.

On the other hand, Table 4.2 presents 18 metrics related to the global structure of

a CB-CTT instance. For example, number of days, number of classes to be scheduled,

number of available rooms, and number of teachers included on an instance.

4.1.2 Solution Space Metrics

At its basic formulation, the CB-CTT problem is a combinatorial problem which requires

performing two types of assignments: i) assigning lectures to time slots (task scheduling)

and, ii) assigning resources to lectures (resource allocation). Although these assignment

tasks are performed simultaneously, and must not be considered independent stages of

the solution process, they work at different solution spaces, the first one related with

time slots and, the second one, with resources. Therefore, they are referred to, by

3From the available 16 types of XHSTT constraints described in Table 1.1, Distribute Split Events
Constraint and Order Events Constraint are not used by our instance generator.
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Table 4.2: Simple structure-related metrics used to describe the size of the basic elements of
an instance.

Metric Description

1 Time slots Available number of time slots that are considered to
solve an instance

2 Days Number of days in which time slots are grouped

3 Shifts Number of shifts in which time slots are grouped

4 Knowledge areas Number of categories that defines the expertise areas
of the teachers (e.g. math, engineering, management)
required by the classes

5 Types of rooms Number of room types required by the classes

6 Teachers Available number of teachers that can be allocated

7 Full-time teachers Available number of full-time teachers that can be al-
located

8 Part-time teachers Available number of part-time teachers that can be al-
located

9 Rooms Available number of rooms in which classes can be al-
located

10 Curricula Number of curricula in which classes are grouped

11 Curriculum times Maximum number of weekly time slots that a curricu-
lum can be allocated

12 Events Total number of classes to be scheduled

13 Total events duration Total duration of the classes to be scheduled

14 Preassigned times Total number of time pre-assignments

15 Total resource requests Total number of resources requests required by the
classes

16 Preassigned resources Total number of resource pre-assignments

17 Total points of applica-
tion

Total points of application to be analyzed to evaluate
the fulfillment of all constraints.

18 Total penalty value Sum of the penalty values of all points of application

two shortened terms, as: scheduling (for task scheduling) and, allocation (for resource

allocation).

According to Ochiai et al. [78], the optimization process performed by any algorithm

or heuristic is a combination of searching tasks within feasible solution spaces. Therefore,

describing the features of such spaces could lead to the development of better solution

methods. To measure the dimensions of both solution spaces, a set of 44 metrics (16

scheduling space metrics and 28 allocation space metrics), based on the concept of

counting functions, were formulated.

4.1.2.1 Scheduling Space Metrics

Within the CB-CTT context, scheduling consists on splitting the weekly duration of a

class into a set of lectures to be appointed according to a set of time-related constraints.
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The number of ways in which this process can be performed defines the scheduling space

of an instance. For example, consider a three-hour literature class to be scheduled on

a weekly basis. There are three possible configurations for scheduling its lectures: a

single three-hour lecture (3 ), a combination of two-hour and one-hour lectures (2-1 ),

and a set of three one-hour lectures (1-1-1 ). If eight available time slots per day, from

Monday to Friday, are available to schedule this class, then, the number of possible

ways (without repetition) to perform the scheduling of each configuration is, (3 ): 30;

(2-1 ): 1,270; (1-1-1 ): 4,290. Hence, if no time constraints are further applied, the

non-constrained scheduling space of this literature class is calculated by the sum of

non-constrained counting functions that define the possible scheduling combinations for

these configurations. For this example, a total of 5,590 possible combinations.

Non-constrained Scheduling Space

As described by Stanley [79], the goal of enumerative combinatorics is counting the

number of elements of a finite set by formulating a counting function (S). Therefore,

to count the number of possible ways in which the lectures of a class can be scheduled

without constraints, we performed two tasks: i) identify the variables that define the

non-constrained counting functions and, ii) model all the possible lecture-configurations

for scheduling a class.

The variables that describe non-constrained counting functions are three. On the

one hand, time slots per day (m) and class days per week (d) set the size of the time

grid to schedule the lectures. On the other hand, lectures durations li (where i is the

ith lecture) defines the lecture configuration being analyzed. For example, a one-lecture

configuration with a duration of three time slots, must be defined with only one lecture

duration: l1 = 3; while a (2-1) two-lecture configuration, must be defined in terms of two

lectures durations: l1 = 2, l2 = 1. Equation 4.1 defines the non-constrained counting

function for one-lecture configurations, which are the simplest of all.

S = d(m− l1 + 1) (4.1)
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Figure 4.3: Graphical representation of the six possible ways in which a two-time slot lecture
can be scheduled within a time grid of two days by four time slots.

Figure 4.3 illustrates an example to which this counting function can be applied.

The diagram represents the six possible ways in which a two-time slot literature lecture

can be scheduled within a set of four time slots, from Monday to Tuesday.

Equation 6.1 defines the non-constrained counting function for two-lecture configu-

rations. As noticed, two additional variables are included: an index j, used as a counter

to perform the summation, and a variable (u), which counts the number of lectures that

has the same duration, as lectures of equal duration generate schedule arrangements

with repetition that must be also evaluated.

S = d

[
(d− 1)

2∏
i=1

(m− li + 1) +

(
2

m−l1−l2∑
j=1

j

)]/
u! (4.2)

Figure 4.4 illustrates an example to which this counting function can be applied. The

diagram represents the twenty two possible ways in which a (1-1 ) lecture configuration

can be scheduled within the same eight-time slots time grid shown in Figure 4.3.

As observed in these two equations, if the number of lectures to be considered in a

lecture configuration increases, the calculation process of its non-constrained counting

function becomes more complicated, since it requires a larger set of possible scheduling

combinations. Although the equations for three, four and five lecture configurations are

not presented in this section, they were deduced and applied in a similar manner.

Constrained Scheduling Space

Whenever a time-related constraint is applied to an instance, its scheduling space is

reduced depending on the particular conditions modeled by the constraint. For example,
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Figure 4.4: Graphical representation of the twenty two possible ways in which two one-time
slot lectures can be scheduled within a time grid of two days by four time slots.

if a constraint is applied to the non-constrained scheduling space illustrated in Figure 4.4

to require that only one lecture be scheduled per day, then the size of the scheduling

space would be reduce from 22 to 16, because the last six lecture-configurations of the

figure would be considered violations of this constraint.

In this thesis, the reduction of each constraint over the non-constrained scheduling

space of a CB-CTT instance is quantified in three different ways:

� Space: Counts the remaining size of the scheduling space after applying only a

certain type of constraint.

� Removed: Counts the number of combinations that are removed from the schedul-

ing space after applying only a certain type of constraint.

� Percentage: Calculates the percentage in which the scheduling space is reduced

after applying only a certain type of constraint.

In summary, the set of 16 scheduling space metrics consist of: 1 non-constrained

scheduling space metric that aggregates the initial scheduling spaces of the classes of
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an instance without limiting the number of ways in which the scheduling task can be

performed; 12 scheduling reduction metrics that measure the shrinkage of the scheduling

space due to each one of the applied XHSTT constraints (described in Table 1.1) related

to the scheduling space (i.e., Split Events Constraint, Prefer Times Constraint, Spread

Events Constraint, and Link Events Constraint); and 3 scheduling constrained metrics

that measure the overall net effect of the constraints on reducing the initial scheduling

space (i.e., constrained scheduling space, constrained scheduling removed and constrained

scheduling percentage). Out of the 44 solution space metrics, 16 are scheduling space

metrics.

4.1.2.2 Allocation Space Metrics

Within the CB-CTT context, allocation is the assignment of the available resources to

the lectures that require them. The number of ways (defined by a set of resource-related

constraints) in which this assignment can be performed is what defines the allocation

space.

To illustrate the calculation of the non-constrained allocation space, consider a set

of three classes to be scheduled four time slots a week (weekly duration, w), each one

requiring a full-time teacher. If there are three possible teachers (resources, r) to be

assigned to such classes, and the allocation time grid consists of twenty time slots (ts)

(equally distributed in a five-day week). Then, the non-constrained counting function

for the possible allocation of resources is calculated using Equation 4.3.

S = (w)(r)(ts) (4.3)

Figure 4.5 shows the described example. Each class can be assigned to the twenty

available time slots of each teacher; therefore, its number of possible allocations is cal-

culated as follows: S = (4)(3)(20) = 240. As the number of classes to be allocated

is three, the total non-constrained allocation space for this example is calculated as:

240 + 240 + 240 = 720.

Similarly to the scheduling space, the unconstrained allocation space is reduced if any

57



Figure 4.5: Graphical representation of the timetable of three teachers considering a time
grid of five days by four time slots.

of the resource-related constraints, described in Table 1.1, are applied to an instance.

These are: Prefer Resources Constraint, Avoid Split Assignments Constraint, Avoid

Clashes Constraint, Avoid Unavailable Times Constraint, Limit Idle Times Constraint,

Cluster Busy Times Constraint, Limit Busy Times Constraint, and Limit Workload

Constraint. For example, if the Limit Workload Constraint is applied to limit to 15 the

number of hours that teachers can work per week, the allocation space would be reduced

from 240 to 180.

In summary, the set of 28 allocation space metrics consists of: 1 non-constrained

allocation space that aggregates all the possible allocations of resources to classes, 24

allocation reduction metrics, and 3 allocation constrained metrics (i.e., constrained al-

location space, constrained allocation removed and constrained allocation percentage).

Out of the 44 solution space metrics, 28 are allocation space metrics.

4.1.3 Feature Ratios

Ratios are simple mathematical (statistical) calculations used to express relationships

and perform meaningful comparisons between numerical data. In the collection of CB-

CTT metrics, we included 17 feature ratios formulated with two purposes: i) describe

potential significant relationships between the sets of simple and solution space metrics,
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Table 4.3: Description of the 17 feature ratios included in the set of CB-CTT metrics.

Metric Description

1 Total rooms conflicts Sum of the ratios of required time slots per type of room
to available time slots per type of room

2 Total teachers conflicts Sum of the ratios of required time slots per type of
teacher to available time slots per type of teacher

3 Total curricula conflicts Sum of the ratios of required time slots per curriculum
to available time slots per curriculum

4 Total resources con-
flicts

Sum of total room conflicts, total teacher conflicts and
total curricula conflicts

5 Average rooms conflicts Average ratio of required time slots per type of room
to available time slots per type of room

6 Average teachers con-
flicts

Average ratio of required time slots per type of teacher
to available time slots per type of teacher

7 Average curricula con-
flicts

Average ratio of required time slots per curriculum to
available time slots per curriculum

8 Average resources con-
flicts

Total resources conflicts divided by the total number of
resources

9 Rooms weighted con-
flicts

Weighted average ratio of required time slots per room
type to available time slots per type of room

10 Teachers weighted con-
flicts

Weighted average ratio of required time slots per
teacher type to available time slots per type of teacher

11 Percentage of assigned
resources

Preassigned resources divided by the Total resource re-
quests

12 Average event duration Total events duration divided by the number of Events

13 Scheduling space
shrinkage

Constrained scheduling space divided by the non-
constrained scheduling space (ATC space)

14 Allocation space
shrinkage

Constrained allocation space divided by the non-
constrained allocation space (ARC space)

15 Average constraint
penalty

Total penalty value of the instance divided by the total
points of application defined by its constraints

16 Average allocation
space per resource

Constrained allocation space divided by the number of
resources

17 Average scheduling
space per event

Constrained scheduling space divided by the number of
events

described above, and ii) analyze conflicts of resources by comparing the requirement

and availability of resources. The 17 feature ratios are described in Table 4.3.

4.1.4 Constraint Density

In addition to the three sets of metrics that were formulated for this thesis in the previous

subsections, a set of 14 constraint density indexes defined by Kingston [68], as part of

the KHE timetabling engine4, was included into the collection of CB-CTT metrics.

As defined by Kingston, the density of each type of XHSTT constraint is calculated

4As explained in Section 3.3.5, the KHE Timetabling Engine was the solver applied to generate the
initial solutions for the generated CB-CTT instance dataset.
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dividing the number of elements to which a constraint is applied by the number of

elements to which this constraint could be applied. For example, if the constraint Assign

Time Constraint (ATC) is set to require that 80 of a total of 100 lectures defined in an

instance be scheduled, then the density of this constraint is calculated as: Total lectures

to which ATC is applied divided by the possible lectures to which ATC could be applied.

In this case, the ATC density = 80/100.

The density of each constraint is calculated based on different elements, according

to the condition it models. These elements could be times, resources or events of an

instance.

4.2 Feature Selection

The collection of CB-CTT metrics described in the previous section calculates different

properties that are expected to be good predictors of the empirical hardness of CB-CTT

instances. To verify the relevance of those metrics, we now describe the four processes

involved in the feature selection methodology presented in Figure 4.2.

The main goal of feature selection is reducing data dimensionality without losing

much of the original information. In theory, having more features should produce better

learning models. But as stated by Yu & Liu [80], in practice, excessive features might

lead to higher learning times and over-fitted models. Therefore, finding the optimal

subset of features to enhance learning efficiency and prediction accuracy is a critical

task.

To obtain the optimal subset of relevant of CB-CTT metrics to characterize the

empirical hardness of the instance dataset (described in Section 3.3), three sequential

processes were applied: instance description, performance prediction, and metrics as-

sessment (see Figure 4.2). Then, these relevant CB-CTT metrics, were interpreted to

provide a better understanding of the conditions that make CB-CTT instances hard to

solve.

60



Table 4.4: Attribute-value format to describe the generated CB-CTT instance dataset.

Metrics
Instances

M1 . . . M125

Performance

I1 m1,1 . . . m1,125 p1

I2 m2,1 . . . m2,125 p2

I3 m3,1 . . . m3,125 p3

...
...

. . .
...

...

I6000 m6000,1 . . . m6000,125 p6000

4.2.1 Instance Description

As the first process of the feature selection methodology, the 6,000 CB-CTT generated

instances (where each instance is an XML tree), were described in terms of the CB-CTT

metrics presented in Section 4.1. All values were normalized to have the same magnitude

range, and as a preprocessing step, two types of features were removed: i) uni-valued

features (that have the same value in all instances), and ii) perfectly correlated features

(that provide the same information). After this elimination, the number of metrics was

reduced from 149 to 125.

The generated instances were described using the attribute-value format shown in

Table 4.4. In this table, each row represents a CB-CTT instance Ii (where 1 ≤ i ≤ 6, 000)

and each column Mj represents a metric or feature (where 1 ≤ j ≤ 125) that has value

mij for each instance. The value Performance, indicates the empirical hardness of an

instance, measured as the penalty value of the initial solution generated with the KHE

timetabling engine (as explained in Section 3.3.5).

4.2.2 Performance Prediction

The analysis of the the data summarized in the attribute-value format (see Table 4.4)

was performed based on a regression approach that employs supervised learning methods

to assess the relevance of the collection of CB-CTT metrics to predict the penalty value

of the instances.

For the regression task, eight regression algorithms from the scikit-learn library of
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Figure 4.6: Explained variance score of machine learning regressors applied to predict the
penalty value of the generated XHSTT dataset using a 10-fold cross-validation.

Python [81] were tested5: Decision Tree, AdaBoost, K-Nearest Neighbor, Random For-

est, Multilayer Perceptron, XGBoost, Gradient Boosting Tree, and Support Vector Ma-

chine. To avoid the risk of drawing wrong conclusions from over-fitted models, their

performance was measured in terms of the explained variance score of a 10-fold cross-

validation process. The explained variance score is a measure employed to compare the

predictions (ŷ) made by a regression model and the values of an output variable (y) to

evaluate the prediction error (y − ŷ). The explained variance score is calculated as:

explained variance score = 1− V ariance[y − ŷ]

V ariance[y]

Figure 4.6 shows the explained variance score (from lower to higher) of the eight

learning algorithms. As observed, they exhibit a significant disparity on their cross-

validated explained variance score —measured in the 10 testing folds— that ranges from

82.23% (obtained by Decision Tree), to 92.18% (obtained by Support Vector Machine).

5The description of the regression models and their default parameters can be found in the official
documentation of scikit-learn at https://scikit-learn.org/stable/supervised_learning.html
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The best five of these algorithms (Random Forest, Neural Network, XGBoost, Gradient

Boosting Tree, and Support Vector Machine), although different in the mathematical

methods in which they are based on, achieved a similar performance. This indicates

that the explained variance score for the regression models that can be built from this

CB-CTT metrics is around 91%. Having statistical evidence about the accuracy of the

empirical models built from the proposed CB-CTT metrics, the models with the highest

predictive performance were selected to evaluate the relevance of the metrics.

4.2.3 Metrics Assessment

As shown in Figure 4.2, the output of the feature selection processes is a subset of

Relevant CB-CTT metrics able to characterize the generated instances with a predictive

power similar to that of the full set of CB-CTT metrics. To determine this subset, the

contribution of each metric to the prediction accuracy of the best empirical models was

assessed.

As pointed out in recent research works [82, 83], even though learning algorithms

have been adopted to build prediction models in a wide range of applications, most of

the time they are implemented as black boxes. They do not provide an understanding of

the problems being modeled. Model interpretation is a problem in itself, whose difficulty

depends on the method used in its construction. Some methods are easily explainable

since their results can be explicitly tracked to their components, while some others, such

as neural networks, require the construction of auxiliary explanation techniques [83].

From the five prediction algorithms, shown in Figure 4.6, three are based on decision

trees (i.e., Random Forest, XGBoost, Gradient Boosting Tree), and one is difficult

to explain (i.e., Multilayer Perceptron). Therefore, for the assessment of the metrics,

two regression algorithms were selected: i) Support Vector Machine (SVM) based on

linear kernels, the one with the highest cross-validated explained variance score, and ii)

Gradient Boosting (GB) Tree built from 100 regression trees, the best of the decision

tree-based algorithms.

63



Figure 4.7: 10-fold cross-validated explained variance score of SVM-based models built from
a different number of features (CB-CTT metrics).

4.2.3.1 Support Vector Machines

The metrics, or features, that could be considered as relevant from SVM-based models

were obtained by applying a Recursive Feature Elimination method (RFE) [84]. This

method follows the Sequential Backward Generation approach (SBG) to iteratively re-

move, based on a cross-validated evaluation, the least important of a set of features.

Figure 4.7 shows the cross-validated explained variance score of the SVM-based mod-

els built at each iteration of the RFE method. As observed, the explained variance score

decreased significantly when only a few metrics were included in the models. Therefore,

to statistically determine the minimum number of required metrics, we performed a

time series analysis based on a moving average of 20-metric windows with a convergence

threshold of 0.5% for the root mean square deviation. According to these calculations,

we determined that at least 31 metrics were required to build SVM-based models as

accurate as the ones that uses the full set of metrics. Therefore, this number of metrics

was defined to perform the coefficient feature analysis described next.

At its most basic concept, an SVM defines a set of hyperplanes in an n-feature

dimensional space to maximize the margin distance between vectors that belong to

different classes. However, to predict continuous-valued outputs in regression tasks, this

64



Table 4.5: Set of 31 relevant CB-CTT metrics selected from the analysis of SVM-based
models, organized according to the type of metric. The number indicates how relevant the
metric is (one been the most relevant).

Simple Solution Space Feature Ratios

(1) Timeslots
(2) Shifts
(3) Teachers
(4) Rooms
(5) Total resources requests
(6) Total events duration
(7) Preassigned resources
(8) ARC hard penalty value
(9) ASAC hard penalty value
(10) AUTC hard penalty
value
(21) Full-time teachers
(22) Curricula times
(26) Types of rooms
(28) LWC hard penalty value
(29) ACC hard penalty value
(30) LWC points of application

(11) SPEC space
(12) Constrained scheduling
space
(13) ASAC space
(14) ACC space
(15) AUTC space
(16) Constrained allocation
space
(23) PRC removed
(24) ASAC removed
(27) AUTC removed
(31) SPEC percentage

(17) Total rooms conflicts
(18) Total curricula conflicts
(19) Total resources conflicts
(20) Average curricula
conflicts
(25) Average allocation space
per resource

margin distance is often optimized with Vakpnik’s ε-insensitive loss functions.

As stated by Guyon et al. [84], a straightforward method to determine the impor-

tance of its related features is by comparing the relative size of the n-coefficients in

the hyperplanes. By performing this comparison at each one of randomly-generated 10

training-testing folds, we selected the set of metrics that better predicted the penalty

values of the instances.

Table 4.5 presents the set of 31 relevant CB-CTT metrics, organized according to

the type of metric, as defined in Section 4.1. Each metric is numbered in ascending

order, from most to least relevant, according to the coefficients analysis of the support

vector machines.

4.2.3.2 Gradient Boosting Trees

As with SVM-based models, the minimum number of metrics required to build GB trees

with a similar accuracy as using all metrics, was determined by the implementation of

an RFE method that follows an SBG approach. By applying the same convergence

threshold to the cross-validated accuracy of the GB trees (plotted in Figure 4.8), it was

defined 16 as the minimum number of required metrics.

As stated by Hastie et al. [85], the motivation for boosting is combining the out-

puts of many “weak” classifiers (whose error rate is only slightly better that a random
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Figure 4.8: 10-fold cross validation explained variance score of GB trees constructed at each
step of the RFE method.

guessing) to produce a powerful “committee”. That is, a sequence of weak classifiers

Gm(x),m = 1, 2, ...,M , that combined through a weighted voting function produce the

final prediction.

When applied to regression tasks, boosting approaches combine predictors sequen-

tially to minimize the loss function defined to quantify the prediction errors. At each

iteration, error residuals are analyzed and minimized by adding a new predictor to the

“committee” until error residuals become constant.

In the applied GB tree implementation, predictors consist of individual decision trees

that split according to the mean squared error defined by Friedman [86], and are fitted

to the data based on purity scores to minimize the sum of the prediction squared errors.

To evaluate the relevance of the metrics in the GB trees, a hierarchical approach was

adopted. First, the relevance of the metrics at the individual trees was calculated by

determining the weighted reduction in node purity from the split at each node. Next,

the relevance of the metrics in all trees were averaged.

Table 4.6 presents the set of 16 relevant metrics, organized according to the type

of metric as defined in Section 4.1. Each metric is numbered in ascending order, from

most to least relevant, according to the node purity analysis of the GB trees.
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Table 4.6: Set of 16 relevant metrics selected from the analysis of GB trees, organized
according to the type of metric. The number indicates how relevant the metric is (one been
the most relevant).

Simple Solution Space Feature Ratios Constraint Density

(1) Total events
duration
(2) Preassigned
resources
(3) AUTC hard
penalty value
(4) LITC hard penalty
value
(5) LWC hard penalty
value
(15) LEC points of ap-
plications

(10) PRC removed
(13) AUTC space
(14) LEC space

(7) Total curricula
conflicts
(8) Total resources
conflicts
(9) Average event
duration
(11) Percentage of
assigned resources
(12) Average curricula
conflicts
(16) Rooms weighted
conflicts

(6) AUTC density

Table 4.7: Set of 9 common metrics, according to their mean observed relevance in the
previous two sets.

Simple Solution Space Feature Ratios

(1) Total events duration
(2) Preassigned resources
(3) AUTC hard penalty value
(8) LWC hard penalty value

(6) AUTC space
(9) PRC removed

(4) Total curricula conflicts
(5) Total resources conflicts
(7) Average curricula conflicts

4.3 Relevant CB-CTT Metrics

From the metric assessment process, two sets of relevant CB-CTT metrics were defined:

a set of 31 metrics based on the analysis of SVM and a set of 16 metrics based on

the analysis of GB trees. To analyze the similarity of these sets, we defined a third

set including their common metrics. As a result, we considered three sets of relevant

metrics to be further evaluated and interpreted:

� SVM metrics: Set of 31 relevant metrics selected from SVM-based models.

� GBtree metrics: Set of 16 relevant metrics selected from GB trees.

� Common metrics: Set of 9 metrics determined by the intersection of SVM

metrics and GBtree metrics. This set of metrics is presented in Table 4.7 and

was numbered, from most to least relevant, according to their mean observed

relevance in the previous two sets. As observed, this set does not include any of

the constraint density indexes proposed by Kingston (described in Section 4.1.4),

as none of them proved to be consistently relevant in the previous two sets of

metrics.
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Figure 4.9: 10-fold explained variance score of SVM and GB trees regressors applied to
predict the penalty value of the CB-CTT instance dataset using the three defines sets of
relevant metrics (the full set of 149 metric is shown for comparison purposes).

Each set of relevant metrics include a different fraction of the original set of 149

metrics. Hence, to evaluate the information loss due to the dimensionality reduction,

we compared the prediction effectiveness of the three sets to that obtained with the full

set of 149 metrics.

Figure 4.9 shows the explained variance score of the penalty value predicted with each

set of relevant metrics. The predictions were made using SVM and GB tree regression

models and evaluated with a 10-fold cross-validation approach. As observed in the

figure, on the one hand, the sets of Common metrics and GB tree metrics exhibited a

higher prediction performance in GB tree models than in SVM models. However, they

also showed a higher performance deviation between both regression approaches. On

the other hand, SVM metrics achieved a similar performance in both types of regression

approaches, suggesting more stable prediction capabilities when used to build prediction

models based on a different set of learning algorithms.

In the presented comparison, the lower prediction effectiveness of the set of Com-
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mon metrics is evident, but the difference between the sets of SVM metrics and GBTree

metrics is not clear. For this reason, both SVM metrics and GB metrics will be consid-

ered for the creation of or per-instance algorithm model, and further interpreted in the

next section to provide a better understanding about the difficulty of solving CB-CTT

instances.

4.4 Metrics Interpretation

Despite the importance to map instance properties of academic timetabling problems

with the performance of available solving methods [87], few research works have pro-

posed features to describe the empirical hardness of timetabling instances [88–90]. To fill

this gap, in this chapter, we defined three sets of relevant CB-CTT metrics as potential

predictors of timetabling empirical hardness, but, based on a comparison of their infor-

mation loss, we selected two sets —SVM metrics and GBtree metrics— to be considered

for the construction of our per-instance algorithm selection model.

As a contribution to the current state-of-the-art, this section presents the final step

of the feature selection methodology shown in Figure 4.2, metrics interpretation. Our

goal is to discuss the relationships between the selected relevant CB-CTT metrics and

the empirical hardness of the generated CB-CTT instances.

Table 4.8 shows the union of the set of SVM metrics and GBtree metrics, a total of

38 metrics, grouped according to three aspects: i) size, ii) scheduling (time assignment),

and iii) allocation (resource assignment). In this table, the nine metrics common to

both sets are marked with an asterisk (*). Based on this data, next, we present an

interpretation of the main factors that make CB-CTT instances hard to solve.

4.4.1 Size-related Hardness

The first column of Table 4.8 shows the 12 metrics related to the size of CB-CTT

instances. These metrics characterize the structure of the instances as regards to its

basic dimensions (e.g., number of time slots, number of teachers, number of rooms). In
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Table 4.8: Set of 38 metrics obtained from the union of the sets of SVM metrics and GBtree
metrics. For interpretation purposes, these metrics are grouped according to three aspects:
size, scheduling, and allocation. The nine metrics common to both sets of relevant metrics are
marked with an asterisk (*).

Size Allocation Scheduling

-Timeslots
-Shifts
-Teachers
-Full-time teachers
-Rooms
-Types of rooms
-Total events duration*
-Curricula times
-Average event duration
-Total resources requests
-Preassigned resources*
-Percentage of assigned re-
sources

-ARC hard penalty value
-ASAC hard penalty value
-ASAC removed
-LITC hard penalty value
-LWC hard penalty value*
-LWC points of application
-ACC hard penalty value
-ACC space
-ASAC space
-PRC removed*
-AUTC hard penalty value*
-AUTC space*
-AUTC removed
-AUTC density
-Constrained allocation space
-Average allocation space per
resource
-Total room conflicts
-Rooms weighted conflicts
-Total curricula conflicts*
-Average curricula conflicts*
-Total resources conflicts*

-LEC points of application
-LEC space
-SPEC space
-SPEC percentage
-Constrained scheduling space

this list, two metrics are common to SVM and GBtree sets and particularly descriptive

of the assignments required to solve an instance; these are: i) Total events duration,

ii) Preassigned resources.

On the one hand, Total events duration measures the number of time slots required

to schedule all the lectures of an instance. On the other hand, Preassigned resources

measures the number of resources assigned prior to the solution process of an instance,

which reduces the required amount of resource allocations. These metrics are ranked as

important in both sets of metrics and are likely to be good indicators of the assignment

tasks required in both solution spaces (described in Sections 4.1.2.1 and 4.1.2.2).

4.4.2 Allocation Hardness

As pointed out in recent surveys [3, 10–12], most of the constraints that are commonly

defined to formulate timetabling problems are related to allocating resources to lectures.

Therefore, the fact that the majority of the metrics included in the Table 4.8 are mainly

related to the allocation space is not surprising.

The size of the allocation space of an instance has a crucial role in defining the hard-
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ness of an instance. This is evident because of the relevance of the metric Constrained

allocation space, and of other solution space metrics that measure the reduction in the

initial number of feasible <class, resource> combinations, due to the set of resource-

related constraints applied to the instances.

Besides the basic Avoid Clashes Constraint (ACC) and Avoid Split Assignment Con-

straint (ASAC), three types of allocation-related constraints are recurrent on the sets

of relevant metrics and proved to be descriptive of the allocation space:

� Avoid Unavailable Time Constraints (AUTC): Are applied to model two condi-

tions: working shifts and study shifts. These constraints limit the time slots in

which teachers and curricula can attend to classes. For example, when two shifts

(morning and evening) are defined for an instance, the allocation space of teachers

and curricula are reduced by half.

� Limit Workload Constraints (LWC): Are applied to model three conditions: daily

workload of full-time teachers, daily workload of part-time teachers, and daily work-

load of curricula. These constraints define the maximum number of time slots a

day both teachers and curricula can attend to classes.

� Prefer Resources Constraints (PRC): Are applied to model two conditions: prefer

teacher and prefer room. These constraints specify the type of teachers and rooms

required for each class (event), thus reducing the set of possible resources to be

allocated.

In addition to these metrics, five metrics (defined in Section 4.1.3) associated with

the concept of slackness are included in the second column of Table 4.8: Total room

conflicts, Rooms weighted conflicts, Total curricula conflicts, Average curricula conflicts,

and Total resources conflicts. In each one of them, the slackness (that measures the

easiness of allocating a resource to the lecture that requires it), is calculated by dividing

the demand of a resource by its available supply. For example, if 21-hour literature

lectures are to be weekly scheduled, and there is only one literature teacher with a

defined weekly workload of thirty hours a week, the slackness for this allocation task
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is calculated as 21/30. Therefore, the higher the slackness, the greater the hardness of

allocating a resource.

4.4.3 Scheduling Hardness

Similarly to the allocation space, the size of the scheduling space, that aggregates the

number of possible assignments of lectures to time slots, proved to be a crucial feature

to define the hardness of the generated CB-CTT instances. This is evident because

of the inclusion of the Constrained scheduling space in the third column of Table 4.8,

which measures the reduction of the initial scheduling solution space mainly due to the

application of the time-related constraints described next:

� Spread Events Constraints (SPEC): Are applied to model two conditions: single

lecture and daily lecture. On the one hand, single lecture requires that only one

lecture of each class be scheduled per day. On the other hand, daily lecture requires

that the lectures of a set of randomly selected classes be scheduled on a daily basis.

These constraints were the main factor of the reduction in the number of valid

combinations of the scheduling space, up to a percentage between 66.4% and 89.7%

in half of the generated instances.

� Link Events Constraint (LEC): Is applied to model the link events condition, which

requires that all lectures of a set of classes be scheduled simultaneously. Unlike

SPEC constraints, this constraint does not reduce the scheduling space of the

instances in a high proportion. However, it causes an increase in the complexity of

the layer tree structure, used to handle time assignment by the KHE solver [68].

4.5 Summary

In this chapter, we described the feature selection-based methodology employed to iden-

tify the set of features that better characterizes the CB-CTT instance dataset generated

for this thesis. To did so, we described the generated instances using four sets of CB-
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CTT metrics that were formulated to predict the penalty value of the instances through

regression models constructed from different machine learning methods.

From the analysis of the most accurate regression models, three sets of relevant

features were compared, and as shown in Figure 4.9, they demonstrated to be almost

as precise as the full set of metrics to predict the penalty value of the instances. As a

result, 38 metrics (listed in Table 4.8) were defined to be used for the construction of

our per-instance algorithm selection model.

Finally, in the last section, the most relevant features that define the initial solution

hardness of the instances were also interpreted as an answer to the question: “What are

the main factors that make CB-CTT timetabling instances hard to solve?” This feature

interpretation led us to conclude that the hardness of CB-CTT instances is highly related

to the percentage of reduction of the scheduling and allocation spaces (measured based

on counting functions), and the slackness of resources (measured based on feature ratios).
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Chapter 5

Portfolio of Meta-heuristics

In Chapter 3, we described the instance generator, and the generation process followed

to create the Curriculum-Based Course Timetabling (CB-CTT) instance dataset. All

instances were validated using the KHE timetabling engine [68], a popular solver able

to obtain good initial solutions for timetabling problems represented according to the

XHSTT data format [22] used in this thesis. The diversity of the dataset was evaluated

based on the initial solving difficulty of the instances, in five categories, ranging from

Very Easy to Very Hard. The KHE engine was able to find optimal solutions for 321

of the Very Easy instances. Hence, the solutions of 5,679 instances remained to be

improved by the application of additional solution methods.

A popular computational approach applied to improve the solutions of optimization

problems is the implementation of meta-heuristics. In a general way, a meta-heuristic

is any kind of solution strategy that makes use of a searching method to avoid being

stuck in local optima when looking for an optimal solution. Within combinatorial opti-

mization, meta-heuristics have proved to be effective methods to find good solutions in

reasonable times. Therefore, to improve the 5,679 non-optimal solved instances in the

CB-CTT dataset, we selected four meta-heuristics to build our algorithm portfolio.

Following the meta-learning framework, shown in Figure 5.1, in this chapter, we

describe the meta-heuristics included in our algorithm portfolio and evaluate their per-

formance regarding two important aspects: i) their effectiveness to improve the initial
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Figure 5.1: Meta-learning framework for the construction of the CB-CTT per-instance al-
gorithm selection model (adapted from [2]). For reference purposes, the elements Algorithms’
performance evaluation and Algorithms’ performance, related to the Algorithm space (A), are
highlighted in red.

solutions generated with the KHE solver, and ii) their performance variation across the

problem space.

5.1 Meta-heuristics in Combinatorial Optimization

When applied to combinatorial optimization problems, meta-heuristics explore solution

spaces through the application of low-level heuristics that perturb the array of elements

of an initial solution s0 in order to improve it. Each low-level heuristic (LLH ) produces

a different set of solutions that shares a similar structure within a neighborhood Nk(s),

where k is the type of LLH applied to a given solution s.

The basic version of a meta-heuristic starts by perturbing an initial solution s0 within

a neighborhood Nk(s) to produce another solution s′. If a better solution is produced,

the previous solution is replaced. The search continues, in the same or in a different

neighborhood, until a stop condition is met.

For illustration purposes, in Figure 5.2, the maximization search process of a meta-

heuristic is exemplified. As observed, at each iteration, a new solution (sn), with a
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Figure 5.2: Illustration of an optimization search process employed by a meta-heuristic
in the combinatorial domain. At each iteration, a new solution sn it is generated within a
neighborhood Nk to maximize a performance metric pn.

higher performance value than the previous one (sn−1), is obtained within a defined

neighborhood (Nk), represented by a circle. As a result, the final solution (s5) exhibits

higher performance value than the initial solution (s0).

As can be implied, the effectiveness of a meta-heuristic depends on solution strategies

working at two different levels: i) a set of low-level heuristics (LLHs) able to perturb,

in diverse manners (i.e., within different neighborhoods), the array of the elements

of a given solution, and ii) an exploration strategy to perform these perturbations in

promising solution regions without being stuck in local optima.

5.2 CB-CTT Meta-heuristics

It is important to recall that the general goal of this thesis is not to develop novel solution

methods for solving CB-CTT instances but to integrate existing solution methods into

a per-instance algorithm selection model able to predict the best solution method for a

given CB-CTT instance.

As explained in Section 3.3.5, in the current state of the art, there are two type of

solvers proposed to solve timetabling instances in the XHSTT data format: i) solvers

that generate initial solutions and ii) solvers that improve initial solutions. To generate

the initial solutions for our CB-CTT instance dataset, we applied the KHE timetabling
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Figure 5.3: Illustration of the general process defined for solving CB-CTT instances.

engine; to improve those initial solutions, we selected the set of four meta-heuristics

described in this section.

Figure 5.3 illustrates the general process defined to integrate different solvers for the

solution of the CB-CTT instance dataset. As observed, each instance is first solved

with the KHE timetabling engine; if the solution obtained is optimal (i.e., has a penalty

value of zero), the process ends; if the solution obtained is not optimal, a meta-heuristic

is applied to improve, as much as possible, the quality of the initial solution. Our per-

instance algorithm selection model focus on the second step of the process (colored in

gray); it aims to predict the meta-heuristic that is likely to improve the initial solution

of a given instance to a greater extent.

As explained in Chapter 1 (Section 1.2.2), the XHSTT data format selected to

represent the CB-CTT instance dataset for this thesis was proposed in 2011, as an

international standard to model timetabling instances from different countries. However,

at the moment, not many solvers are able to support this data format. Furthermore,

in the current state of the art, there is a limited number of meta-heuristics designed for

the solution of instances in the XHSTT format, most of them specifically customized

to suit the particular constraints included in the instances of the third international

timetabling competition (ITC-2011) [22].

Within the set of available meta-heuristics, the ones designed by the Group of Opti-

mization and Algorithms (GOAL team) of the Federal University of Ouro Preto, winner

of the ITC-2011, have proved to be both: i) suitable to address the 16 types of con-

straints considered by the XHSTT format, and ii) effective to produce nearly-optimal

solutions for the benchmarking instance dataset of the ITC-2011. For these reasons, they
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were selected to build the algorithm portfolio required by the per-instance algorithm se-

lection model. Next, we describe the overall structure of the selected meta-heuristics.

First, the LLHs they apply to perturb the different elements of a solution, then the ex-

ploration strategies they use to guide their searching process in different neighborhoods.

5.2.1 Low-level Heuristics

As described by Brito et al. [70], the meta-heuristics designed by the GOAL team,

perturb the solutions of timetabling instances based on six types of LLHs, described

next:

1. Event Swap (ES): Swaps the assigned time slots of two selected lectures.

2. Event Move (EM): Moves a lecture from its current assigned time slot to a new

unassigned time slot.

3. Event Block Swap (EBS): Similarly to the ES-move, the EBS-move swaps the

time slots of two selected lectures, while preserving the continuity of adjacent

lectures that have different duration.

4. Resource Swap (RS): Swaps the resources of a particular role (e.g., room,

teacher) assigned to two selected lectures.

5. Resource Move (RM): Allocates a new resource of a particular role to a lecture

instead of the previously allocated one.

6. Kempe Move (KM): Performs a chain of moves between all lectures of two

selected time slots based on bipartite conflicts graphs in which vertices are lectures,

and edges are links between lectures that share a resource. The goal of this move

is to find a chain of permutations able to diversify the exploration of the solution

space to a greater extent.

To illustrate how the described LLHs perturb the solutions consider the example

presented in Figure 5.4. In this example, three classes (represented with different colors)
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Figure 5.4: Illustration of the effect of the Event Swap heuristic in the perturbation of an
initial solution (s0) that defines the schedule of three classes into a five-day timetable.

are initially allocated in two rooms and scheduled in a five-day timetable. If the described

Event Swap heuristic is applied to the initial array of elements defined in the solution s0,

it can be modified in diverse ways, as illustrated in the two perturbed solutions at the

bottom of the figure. As observed, although modified with the same LLH (i.e., within

the same neighborhood), both perturbed solutions produce different schedules for the

classes. In each of them, different lectures (marked in red) are swapped from their

initial schedule. Similarly to the illustrated Event Swap heuristic, all these low-level

heuristics perturb different types of elements (i.e., events, time slots and resources) of

CB-CTT instance solutions in different ways, resulting in the exploration of different

neighborhoods of the solution space.

5.2.2 Exploration Strategies

Although based in the same set of LLHs, each meta-heuristic selected for the algorithm

portfolio employs a different exploration strategy to find the optimal solution for CB-

CTT instances. Hence, it differs in the frequency, the sequence, and the conditions

defined to explore different solution neighborhoods. Next, we describe the exploration

strategies, used by the four meta-heuristics included in the algorithm portfolio defined

for this thesis:
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� ILS [91]: A meta-heuristic based on Iterated Local Search that through the un-

conditional acceptance of a distant neighbor produce a new candidate solution

that is improved by a descent method. The descent method runs until a number

of iterations without improvement is reached, producing a solution s′ that it is

accepted if is better than the best found solution s∗.

� LAHC [92]: A meta-heuristic based on the Late Acceptance Hill Climbing that

stores on a vector p = p0,... pl−1 the penalty values of a set of solutions for a given

instance. At each iteration i, a candidate solution s′ is evaluated and accepted if

its penalty value is less than or equal to the penalty value stored on the i mod l

position of p. Besides, if the accepted solution is better than the best solution s∗

found so far, its penalty value is stored on the position i mod l of vector p.

� SA [91]: A meta-heuristic based on the Simulated Annealing that simulates the

tempering process of a material. This meta-heuristic iteratively selects a random

LLH to perturb the current solution of an XHSTT instance. The effect of each

LLH on the penalty function is calculated as ∆ = f(s′)− f(s). Successful LLHs

(those with ∆ ≤ 0) are unconditionally accepted, but unsuccessful moves are

accepted with some probability e∆/T , where T is the temperature parameter that

defines the probability of accepting worse solutions.

� VNS [71]: A meta-heuristic based on the strategy of Variable Neighborhood

Search that improves the solution of XHSTT instances by performing a systematic

change of neighborhoods. At each iteration, a neighborhood Nk(s) is selected, then

a descent method that searches for a local optima in the selected neighborhood is

applied. If the solution found by the descent method is better than the current

solution, the solution is updated and the neighborhood is set to the first type of

LLH. Otherwise, the next LLH is set as the new neighborhood to continue the

search process.
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5.3 Performance of the Meta-heuristics

After defining the meta-heuristics to be included in the algorithm portfolio, the next

step is evaluating their solving performance across the problem space defined by the

generated CB-CTT instance dataset. As explained in Chapter 3 (Section 3.3.5), the

quality of the solution of an instance is evaluated according to its penalty value, a cost

function that assigns a value of 1,000 to each hard (mandatory) constraint violation,

and a value of 1 to each soft (optional) constraint violation. The penalty value is a

measure that indicates how close the solution of an instance is from its optimal solution.

Therefore, we defined as the measure to evaluate the performance of the meta-heuristics.

In Chapter 3, following the solution process defined for the instances (see Figure 5.3),

the KHE timetabling engine was applied to solve the generated CB-CTT dataset. Ac-

cording to the quality of the obtained solutions, instances were categorized as Very

Easy, Easy, Medium, Hard, and Very Hard. The KHE timetabling engine was able to

find 321 optimal solutions for Very Easy instances. Thus a total of 5,679 non-optimally

solved instances (i.e., instances with a penalty value higher than zero) remained to be

improved by the portfolio of four meta-heuristics.

To evaluate the performance of the portfolio, we executed each meta-heuristic to

improve the solutions of the 5,679 non-optimally solved instances. From the obtained

results, two analyses were performed regards to i) the global effectiveness of the algo-

rithm portfolio and ii) the performance variation between the meta-heuristics across the

instance dataset.

5.3.1 Global Effectiveness of the Algorithm Portfolio

The first decision to be addressed was the amount of time the meta-heuristics would

be allowed to execute. It would be expected that longer running times would improve

the quality of the initial solutions to a greater extent. To confirm this assumption, and

define a common per-instance running time, a random sample of 600 CB-CTT instances

(120 of each type) was selected.
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The selected sample was solved by the four meta-heuristics using four different run-

ning times (in seconds): 100, 500, 1000, and 3,600. It was observed that a running

time of 3,600 seconds produced solutions with lower penalty values than those obtained

with running times of 100 and 500 seconds, however not significantly lower (on aver-

age less than 0.6%) than those obtained with a running time of 1,000 seconds. From

these results, a maximum running time of 1,000 seconds per instance was set for each

meta-heuristic. Additionally, for comparison purposes, all meta-heuristics started their

solution process with the same initial seed.

As the first performance analysis, the effectiveness of the portfolio (as a unit) to

improve the quality of the initial solutions was evaluated. The portfolio improved the

initial solutions of 5,491 instances (i.e., 96.68% of the defined problem space) and found

1,098 new optimal solutions (i.e., with a resulting penalty value of zero), leading to

a total reduction of 29.35% in the sum of the penalty values of the initial solutions.

Because of these results, the meta-heuristics included in the portfolio were considered

competitive enough to be applied to the defined CB-CTT problem space.

5.3.2 Performance Variation Between the Meta-heuristics

As the second performance analysis, the performance variation within the portfolio of

meta-heuristics was evaluated. The performance variation within a portfolio is com-

monly overlooked in the construction process of per-instance algorithm selection mod-

els. However, it provides information about two relevant aspects, the usefulness and the

feasibility of such models. Usefulness answers to the question: ‘‘is it worth it to create

a selection model for this algorithm portfolio?” while feasibility to the question: “is the

difference in the performance of the algorithms large enough to create accurate selection

models?”.

To evaluate the usefulness aspect of the portfolio, the penalty values of the solutions

produced by the meta-heuristics were compared to define the best-known solution of each

instance (i.e., the solution with the lowest penalty value). From these comparisons, the

performance variation across the instance space was measured according to the following
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Figure 5.5: Distribution of performance ties according to the defined five types of instances,
from Very easy to Very hard.

four types of performance ties : instances solved to its best-known solution by only

one meta-heuristic (no-tie), and instances equally solved to its best-known solution by

two (tie-2 ), three (tie-3 ), or four (tie-4 ) meta-heuristics.

Figure 5.5 shows the distribution of performance ties according to the five instance

categories defined to measure the initial solving difficulty of the instances, from Very

Easy to Very Hard. As observed, there are 1,857 tie-4 instances (mainly of types Very

Easy and Easy) for which the selection of a meta-heuristic is trivial, since any meta-

heuristic would find a solution of the same quality. Nonetheless, there are 3,822 instances

for which the implementation of a meta-heuristic selection tool would be useful. The

non-trivial algorithm selection space corresponds to 67.30% of the instances improved

with the portfolio of meta-heuristics, a proportion that makes evident the usefulness

of a per-instance algorithm selection model for this portfolio, mainly for the instance

categories Medium, Hard and Very Hard.

To evaluate the feasibility aspect of the portfolio, the performance variation within

the portfolio of meta-heuristics was calculated in terms of the standard deviation. The

standard deviation is a statistical measure of dispersion. Thus, when calculated to

compare for the performance of the meta-heuristics, it indicates the similarity between

the meta-heuristics included in the portfolio.
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Figure 5.6: Distribution of the standard deviation of the performance of the four meta-
heuristics across the non-trivial selection space.

Figure 5.6 shows the distribution of the standard deviation across the non-trivial

algorithm selection space. As observed, for most instances, the standard deviation of

the performance of the meta-heuristics is less than 1,000, a relatively small deviation

concerning the penalty values assigned to constraint violations (1 for soft constraints

and 1,000 for hard constraints).

The performance variation between the algorithms in a portfolio has a significant

effect on the accuracy of algorithm selection models. When the performance variation

is high, the predictions of simple models can lead to good selections even if they are not

highly accurate. However, when the performance variation is low, even highly accurate

prediction models might struggle to make correct algorithm selections. For example,

if the penalty values (PV ) of the solutions obtained by the portfolio of four meta-

heuristics for two given instances are as follows, instance1 : {PVILS = 5 , PVLAHC = 8,

PVSA = 4, PVV NS = 3} and instance2 : {PVILS = 20 , PVLAHC = 1, 150, PVSA = 600,

PVV NS = 835}. Then, it is evident that because of the higher performance variation,

the second instance will require less accurate statistical models to predict the algorithm

with the lowest penalty value.

The relatively low standard deviation, of less than 1,000 in 79.5% of the non-trivial

selection space, indicates the difficulty of constructing an accurate per-instance algo-
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Figure 5.7: Illustration of an empty and a full timetable.

rithm selection model for the portfolio of four meta-heuristics using simple statistical

models. Thus, in the next chapter, we propose a hybrid statistical approach that can

be applied to useful but feasibly challenging algorithm portfolios.

5.4 Characterization of Initial Solutions

In Chapter 4, we formulated and evaluated a collection of metrics to characterize the

solving process required to generate initial solutions for CB-CTT instances. This col-

lection of metrics describe the combinatorial spaces of empty timetables —before the

assignment of times and resources. The meta-heuristics included in the portfolio, how-

ever, start the solution process from non-optimal but already full timetables. Thus,

require an additional set of metrics to characterize the initial arrangement of elements

(i.e., times and resources) that defines the timetables to be improved.

Figure 5.7 presents an example of both types of timetables. On the one hand, the

empty timetable at the left illustrates the problem solved with the KHE timetabling

engine, generate an initial solution starting from a timetabling with no assignments.

On the other hand, the full timetable at the right illustrates the problem solved with

the selected meta-heuristics, improve the array of elements of a timetable.

Based on the LLHs employed by the meta-heuristics, next we described an additional

collection of three types of metrics formulated to characterize the main properties of full

timetables. These are: i) event dispersion, ii) resource similarity, and iii) resource

usage.
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Figure 5.8: Distribution of the events scheduled on two initial solutions. The numbers
indicate the events scheduled on each time slot. For example, in the solution s01, four events
are scheduled on the time slot Fri-2.

5.4.1 Event Dispersion

Event dispersion is a type of metric that defines how evenly a set of scheduled events

are distributed in a time grid of nt times by nd days. Therefore, it is defined as the

combined standard deviation of the number of scheduled events per time (xt), and the

number of scheduled events per day (xd), as shown in Equation 5.1.

dispersion =

√
ntst + ndsd
nt + nd

(5.1)

where, st is the standard deviation of the average number of scheduled events per

time, and sd is the standard deviation of the average number of scheduled events per

day.

Consider the two time grids presented in Figure 5.8 that shows the number of events

(a total of 87) scheduled on each time slot of two different initial solutions (s01 and s02).

If Equation 5.1 is applied to both time grids, the value of dispersion for solution s01

is 2.43, and 1.34 for solution s02. These results indicate a more balanced distribution

of events in solution s02, because the higher the dispersion on a time grid is, the more

unevenly the distribution of the scheduled events becomes.

5.4.2 Resource Similarity

Resource similarity is a type of metric that indicates how similar the timetables of a

set of resources are (e.g., teachers and rooms). Therefore, it is defined as the average

number of time slots on which a given set of resources are simultaneously scheduled.
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Figure 5.9: Illustration of the timetables defined for three teachers from the field of social
sciences.

Consider the three timetables shown in Figure 5.9, that defines the events allocated

to three different teachers from the field of social sciences. To compare how similar

the distribution of events is for this set of teachers, we need to count the number of

time slots simultaneously allocated for each pair of teachers, as shown: {T1 − T2 : 0},

{T1 − T3 : 2}, and {T2 − T3 : 2}. From these counting, we calculate the similarity of a

social sciences teacher dividing the total number of simultaneously-allocated time slots

by the number of teachers; that is (4/3) = 1.33.

Resource similarity was calculated for the three types of resources considered in the

CB-CTT instances (i.e., rooms, teachers, and curricula, and considered an important

type of metric that indicates how easily the events assigned to resources of the same

type can be exchanged.

5.4.3 Resource Usage

Resource usage is defined as the percentage of the total capacity of a resource already

allocated in the initial solution. Therefore, it is a type of metric that describes how busy

a resource is.

To illustrate the calculation of the resource usage, consider the same set of teach-

ers from the field of social sciences, shown in Figure 5.9. As the maximum work-
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load is 15 time slots, the usage for each teacher is calculated as follows: T1 = 7/15,

T1 = 3/15, and T1 = 4/15. Furthermore, as all these teachers belong to the same study

field, it is possible to calculate also the he average usage of a social science teacher as

( 7
15

+ 3
15

+ 4
15

)/3 = 0.311. This result imply that, in this initial solution, on average,

a social science teacher is busy 31.11% of its available time. As with the similarity, the

usage was calculated for all the types of resources included in the instances.

Based on these three types of features —event dispersion, resource similarity and

resource usage— 30 new metrics were added to the set of 38 relevant metrics selected to

characterize the initial solution of CB-CTT instances (see Table 4.8). As a result, the

final collection of metrics defined to characterize the instances consists of 68 metrics.

Together, this collection of metrics and the performance of the meta-heuristics constitute

the meta-data required for the construction of the per-instance algorithm selection model

described in the next chapter.

5.5 Summary

In this chapter, we described the solution strategies of the four meta-heuristics selected

to build the algorithm portfolio. The meta-heuristics were applied to improve the ini-

tial solutions of the collection of 5,679 non-optimally solved instances. As a result, we

evaluated both the global effectiveness of the portfolio and the performance variation

between the meta-heuristics. The algorithm portfolio obtained 1,098 new optimal solu-

tions distributed as follows: 475 Very Easy instances, 410 Easy instances, 202 Medium

instances, and 11 Hard instances. It also improved the overall quality of the initial so-

lutions in 29.35%. Thus, it proved to be useful for the construction of the per-instance

algorithm selection model.

To estimate the difficulty of algorithm selection for this portfolio, an additional anal-

ysis, measuring the performance variation between the meta-heuristics, was performed.

In this analysis, it was observed that the standard deviation between the performance

of the meta-heuristics is relatively small (of less than 1,000 in most instances) when
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compared to the costs assigned to constraint violations. Thus, it suggests that the

construction of an accurate per-instance algorithm selection model will require the im-

plementation of complex machine-learning methods.

In the final section of this chapter, we described three types of CB-CTT metrics, for-

mulated to describe the initial solutions improved by the meta-heuristics. These metrics

are relevant because, unlike the first collection of metrics (explained in Chapter 4), they

describe relevant aspects of already-full timetables that are essential for the construction

of an accurate selection mapping of features to algorithms S(f(x),A).
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Chapter 6

Algorithm Selection Model

In the last three chapters (Chapter 3: Instance Generator, Chapter 4: Feature Selection,

and Chapter 5: Portfolio of Meta-heuristics), we have described the performed processes

to obtain the required meta-data for our per-instance algorithm selection model. The

first half of the meta-data corresponds to the collection of CB-CTT metrics (i.e., meta-

features) formulated to characterize timetabling instances modeled according to the

XHSTT data format. The second half corresponds to the performance measures of

the four meta-heuristics applied to improve the solution of 5,679 non-optimally solved

instances.

According to the framework defined for this thesis (see Figure 6.1), the last step

for the construction of the per-instance algorithm selection consists on employing the

obtained meta-data to create a selection mapping S(f(x),A), of instance meta-features

to algorithms’ performance. Such selection mapping is created through a meta-learning

process that applies machine learning methods to produce a computational model able

to predict the best-performing algorithm for each instance to be solved.

In this chapter, we describe the computational approach employed for the construc-

tion of our per-instance algorithm selection model. First, we describe four machine-

learning strategies already applied in the literature to perform algorithm selections tasks

and compare their flexibility in the context of our problem. Second, we present the gen-

eral structure of the per-instance algorithm selection model, which employs a two-stage
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Figure 6.1: Meta-learning framework for the construction of the CB-CTT per-instance al-
gorithm selection model (adapted from [2]). For reference purposes, the elements Meta-data
and Meta-learning, employed to create the Algorithm election model, are highlighted in red.

hybrid setting that combines classification and regression methods. Finally, we assess

the global effectiveness of the model and analyze its performance.

6.1 Algorithm Selectors

The goal of any per-instance algorithm selection model is to apply the best candidate

algorithm to solve a given instance based on the performance variation of the algorithms

in a portfolio. The computational method used to determine this variation has a major

role in the effectiveness of the model, and in this thesis is referred as selector. This section

describes four types of selectors and analyzes their suitability for the construction of

a per-instance algorithm selection model in the Curriculum-Based Course Timetabling

(CB-CTT) domain.

6.1.1 Multi-class Classifiers

A multi-class classifier is a mathematical function built from a collection of training

instances where each instance belongs to one of a set of possible classes. The goal of
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this type of classifiers is, given a new instance, to predict the class to which this new

instance belongs. For example, if a given instance i is better solved by the third of a

portfolio of four algorithms denoted as {A1, A2, A3, A4}, then the expected output of

the classifier should be i : {A3}.

6.1.2 Multi-label Classifiers

Unlike multi-class classifiers, the goal of multi-label classifiers is to predict a set of labels

for a single instance. Multi-label classifiers are more flexible and sophisticated since they

assume that one instance can be equally associated with more than one label. Therefore,

they can be applied to predict more than one algorithm for an instance. For example, if

a given instance i can be equally solved by the first and the third algorithms of the same

four-algorithm portfolio, {A1, A2, A3, A4}, then both related labels must be predicted

for that instance as i : {A1, A3}.

6.1.3 Binary Classifiers

The goal of binary classifiers is to predict one of two possible classes to which an instance

belongs. Thus, unlike multi-label and multi-class classification approaches, it cannot

directly address the selection task for a portfolio of more than two algorithms. A common

alternative, however, is defining a combination of binary classifiers —one classifier per

class. By following this approach, the selection of an algorithm for a given instance

(Sαi ) is expressed by a set of binary values: 0, do not select the algorithm α to solve

instance i; or 1, select the algorithm α to solve instance i. For example, the set of

predictions {S1
i = 0 , S2

i = 0, S3
i = 1, S4

i = 0} would select the third algorithm to

solve instance i; while the set {S1
i = 1 , S2

i = 1, S3
i = 0, S4

i = 0}, the first and second

algorithm.

6.1.4 Regression Models

An alternative approach to classification-based selectors is regression, used to predict

values for continuous variables. Because of its nature, regression methods are not suit-
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able for performing classifications tasks. However, they can be applied to predict the

performance of the algorithms.

In this type of selectors, a collection of regression models is trained. Each regression

model is used to make a prediction Y α
i , that is, the estimated performance of the al-

gorithm α when applied to solve a given instance i. Then all predictions are evaluated

according to a comparison threshold (ct) and transformed into binary values to perform

the selection (Sαi ).

For example, if the predicted penalty values (used as the measure of performance)

of four algorithms for a given instance i are {Y 1
i = 35, Y 2

i = 25, Y 3
i = 24, Y 4

i = 42},

then by comparing them without any threshold (ct = 0), the selector would choose

the algorithm with the lowest predicted penalty value, α = 3, to be applied to that

instance, returning the following output: [S1
i = 0 , S2

i = 0, S3
i = 1, S4

i = 0]. However, if

a comparison threshold of ct = 5 is defined, the algorithm α = 2 would also be chosen

by the selector, as it is close (within the range defined by the ct) to the lowest predicted

performance for that instance; thus producing the following output: [S1
i = 0 , S2

i = 1,

S3
i = 1, S4

i = 0].

6.2 Discussion of Algorithm Selectors

The four selectors described in the previous section differ in their easiness of imple-

mentation and flexibility to address the algorithm selection task. These two aspects

were analyzed to define the most suitable selector to be used for the construction of our

per-instance algorithm selection model.

Figure 6.2 presents the structure of the selectors considered for the portfolio of

meta-heuristics presented in Section 5.1; these are, ILS, LAHC, SA, VNS. As observed,

multi-class and multi-label selectors are easy to implement since they require training a

single classifier to predict the best meta-heuristic(s) for a given instance. On the other

hand, binary classifiers require training a different classifier for each meta-heuristic in

the portfolio, to produce a set of selections (Sαi ) that are combined into a single output.
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Figure 6.2: Set of algorithm selectors considered to be used for a portfolio of four algorithms.

The more complex type of selector is regression, which requires different models to

predict the performance (Y α
i ) of the meta-heuristics (α) on a given instance (i), and a

comparison threshold (ct) to transform the predictions into binary selections (Sαi ).

Despite its simplicity, multi-label classifiers use strict multiple assignments of labels,

that are not flexible to handle performance ties. As explained in Section 5.3.2, a per-

formance tie occurs when more than one meta-heuristic is able to find the best-known

solution for a given instance. For example, if the meta-heuristics {ILS, VNS} are the

best to solve a given instance i, and the predicted label obtained by a multi-label classi-

fier is {VNS}, this prediction would be considered a misclassification error, even though

it is partially correct and would finally lead to the best-know solution of that instance.

Multi-class classifiers are not flexible either to handle performance ties because they

only predict a single label per instance. Therefore, considering the same example, this

type of selector would consider only one of these possibilities i : {ILS} or i : {VNS} as

correct for the solution of instance i.

Due to their structure, which requires using an independent learner for each meta-

heuristic in the portfolio, binary classifiers and regression models are more flexible to

address performance ties. As each learner is trained on different data, all the pos-
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sible combinations of selections (Sαi ) can be predicted and evaluated. Considering

the same example, if the meta-heuristics {ILS, VNS} are the best to solve a given

instance i, and the selection obtained with binary classifiers or regression models is

{SILSi = 1, SLAHCi = 0, SSAi = 0, SV NSi = 0}, then this prediction would be considered

correct, as it would apply one of the possible algorithms that produce the best solution

for such an instance.

Although more complex than binary classifiers, regression-based selectors provide a

better understanding of the relationship between instance features and the performance

of each meta-heuristic included in the portfolio. Besides, they can be adjusted to a higher

degree with the definition of a comparison threshold to perform the selections. Because

of these additional advantages, we chose the regression-based selectors to construct the

per-instance algorithm selection model.

6.3 Setting of the Algorithm Selection Model

As described in Chapter 2, defining the type of setting is a crucial decision to design per-

instance algorithm selection models. If the process of selecting an algorithm for solving

a problem instance is computationally more expensive than solving the instance, then

there is no point in doing so. Thus, a proper balance between accuracy and complexity

is a decisive requirement of any selection model.

In Section 2.2, we described three common settings applied to construct algorithm

selection models. Per-portfolio settings build models of entire portfolios (as a group);

per-algorithm settings build individual models for the constituent algorithms of a portfo-

lio; hybrid settings combine different machine-learning strategies to get accurate predic-

tions. Hybrid settings are more computationally expensive; however, as they integrate

different methods in a hierarchical order, they are able to obtain better predictions in

low-variation portfolios.

As explained in Section 5.3.2, the performance variation within our portfolio of

four meta-heuristics was statistically evaluated in terms of the standard deviation of
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performance —the lower the standard deviation, the more similar the performance of the

meta-heuristics. In most of the instances, the observed standard deviation (see Figure

5.6) was less than 1,000, a relatively low-performance variation when compared to the

penalty values assigned to constraint violations (a value of 1 for soft constraints and a

value of 1,000 for hard constraints). Hence, to build a per-instance algorithm selection

model suitable for this low-performance variation, we adopted a hybrid approach to

improve the precision of the defined regression-based selector.

For supervised learning tasks, hybrid approaches are commonly structured using

ensemble methods such as bagging, stacking, and voting, which combine the strengths

of different machine learning algorithms, running in sequence or parallel, to improve

the accuracy of the predictions of algorithms. However, for this ensemble methods

to be useful, they must be accurate and efficient enough to not add more significant

computational effort to the selection process of an instance.

For this thesis, we tested different configurations of ensemble methods combining

the predictions of regression models trained using three machine learning algorithms:

decision trees, multilayer perceptrons, and support vector machines. The tested config-

urations include the following:

� Averaging: Making multiple predictions using different machine learning models

and taking the average of all predictions as the final prediction.

� Weighted averaging: Averaging the predictions of different machine learning

models but assigning higher importance (weight) to the predictions of models

with higher accuracy.

� Stacking: Making multiple predictions using different machine learning models

(called base models) and training a meta-model to find the best combination of

such predictions.

� Bagging: Combining the predictions of machine learning models trained on dif-

ferent subsets of data.
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Figure 6.3: Structure of the algorithm selection model based on the FCTR forecasting
technique.

� Boosting: Combining machine-learning models sequentially to correct the pre-

diction errors of prior models in the sequence.

Although more structure-sophisticated, these ensemble methods proved to obtained

less accurate predictions in terms of the explained variance score (described in Section

4.2.2) than the selection strategy defined for our model. In our experimental tests,

an alternative approach proved to be more accurate and computationally simple, the

FCTR (First Classification Then Regression) forecasting technique [93]. Therefore, it

was chosen to structure the hybrid approach for our per-instance algorithm selection

model. In general terms, this forecasting technique makes predictions following a two-

stage sequence. In the first stage, a classifier estimates the range of possible values for a

prediction. In the second stage, a regression model trained within the predicted range

of values makes the final prediction.

According to the FCTR approach, the model shown in Figure 6.3 was defined to per-

form the per-instance algorithm selection for the CB-CTT instances. As shown, in the

first stage, a classifier estimates the range (represented by a class) of the mean penalty

value of the solutions that the meta-heuristics could find for a given CB-CTT instance.

Then, in the second stage, a regression-based algorithm selector (as the one illustrated

at the bottom right of Figure 6.2), trained in the estimated range of values, is applied to

choose the meta-heuristic with the best expected performance. A detailed description of

the classifier and regression-based selectors constructed for the per-instance algorithm

selection model is presented next.
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Table 6.1: Seven classes defined to predict the range of the mean penalty value of the
solutions.

Class
Range of the mean

penalty value
Number of
instances

1 [0, 2,000) 2,340

2 [2,000, 19,000) 686

3 [19,000, 40,000) 445

4 [40,000, 60,000) 662

5 [60,000, 80,000) 521

6 [80,000, 100,000) 527

7 [100,000, ∞) 498

6.3.1 Stage 1 - Classifier

Because of the relative similar performance of the four meta-heuristics, a Gradient Boost-

ing Tree (GBTree) classifier was trained to predict the range of the mean penalty value

of the solutions improved by the meta-heuristics —each range represented as a class. To

obtain a balanced distribution of classes for the classifier, we defined the seven ranges

shown in Table 6.1 based on a statistical analysis of the performance data. However,

as the performance data was not uniformly distributed (but biased towards low penalty

values), the number of instances per class differed, as shown in the third column of

Table 6.1. This distribution of classes was defined as the output to be predicted by the

GBtree at the first stage of our per-instance algorithm selection model.

6.3.2 Stage 2 - Regression-Based Selectors

For the second stage of the model, seven regression-based selectors were trained, one

for each class, according to the structure presented at the bottom right of Figure 6.2.

In experimental tests of regression methods and parameters, linear regression proved

to be as accurate as more complex methods (e.g., multi-layer perceptrons, support

vector machines) to predict the low-performance variation between the meta-heuristics;

therefore, it was chosen as the learning strategy to trained the selectors in the second

stage of the per-instance algorithm selection model. Besides, to ensure that the selectors

chose only one meta-heuristic, we set a comparison threshold of 0 (ct = 0).

98



6.4 Experimental Results

Once the general structure of our per-instance algorithm selection model has been de-

scribed, we now present the experimental results obtained with the implementation of

our model. Our experiments were conducted using the implementations and default

parameters of scikit-learn1, a machine learning library for the Python programming lan-

guage [81]. The GBTree classifier was built using 100 decision trees as weak learners,

and all regression-based selectors were fit using the ordinary least squares method.

The primary goal of per-instance algorithm selection is to predict the best algorithm

for each instance to be solved. Researchers evaluate the performance of their models

according to this goal, using measures that compare the predictions of their models to

those of perfect selectors. In this section, two popular measures employed to evaluate

algorithm selection models are discussed, then the results of the evaluation of our model

are presented.

6.4.1 Discussion of Performance Measures

In the current literature, research works commonly report the performance of per-

instance algorithm selection models using two measures: accuracy [65] and closed SBS-

VBS gap [94].

Accuracy: It is a straightforward measure to assess algorithm selection models using a

classification approach, where each label represents one algorithm in the portfolio.

According to this representation, the accuracy calculates the performance as the

proportion of labels correctly predicted for all instances.

Closed SBS-VBS gap: It is a measure that takes into account the performance of two

baselines: the single best solver (SBS), that represents the algorithm with the best

performance across a defined instance space; and the virtual best solver (VBS),

that represents a perfect algorithm selector that chooses the best algorithm for each

1The description of the regression models and their default parameters can be found in the official
documentation of scikit-learn at https://scikit-learn.org/stable/supervised_learning.html
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instance. From these two baselines, this measure determines first the SBS-VBS

gap, that is, the potential gain in the quality of the solutions that can be obtained

by a perfect selector over the single-best solution strategy. It then calculates the

closed SBS-VBS gap of a model as the fraction of the gap it closes.

Although designed with the same purpose, these measures evaluate algorithm selec-

tion models regarding two aspects: the precision of the selections (estimated through

the accuracy), and the gain in performance (estimated through the closed SBS-VBS

gap).

In recent years, two relevant competitions —the ICON Challenge on Algorithm Se-

lection [95] and the Open Algorithm Selection Challenge [96]— have been organized to

compare the strengths of algorithm selection approaches across different domains. Both

competitions established the closed SBS-VBS gap as the performance measure (m) to

evaluate any submitted selection model (s). This measure proved to be useful as it pro-

vided lower (mV BS) and upper (mSBS) bounds for the performance of the competitors,

and assigned an implicit cost (or weight) to the selection errors (i.e., the potential gain

of selecting the right algorithm to solve an instance).

Although practical models could make incorrect selections, the selection of such sub-

optimal algorithms might still imply a performance improvement respect to the single-

best solver strategy —an improvement not considered by the accuracy. Therefore, to

consider this fact in the assessment of our model, we evaluated its performance using the

closed SBS-VBS gap (m̂s), as defined for the Open Algorithm Selection Challenge [97]:

m̂s =
mSBS −ms

mSBS −mV BS

(6.1)

In this measure, a value of 1.0 corresponds to a perfect per-instance algorithm se-

lection model that always chooses the best algorithm; 0.0 corresponds to a model that

performs as the single best solver ; and a negative value, corresponds to a model that

performs worse than the single best solver.

Consider the following hypothetical example in the context of our CB-CTT instance

space. If the sum of the penalty values obtained by the best-performing meta-heuristic
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(mSBS) across a given instance space is 4,500, and the sum of the penalty values obtained

by a perfect algorithm selector (mV BS) is 1800, then the SBS-VBS gap, which measures

the potential gain to be obtained by a selection model, is 2,700. According to these

values, if the sum of the penalty values obtained by a selection model s is 2,880, then

its performance, closed SBS-VBS gap, is calculated as: m̂s = (4, 500− 2, 880)/(4, 500−

1, 800) = 0.6. A value that would indicate that the evaluated selection model s achieved

a performance of 60% of that of a perfect algorithm selector.

6.4.2 Performance of the Algorithm Selection Model

The experimental results obtained from the implementation of the proposed FCTR

algorithm selection model are summarized next. All selections were performed following

a 10-fold cross-validation strategy. In this strategy, the collected meta-data (i.e., CB-

CTT metrics and algorithms’ performance) was split into ten random folds of data,

from which nine folds were used to train the classification and regression models, and

the remaining one to assess the performance of our model. By following this strategy,

all instances were included once into the test set, ensuring a fair evaluation.

A major advantage of the defined FCTR approach is that it allows us to evaluate

the performance of our per-instance selection model in detail. Each one of the seven

classes represents a range of mean penalty values that indicate the solving difficulty of

the instances for the portfolio of meta-heuristics. Table 6.2 presents the percentage of

performance ties between the meta-heuristics, and the closed SBS-VBS gap (m̂s) for

each class. The first seven rows correspond to the defined seven instance classes and the

performance of their individual regression-based selectors; the row Total corresponds to

the overall instance dataset and the performance of the general selection model.

Despite the low-performance variation within the portfolio of four meta-heuristics

(analyzed in Section 5.3), the constructed per-instance algorithm selection model ob-

tained better solutions for the instances than the single-best solver (SBS) strategy, clos-

ing the SBS-VBS gap (m̂s) to a different extent in each of the classes. As observed in

Table 6.2, the selection performance in all the classes is between 0.275 and 0.435, which
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Table 6.2: Distribution of performance ties and closed SBS-VBS gap (m̂s) in the defined
instance classes and overall dataset.

Class Instances
Percentage of performance ties

m̂s
no-tie tie-2 tie-3 tie-4

1 2,340 8.7% 7.9% 27.9% 55.5% 0.435

2 686 14.0% 11.8% 42.0% 32.2% 0.501

3 445 33.9% 18.5% 24.0% 23.6% 0.534

4 662 38.1% 19.0% 25.7% 17.2% 0.404

5 521 49.1% 19.8% 22.5% 8.6% 0.456

6 527 48.2% 19.2% 23.1% 9.5% 0.297

7 498 51.6% 20.3% 23.5% 4.6% 0.275

Total 5,679 25.9% 13.7% 27.7% 32.7% 0.386

though it could be considered low it is similar to that obtained by selection models in

other combinatorial problems. For example, in the two international algorithm selec-

tion competitions [16], the participant models exhibited a closed SBS-VBS gap between

0.516 and 0.634 in 2015; and between 0.04 and 0.62 in 2017. Both competitions were

based on the repository ASlib [98], which includes diverse sets of instances from different

problems, such as propositional satisfiability (SAT), quantified boolean formula (QBF),

and constraint solving (CSP).

In the presented results, we notice that, except for Class 6 and Class 7, our model

exhibits a performance above 0.40 in the overall instance space. Despite being similar

to Class 5 in the number of instances and performance ties, in the last two classes,

the per-instance algorithm selection is particularly challenging. To further analyze the

causes of this differing performance, Table 6.3 presents three relevant measures related

to the performance (m̂s) of our model: SBS-VBS gap, F1 score, and mean coefficient of

variation (MCV ).

As explained above, the SBS-VBS gap is the difference between the performance

of two baselines, the single best solver (SBS) and the virtual best solver (VBS). It

indicates the potential gain in performance that can be obtained by a perfect per-

instance algorithm selector. The third column of Table 6.3, shows the total SBS-VBS

gap and its distribution across the instance classes. Together, the first three classes

encompass 61.1% of the instances but account for only 20.2% of the total potential
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Table 6.3: SBS-VBS gap, F1 score, and mean coefficient of variation (CV), for the analysis
of performance (m̂s) in the defined instance classes and overall dataset.

Class Instances
SBS-VBS

gap
F1 score MCV m̂s

1 2,340 47,852 0.931 46.8% 0.435

2 686 59,566 0.675 13.5% 0.501

3 445 150,699 0.736 1.9% 0.534

4 662 216,299 0.748 1.1% 0.404

5 521 259,100 0.549 1.1% 0.456

6 527 275 208 0.678 0.9% 0.297

7 498 269,564 0.853 0.8% 0.275

Total 5,679 1,278,288 0.798 21.46% 0.386

gain, while the last four account for the remaining 79.8%, due to their higher penalty

values. The potential gain of each class can be considered a weight attached to its

corresponding algorithm selector —the higher the potential gain, the more the effect of

the selector on the global performance. Due to their high potential gains, the potential

causes of the lower performance in the last two classes are analyzed next.

The F1 score is a statistical measure that calculates the performance of classifiers

as the harmonic mean of the precision and recall, where 1.0 is the best value (perfect

precision and recall) and 0.0 the worst. To analyze the effect of misclassifications of the

GBTree after the first stage of our model, the fourth column of Table 6.3 presents the

F1 score of each class (label) and the micro F1 score for the total instance dataset. The

results show two aspects: i) there is no apparent correspondence between the F1 score

and the performance (m̂s), and ii) the lowest F1 score (0.549) of the classifier did not

produce a significant loss of performance (m̂s) in Class 5 instances. Together, these

aspects indicate that missclassifications reduce the performance of the model to a lower

extent than the errors of the regression-based selectors applied in the second stage of

our model.

The coefficient of variation is a statistical measure, defined as the ratio of the stan-

dard deviation to the mean, expressed as a percentage. Since it is a unit-free dispersion

measure, independent of data magnitude, it was used to compare the relative variabil-

ity of the meta-heuristics between different classes. For each instance, the coefficient
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of variation was calculated based on the solutions obtained by the meta-heuristics as

follows: mean of the penalty values divided by the standard deviation of the penalty

values. The mean coefficient of variation (MCV ) of each class is presented in the fifth

column of Table 6.3. Notice that, except for Class 6 and Class 7, all instance classes

exhibit a MCV over 1%, suggesting an empirical threshold of relative variability un-

der which the performance of the regression-based selectors, in interplay with GBtree

classifier, significantly decreases.

6.5 Summary

In this chapter, we described the per-instance algorithm selection constructed for the

solution of CB-CTT instances, as an answer to our research questions, stated in the

Introduction of this thesis: i) How can meta-learning approaches be used to accurately

relate the relevant features of CB-CTT instances to the performance of algorithms?”

and “ii) How can a per-instance algorithm selection model be generated to apply the best

algorithm to solve a given CB-CTT instance?”.

The design of the per-instance algorithm selection model designed to answer these

questions was proposed as an alternative to popular ensemble methods applied to solve

similar combinatorial problems. This design consists of a hybrid approach based on the

FCTR technique. It first estimates the average performance that the meta-heuristics

in the portfolio could have when solving a given instance (according to seven defined

classes). Then, according to this estimation, it predicts and compares the individual

performance of the meta-heuristics to select the one with the best expected performance

to solve such an instance.

To evaluate the precision of the selections made, rather than reporting the average

accuracy, the per-instance algorithm selection model was evaluated using the closed SBS-

VBS gap, a performance measure used at international algorithm selection competitions.

The experimental results show that our model obtains a performance of 0.386, within

the range obtained by per-instance algorithm selection models in other combinatorial
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problems. Thus despite, being built with relatively computationally-cheap methods

(i.e., decision trees and linear regression models), it proved to be useful for a portfolio

of meta-heuristics with a relatively low-performance variation.

In the construction process of our per-instance selection model —structured accord-

ing to the meta-learning framework— different elements of the Curriculum-Based Course

Timetabling problem was analyzed, leading to relevant contributions to the current state

of the art. These contributions include, i) the creation of a CB-CTT instance gener-

ator, ii) the formulation and evaluation of features to describe the main properties of

timetabling instances, iii) the creation and evaluation of a portfolio of meta-heuristics,

and iv) the design of a hybrid approach to build algorithm selector in low-performance

portfolios. These contributions, and future research opportunities for the CB-CTT

problem identified in this thesis, are explained in detail in the next chapter.
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Conclusions

In this thesis, we have described the construction process of a per-instance algorithm se-

lection model for solving educational timetabling instances, specifically for the problem

called Curriculum-Based Course Timetabling (CB-CTT). The proposed model was con-

structed following the meta-learning framework, which maps the features that describe

the main properties of a problem domain to the performance of a portfolio of algorithms

in a structured manner. As a result of the process, different aspects of the CB-CTT

problem domain were formally analyzed, leading to the following relevant contributions:

� The design of a parameterized CB-CTT instance generator to increase the size of

benchmarking datasets which can be used to analyze the performance of future

solving approaches.

� The formulation of a set of complexity metrics able to distinguish CB-CTT in-

stance sub-spaces that share similar solving difficulty.

� The performance evaluation of a set solution methods proposed to solve CB-CTT

instances.

� A per-instance algorithm selection model (based on the meta-learning framework),

constructed to predict from a portfolio of algorithms, the one with the best-

expected performance to solve a given CB-CTT instance.

In this chapter, we discuss the main findings obtained as a result of this thesis and

provide directions for future research opportunities.
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Main Findings

Throughout this thesis, we have introduced a new multi-model strategy to solve CB-CTT

instances, modeled according to the XHSTT data format —a standard representation of

timetabling instances based on an XML schema (see Section 1.2.2). This new strategy

consists of the construction of a per-instance algorithm selection model to automatically

select from a portfolio of algorithms, the one with the best expected performance to solve

a given CB-CTT instance.

To construct the described model, we analyzed four different elements of the prob-

lem (i.e., instance, feature, algorithm, and performance spaces), and proposed multiple

components (e.g., instance generator, metrics, performance measures) non-existent in

the current literature. In this section, we discuss the main findings obtained from the

overall construction process and present the general conclusions.

Instance Generator

A significant obstacle for research collaboration in the educational timetabling field is

the scarce representation of instances in a standardized manner. Despite its higher

modeling capability, the XHSTT data format used in this thesis has not been widely

adopted in the current state of the art, as it is supported and maintained by a small

group of researchers. As a result, only a limited benchmark of 25 instances have been

collected to evaluate the performance of new solvers.

In this thesis, we created an XHSTT instance generator able to model 27 timetabling

conditions using a combination of 152 parameters (see Chapter 3). In our experimental

tests, this generator proved to be useful to produce instances of diverse solving com-

plexity in short running times, on average, of 2.13 seconds per instance. These results

indicate that this generator is effective enough to be applied in further research works

to increase the instance space for the analysis of new solvers and the study of the effects

that different timetabling conditions have over solution space of educational timetabling

problems.
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CB-CTT Metrics

As pointed out in Section 3.3.5, in the current state of the art, two types of XHSTT

instance solvers can be distinguished: i) solvers proposed to generate initial solutions

and, ii) solvers proposed to improve initial solutions. Therefore, two groups of CB-CTT

metrics were formulated.

i) To characterize the hardness of generating initial solutions (see Chapter 4), we

proposed the implementation of a feature selection-based methodology —within a prob-

lem space of 6,000 instances. We described the generated instances using four sets of

metrics and constructed different regression models to predict the penalty value of their

initial solutions. From the analysis of the most accurate regression models, the most

relevant features were identified and interpreted. This interpretation led us to conclude

that the initial hardness of CB-CTT instances is highly related to the percentage of re-

duction of the scheduling and allocation spaces (measured based on counting functions),

and the slackness of resources (measured based on feature ratios).

ii)) To describe the initial solutions (see Section 5.4), we formulated three types of

metrics, designed to characterize the initial arrangement of elements (i.e., times and

resources) to be improved by perturbation-based meta-heuristics. These types of met-

rics consider the dispersion, similarity, and usage of resources in the timetables. The

inclusion of these metrics increased the accuracy of our per-instance algorithm selec-

tion model, indicating their relevance for the prediction of the performance of solvers

designed to improve the initial solutions of CB-CTT instances.

The information obtained from both groups of metrics proved to be useful to describe

the combinatorial solution spaces represented in the XML trees containing the instances

and their solutions. Thus, it can be applied to characterize the relevant properties of

timetabling instances in further research works.

Algorithm Portfolio

Because of the scarce availability of solution methods, for the creation of the algorithm

portfolio, we selected four competitive meta-heuristics that perturbs initial solutions
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using the same set of low-level heuristics (LLHs). Unlike related research works, in this

thesis, we considered the performance variation within the portfolio of meta-heuristics,

a relevant factor for the success of the per-instance algorithm selection model. Thus,

we formally quantified it in terms of: i) the number of performance ties, and ii) the

standard deviation of performance between the meta-heuristics.

The defined portfolio exhibited a low-performance variation in a significant amount of

instances, mainly from the classes Easy and Very Easy (close to their optimal solution).

Leading us to conclude that, within the timetabling domain, the diversity of the solution

approaches in a portfolio depends more on the variety of LLHs than on the variety of

exploration strategies.

Selection Performance

In the related algorithm selection literature, the performance of the models is often

reported using the accuracy. This measure calculates the percentage of algorithms

correctly predicted for solving a set of instances. However, it exhibits two significant

drawbacks: i) a wrong evaluation of algorithm selections in case of performance ties, and

ii) the impossibility to consider performance improvements due to suboptimal algorithm

selections.

To overcome these limitations, in this thesis, the performance of our per-instance

algorithm selection model was evaluated using the closed SBS-VBS gap, a measure used

in international algorithm selection competitions. This standard measure allowed us

to evaluate our model in an unbiased manner and compare it to the performance of

similar models in the combinatorial domain. Because of these advantages, we regarded

the closed SBS-VBS gap as an effective measure to assess the overall performance of

per-instance algorithm selection models.

Algorithm Selection Model

This thesis presented the construction process of a per-instance algorithm selection

model for the solution of CB-CTT instances according to the meta-learning framework.
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The proposed model was designed to detect the relatively small performance variation

of four meta-heuristics without adding significant computational effort to the solution

of the instances. To meet this goal, a hybrid approach, combining the predictions

of decision trees and linear regression models, was structured according to the First-

Classification-Then-Regression forecasting technique.

In the defined instance dataset, this model achieved a selection performance m̂s

(closed SBS-VBS gap) of 0.386, similar to that obtained in other combinatorial prob-

lems, but variable across instance subspaces (as shown in Table 6.2). As explained, the

empirical hardness of the instance subspaces implies potential gains of different magni-

tude that assigns —in the global assessment of the model— more weight to algorithm

selection on instances with higher penalty values. In our experimental tests (see Sec-

tion 6.4.2), the regression-based selectors struggled to make accurate predictions in the

classes with the highest potential gains (Class 6 and Class 7 ), reducing the global perfor-

mance of our model to a greater extent. To examine the possible causes of these results,

we compared the relative variability between the meta-heuristics in all the classes using

the mean coefficient of variation (MCV ), a unit-free measure of dispersion. This com-

parison indicated that the proposed regression-based selectors performed significantly

better on instances with a MCV above 1% —as higher performance variations entail

larger margin errors for the predictions of the selectors. Despite the lower performance

variation within the portfolio, in the overall evaluation, our per-instance selection model

proved to be useful to obtain better solutions than the single-best solver strategy using

computationally cheap machine learning methods.

Future Work

Diverse aspects of the CB-CTT problem have been analyzed in this thesis, revealing

future research opportunities to extend this work. Next, we discuss several of these

opportunities, regarding four different aspects: i) data format, ii) instance characteri-

zation, iii) algorithms and heuristics, and iv) selection models.
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Data Format

Due to the diverse conditions that define timetabling problems, in the current state

of the art, there is not a clear consensus in the manner in which instances should be

represented. Many formats have been used to formulate timetabling problems over the

years. However, to facilitate research collaboration, there is a current need to develop

a standard data format flexible enough to model the broad range of constraints defined

by educational institutions worldwide.

The XHSTT data format employed in this thesis was selected because of its proven

usefulness to represent instances from ten countries in the third international timetabling

competition (run during 2011-2012). Because of its modeling capacities, this format can

be used to create a definitive standard in the educational timetabling domain. However,

to do so, three main requisites must be addressed in the future.

1. Update Data Format. The current XHSTT data format represents timetabling

instances according to the hierarchical structure of an XML schema, used to ensure

the syntactical integrity of the data. However, there are two significant disadvan-

tages of this structure: i) relatively big instance sizes due to the large proportion

of characters related to the format rather than the instance itself, and ii) consid-

erable high parsing times. Currently, there is still room for improvement for the

XHSTT format, which could be streamlined by the adoption of similar standard

file formats like JavaScript Object Notation (JSON).

2. Formulate New Types of Constraints. The XHSTT format considers 16

types of constraints that can be applied to formulate a broad set of timetabling

conditions. However, they were not able to represent all the conditions planned

for the generated instances; for example, scheduling the starting time of all the

lectures of a course every day at the same time. There is a research opportunity to

increase the diversity of constraints included in the format, to accomplish this goal,

a formal survey about the real-life conditions that define timetabling problems in

educational institutions worldwide is required.
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3. Incorporate Graphical User Interfaces. As observed in present surveys

[10–12], current research works on the timetabling domain focus mainly on the

development and testing of theoretical solution methods for particular instance

datasets. However, not much progress has been made regarding the practical

implementation of these methods.

A primary requisite, not yet fulfilled, to make use of current algorithms and

meta-heuristics in practical applications is the creation of graphical user inter-

faces (GUIs) to allow real users to solve instances without having expert knowl-

edge. This requisite needs to be incorporated as an integral part of future standard

formats to facilitate both: i) the process in which instances are translated into

mathematical formulations, and ii) the process in which solutions are graphically

represented. It is expected that useful GUIs will advance the representation of

real timetabling instances, and lead to the creation of challenging datasets non-

synthetically generated.

Instance Characterization

In this thesis, the metrics proposed to characterize the CB-CTT instance dataset were

employed to predict the penalty value of the solutions with two purposes: i) estimate

the empirical hardness of the instances, and ii) select the meta-heuristic with the best-

expected performance to solve a given instance. However, there are still at least two

possible applications for these metrics that remain to be explored in future research

works.

1. Guide Heuristic Perturbation. Because of its nature, heuristic-based methods

in the timetabling domain improve solutions by performing random perturbations

in the arrangement of different elements (i.e., lecture scheduling and resource al-

location); however, as the size of the solution spaces becomes larger, the success

probability of this type of random permutations decreases. Therefore, to improve

the rate of successful permutations —even in large solution spaces— the formu-

lated CB-CTT metrics could be used to calculate the success probability of per-
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mutations within different neighborhoods to perform first those with the highest

success probability.

2. Perform Sensitivity Analyses. In this thesis, we presented a formal introduc-

tory analysis regarding the initial difficulty of the solution of timetabling instances

based on the interpretation of empirical hardness models. This first analysis re-

ported the size of scheduling and allocation spaces, and the slackness of resources,

as the main factors of the hardness of the instances. Still, to extend these findings

to practically support the decisions of educational planners, further sensitivity

analyses are required to evaluate the effects that the availability of resources and

application of constraints over the size and form of the solution space across the

timetabling domain.

Besides these two applications, there is an additional research opportunity related to

the applicability of the counting functions in which our collection of CB-CTT metrics are

based. Counting functions are mathematical expressions used to calculate the number

of possible combinations in which a given task can be performed. Therefore, in this

thesis, they were formulated to determine the potential number of valid assignments of

lectures to time slots (scheduling) and resources to lectures (allocation). Because of its

nature, we formulated the set of defined counting functions to evaluate the 27 conditions

presented in Appendix A. However, to spread its usage within the timetabling domain,

this set needs to be extended to characterize instances defined by more diverse sets of

requirements, like the ones included in the XHSTT-2014 dataset, collected from ten

different countries.

Algorithms and Heuristics

In the current state of the art, two types of timetabling solvers can be found: i) solvers

proposed to generate initial solutions and, ii) solvers proposed to improve initial solu-

tions. This distinction is relevant because, even though both of them have been proposed

to solve the CB-CTT instances, the first type starts the solution process from an empty
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timetable, while the second one starts from a non-optimal (but already full) timetable.

Because of the relatively scarce adoption of the XHSTT format, a research opportu-

nity shared by both types is the development of new solvers to increase the diversity of

the present algorithm space. However, both of them require to be diversified in different

directions, as explained next.

1. Generators of Initial Solutions. Due to the NP-hard nature of many combina-

torial problems [99], creating initial solutions for problem instances is a complex

task, to which two different approaches are often applied: exact algorithms and

construction heuristics. Exact algorithms (e.g., linear programming) are mathe-

matical formulations that guarantee to find optimal solutions; however, they be-

come impractical as the size of problem instances increases. Construction heuris-

tics, on the other hand, are solution methods that attempt to obtain moderately

good solutions at reasonable times.

To the best of our knowledge, in the current literature, only two works have been

proposed to generate initial solutions for timetabling instances in the XHSTT

format: i) an integer programming formulation [72], and ii) the KHE solver [68]

employed in this thesis. Because of its heuristic-based approach, the KHE solver

proved to be useful to produce good initial solutions for the XHSTT-2014 dataset,

in practical processing times (of less than 4 hours per instance). In contrast,

the integer formulation, as stated by its authors, did not perform well in large

instances and required larger running times (of 24 hours per instance) to get

competitive solutions. As a consequence of these experimental results, the KHE

solver has been used as the default solution approach in most of the related research

works [70–73,100]. However, there is a latent research opportunity to be explored,

combining both types of approaches (exact and heuristic) for the creation of a

hybrid solution strategy (known as matheuristic) that might be able to exceed the

individual performance of these solution methods.

2. Improvers of Initial Solutions. One of the main conclusions of this thesis is
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that for a portfolio to be effective, the performance variation between the algo-

rithms across the problem space must be high. As explained in Chapter 5, in the

combinatorial field, a popular approach for solving instances is the perturbation of

initial solutions using meta-heuristics. Meta-heuristics are solution strategies that

operate at two levels. At the low level, perturbation heuristics, known as low-level

heuristics (LLHs), modify the arrangement of the elements of a timetable; at the

high level, an exploration strategy, define the solution neighborhoods which are

perturbed.

In the current literature, many exploration strategies have been applied to solve

timetabling instances in the XHSTT format, but only a few LLHs to perturb the

solutions. Therefore, there is a research opportunity to increase the set of available

LLHs, that as concluded in this thesis, are the main source of diversity between

meta-heuristics.

Selection Methods

The final result of this thesis is the algorithm selection model presented in Chapter 6. As

explained in the chapter, different machine-learning processes were applied to analyze

the collected meta-data and create the required selection mapping of instance features

to algorithms. Therefore, in addition to the model, three research opportunities were

identified as potential ways to improve algorithm selection in similar future works.

1. Formulate Metrics for the Performance Variation. The collection of CB-

CTT metrics (144 metrics of seven different types) formulated to characterize both

the instances and their initial solutions proved to be useful for the construction

of regression models with low error rates. However, when applied to estimate the

performance variation between the meta-heuristics, the combined effect of these

low error rates, led to a significant percentage of sub-optimal algorithm selections.

In the current state of the art, the general approach (adopted in this thesis) for

the construction of per-instance algorithm selection models is the formulation of
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a descriptive set of features to estimate the performance of algorithms. Still,

to improve the performance of the models, a new type of metrics specifically

formulated to predict, not the performance, but the relative performance variation

between the algorithms in a portfolio is a significant research opportunity to be

addressed to minimize the adverse effects of combined error rates.

2. Define Problem Sub-spaces. As explained in Section 6.3, unlike other per-

instance algorithm selection models for similar combinatorial problems, in this

thesis, the prediction of algorithms was performed using multiple selectors, one

for each type of seven defined classes. Because of the adoption of the First-

Classification-Then-Regression forecasting technique, CB-CTT instances were clas-

sified according to the mean penalty value of their improved solutions —a mea-

sure of their empirical hardness. This classification allowed us to analyze the

performance of the meta-heuristics in different problem sub-spaces, then to train

algorithm selectors accordingly.

Despite the usefulness of this novel approach, the classification step for this process

was performed only on a statistical analysis of the performance of the algorithms

without considering other potentially relevant features. Therefore, it remains for

further research testing alternative approaches, such as clustering methods, to

perform this classification considering a broader set of similarity factors to define

problem sub-spaces.

3. Evaluate the Potential Success of Selection Models. Because of the pop-

ularity of machine learning methods and data mining techniques, the implemen-

tation of per-instance algorithm selection models has increased in the current

literature. However, not many of the reported research works include a detailed

analysis of the performance variation of the algorithms in a portfolio. A relevant

analysis to evaluate the suitability for the construction of these models.

A comprehensive evaluation of suitability must consider two main questions: i) “what

is the potential improvement of performance that a selection model would obtain

116



over the application of the single-best algorithm in a given instance space?”, and

ii) “how accurate a selection model should be to perform accurate selections in a

defined algorithm portfolio?” To the best of our knowledge, at present, no formal

way to answer both questions has been proposed. Therefore, there is a research

opportunity to formulate a statistical framework for this evaluation in future re-

lated works. Because of its relevance, this framework could be potentially adopted

by the research community as a standard evaluation for the construction of per-

instance algorithm selection models in the future.
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Appendix A

Conditions Modeled by the

Timetabling Instance Generator
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In Chapter 3, we described the design of the generator employed to create the dataset

of timetabling of instances modeled according to the XHSTT format. In the following

tables, we present the set of conditions that can be modeled by this generator.

Condition Description

1 Assign teachers Classes must have an assigned teacher

2 Assign rooms Classes must have an assigned room

3 Assign times Classes must be scheduled the number of time
slots required by its duration

4 Avoid clashes Resources (i.e. curricula, teachers, and rooms)
must not attend to different lectures at the same
time

5 Split theory
event

Specifies the valid set of lectures configurations
in which classes of theory courses (which do not
require a laboratory) can be scheduled

6 Split practice
event

Specifies the valid set of configurations in which
classes of practice courses (which require a labo-
ratory) can be scheduled

7 Prefer teachers Defines the subset of classes to which teachers can
be allocated

8 Prefer rooms Defines the subset of classes to which rooms and
laboratories can be allocated

9 Prefer times Limits a randomly selected percentage of classes
to be scheduled only on a user-defined set of days

10 Teachers stabil-
ity

Requires that all lectures derived from a class
must be allocated to the same teacher

11 Rooms stability Requires that all lectures derived from a class
must be allocated to the same room

12 Courses stabil-
ity

Requires that all lectures derived from a class
which requires both a classroom (for theory in-
struction) and a laboratory (for practice activi-
ties) are allocated the same teacher

13 Single lecture Requires that for each class only one lecture be
scheduled per day

14 Daily lecture Requires that a randomly selected percentage of
classes be scheduled in a daily basis, within a user-
defined set of days.

15 Link events Requires that all lectures derived from a set of
classes be scheduled simultaneously. This set of
classes is defined by randomly selecting a class
from each one of the active terms in the curric-
ular plan

16 Working shifts Requires that teachers be allocated only in the set
of time slots defined by their work shifts

17 Study shifts Requires that curricula be allocated only in the
set of time slots defined by their study shifts

18 Idle times
of part-time
teachers

Specifies the range of daily idle time slots that
part-time teachers must have
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Condition Description

19 Idle times of
curricula

Specifies the range of daily idle time slots that
curricula must have

20 Busy days
of full-time
teachers

Specifies the number of working days that full-
time teachers must give classes

21 Busy days
of part-time
teachers

Specifies the number of working days that part-
time teachers must give classes

22 Busy days of
curricula

Specifies the number of days that curricula must
attend to classes

23 Daily workload
of full-time
teachers

Specifies the number of daily time slots that full-
time teachers must give classes

24 Daily workload
of part-time
teachers

Specifies the number of daily time slots that part-
time teachers must give classes

25 Daily workload
of curricula

Specifies the number of daily time slots that cur-
ricula must attend to classes

26 Weekly work-
load of full-time
teachers

Limits the number of weekly time slots that full-
time teachers can be allocated

27 Weekly work-
load of part-
time teachers

Limits the number of weekly time slots that part-
time teachers can be allocated

-
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Appendix B

Timetabling Modeling Using the

XHSTT Data Format
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XHSTT Instance Modeling of the Timetabling problem in the Computer 
Science Department at the UASLP. 

 
 

Authors:  
M.I.P. Felipe de la Rosa Rivera 

Ph.D. José Ignacio Nuñez Varela 
 
 
This document describes the process followed for solving the timetabling problem in the computer 
science department at the School of Engineering of the Autonomous University of San Luis Potosí 
(UASLP). The timetabling problem is modeled using the XHSTT format, an XML based schema 
proposed as an international standard for the third competition of timetable problems (ITC-2011). 
 
This document has two purposes: i) explore the modeling capabilities of the XHSTT format for the 
formulation of a real instance within the Mexican context, and ii) illustrate the modeling and 
solution processes required to define an XHSTT instance. The formulation of an XHSTT instance 
requires four essential elements that must be defined according to the order followed in this 
document: Times, Resources, Events, and Constraints. For explanation purposes, each element is 
explained in a different section, then the solution process of the instance and results are discussed. 
The described XHSTT instance can be download from the following link:  
https://www.dropbox.com/s/isn4a6j9jfdhmop/Instance_XHSTT_UASLP.xml?dl=0 
 
 
1. TIMES 
 
In the XHSTT format, the concept of Times refers to each of the intervals defined to perform the 
scheduling task (i.e., assign times to lectures). To illustrate this concept, consider the next table, 
which shows the time grid set for this instance —composed of five days and thirteen one-hour 
intervals (from 07:00 to 20:00). Each header (row and column) represents a Timegroup (i.e., a group 
of Times belonging to the same category), and each cell, a Time that must be defined in the instance. 
 
 

  07-08 08-09       09-10         .    .    .         17-18       18-19 19-20 

Lun  Lun_07-08  Lun_08-09  Lun_09-10      .    .    .    Lun_17-18  Lun_18-19  Lun_19-20 

Mar  Mar_07-08  Mar_08-09  Mar_09-10     .    .    .    Mar_17-18    Mar_18-19  Mar_19-20 

Mie  Mie_07-08  Mie_08-09  Mie_09-10     .    .    .     Mie_17-18  Mie_18-19  Mie_19-20 

Jue  Jue_07-08  Jue_08-09  Jue_09-10      .    .    .     Jue_17-18  Jue_18-19  Jue_19-20 

Vie  Vie_07-08  Vie_08-09  Vie_09-10      .    .    .     Vie_17-18  Vie_18-19  Vie_19-20 

 
As observed, the time grid for this timetabling problem was defined ‘horizontally’ (i.e., days 
represented as rows, and time intervals as columns) because of the limitations of the software 
employed to visualize the instance and its solution (HSEval1), and the set of Constraints available in 
the XHSTT format.  

 
1 http://jeffreykingston.id.au/cgi-bin/hseval.cgi 

123



In addition of the Times we defined six additional Timegroups, illustrated in the next table, to further 
apply timetabling constraints related to scheduling. In color green, a Timegroup called “Matutino” 
(further divided into two Timegroups, “Matutino_1” and “Matutino_2”) which encompass all times 
before 13:00; in color yellow, a Timegroup called “Vespertino” (further divided into two TimeGroups 
“Vespertino_1” and “Vespertino_2”) which encompass all Times after 13:00. 
 

  07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 

Lun 

Matutino_1 Matutino_2 

  
  

Vespertino_1 
  

  

  
  

Vespertino_2 
  
  

Mar 

Mie 

Jue 

Vie 

 
In the described instance, we defined first the Timegroups using the following syntax. (Note: 
remember that we defined the time grid ‘horizontally’, thus time intervals were defined as “days” 
—to be represented in columns— and days as TimeGroups —to be represented in rows). 
 
<TimeGroups> 
       <Day Id="H_07-08"><Name>Horario 07-08</Name></Day> 
       <Day Id="H_08-09"><Name>Horario 08-09</Name></Day> 
  . 
  . 
  .        
        <Day Id="H_18-19"><Name>Horario 18-19</Name></Day> 
        <Day Id="H_19-20"><Name>Horario 19-20</Name></Day> 
        <TimeGroup Id="Lun"><Name>Lunes</Name></TimeGroup> 
        <TimeGroup Id="Mar"><Name>Martes</Name></TimeGroup> 
        <TimeGroup Id="Mie"><Name>Miercoles</Name></TimeGroup> 
        <TimeGroup Id="Jue"><Name>Jueves</Name></TimeGroup> 
        <TimeGroup Id="Vie"><Name>Viernes</Name></TimeGroup> 
        <TimeGroup Id="Matutino"><Name>Horario 07-13</Name></TimeGroup> 
        <TimeGroup Id="Vespertino"><Name>Horario 13-20</Name></TimeGroup> 
        <TimeGroup Id="Matutino_1"><Name>Horario 07-10</Name></TimeGroup> 
        <TimeGroup Id="Matutino_2"><Name>Horario 10-13</Name></TimeGroup> 
        <TimeGroup Id="Vespertino_1"><Name>Horario 13-16</Name></TimeGroup> 
        <TimeGroup Id="Vespertino_2"><Name>Horario 16-20</Name></TimeGroup> 
</TimeGroups> 
 

After setting the TimeGroups, we defined each Time using the following syntax: 
 
<Time Id="Lun_07-08"> 
       <Name>Lun_07-08</Name> 
       <Day Reference="H_07-08"/> 
       <TimeGroups> 
              <TimeGroup Reference="Lun"/> 
              <TimeGroup Reference="Matutino_1"/> 
              <TimeGroup Reference="Matutino"/> 
       </TimeGroups> 
</Time> 
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2. RESOURCES 
 

A resource is defined as an element that must be present during a lecture. Commonly, at least three 
resources of a different type are required to be present during lecture: a physical space (room), a 
professor, and a curriculum (i.e., group of students sharing the same classes). For the UASLP 
timetabling instance, we defined these three ResourceTypes (Salon, Profesor, Generacion), at the 
beginning of the Resources section —as required by the XHSTT format— using the following syntax: 
 
<ResourceTypes> 
          <ResourceType Id="Salon"><Name>Tipo de recurso Salon</Name></ResourceType> 
          <ResourceType Id="Profesor"><Name>Tipo de recurso Profesor</Name></ResourceType> 
          <ResourceType Id="Generacion"><Name>Alumnos que comparten materias</Name></ResourceType> 
</ResourceTypes> 

 
 
2.1 Rooms 
Prior to the inclusion of the rooms able to be assigned to the lectures, several ResourceGroups were 
defined to group rooms with similar features. The next figure shows the classification of rooms 
created with the ResourceGroups.  
 

 
 
The ResourceGroups for the rooms were defined with the following syntax: 
 
<ResourceGroups> 
       <ResourceGroup Id="Salon_general"> 
              <Name>Salon con o sin proyecto</Name> 
              <ResourceType Reference="Salon"/> 
       </ResourceGroup> 
       <ResourceGroup Id="Salon_proyector"> 
        <Name>Salon equipado con proyector</Name> 
           <ResourceType Reference="Salon"/> 
       </ResourceGroup> 
       <ResourceGroup Id="Salon_pizarron"> 
           <Name>Salon NO equipado con proyector</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
        <ResourceGroup Id="LESD"> 
           <Name>Laboratorio tipo LESD</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 

Todos_los 
_espacios

Salon_ 
general

Salon_ 
proyector

Salon_ 
pizarron

LESD LCA LCB LESD LRT Auditorio
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        <ResourceGroup Id="LCA"> 
         <Name>Laboratorio tipo LCA</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
        <ResourceGroup Id="LCB"> 
           <Name>Laboratorio tipo LCB</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
        <ResourceGroup Id="LRT"> 
           <Name>Laboratorio tipo LRT</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
        <ResourceGroup Id="Auditorio"> 
            <Name>Salon con gran capacidad</Name> 
            <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
        <ResourceGroup Id="Todos_los_espacios"> 
           <Name>Todos los espacios fisicos para las clases</Name> 
           <ResourceType Reference="Salon"/> 
        </ResourceGroup> 
<ResourceGroups> 
 

After defining the ResourceGroups, each room was added to the instance using the following syntax: 
 
<Resource Id="Salon I-01"> 
        <Name>Salon I-01</Name> 
        <ResourceType Reference="Salon"/> 
        <ResourceGroups> 
                <ResourceGroup Reference="Salon_pizarron"/> 
                <ResourceGroup Reference="Salon_general"/> 
         <ResourceGroup Reference="Todos_los_espacios"/> 
         </ResourceGroups> 
</Resource> 
 

As observed, besides the “Id”, “Name”, and “ResourceType”, each room is assigned to one or more 
ResourceGroups. For example, due to its features, the presented “Salon I-01” belongs to three 
ResourceGroups: “Salon_pizarron”, “Salon_general”, and “Todos_los_espacios”. 
 
2.2 Professors 
As with the rooms, different ResourceGroups were defined to group professors with similar features. 
Professors were grouped according to their expertise areas to define the set of classes they can give. 
The expertise areas correspond to those designated for bachelor’s degree programs in the field of 
computer science. A total of nine ResourceGroups were defined: 
 
<ResourceGroup Id="Profesor_innovacion_y_desarrollo_tecnologico"> 
        <Name>Profesor de academia de innovacion y desarrollo tecnologico</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_ingenieria_de_software_y_base_de_datos"> 
        <Name>Profesor de academia de ingenieria de software y bases de datos</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
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<ResourceGroup Id="Profesor_interaccion_y_videojuegos"> 
        <Name>Profesor de academia de interaccion y videojuegos</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_matematicas_para_la_computacion"> 
        <Name>Profesor de academia de matematicas para la computacion</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_programacion"> 
        <Name>Profesor de academia de programacion</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_redes_y_ciberseguridad"> 
        <Name>Profesor de academia de redes y seguridad</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_robotica_inteligente"> 
        <Name>Profesor de academia de robotica inteligente</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_sistemas_de_hardware"> 
        <Name>Profesor de academia de sistemas de hardware</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
<ResourceGroup Id="Profesor_tecnologias_multiplataforma"> 
        <Name>Profesor de academia de tecnologias multiplataforma</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
 

Additionally, all the professors were included in a general ResoureGroup called “Todos_los_ 
profesores”. 
 
<ResourceGroup Id="Todos_los_profesores"> 
        <Name>Todos los profesores que imparten clases</Name> 
        <ResourceType Reference="Profesor"/> 
</ResourceGroup> 
 

After defining all ResourceGroups for the professors, each professor was added to the instance using 
the following syntax: 
 
<Resource Id="29500"> 
        <Name>Altamirano Flores Jose Salomon</Name> 
        <ResourceType Reference="Profesor"/> 
        <ResourceGroups> 
                <ResourceGroup Reference="Profesor_matematicas_para_la_computacion"/> 
                <ResourceGroup Reference="Profesor_robotica_inteligente"/> 
                <ResourceGroup Reference="Profesor_programacion"/> 
                <ResourceGroup Reference="Todos_los_profesores"/> 
        </ResourceGroups> 
</Resource> 
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2.3 Curricula 
As explained before, a curriculum refers to a group of students who must attend the same set of 
classes. Curricula are defined to ensure that students can enroll in the classes they require without 
clashes. In Spanish, we use the term “Generacion” to refer to a curriculum. 
 
As shown next, only one ResourceGroup was defined, including all the curricula required to solve 
the instance. 
 
<ResourceGroup Id="Todas_las_generaciones"> 
        <Name>Todas las generaciones de alumnos</Name> 
        <ResourceType Reference="Generacion"/> 
</ResourceGroup> 
 
 

Each curriculum was included in the only ResourceGroup created to group curricula “Todas_las 
_generaciones”, and defined using the following syntax: 
 
 
<Resource Id="Gen IC Sem-2 Gpo-1"> 
        <Name>Generacion IC Semestre-2 Grupo-1</Name> 
        <ResourceType Reference="Generacion"/> 
        <ResourceGroups> 
                <ResourceGroup Reference="Todas_las_generaciones"/> 
        </ResourceGroups> 
</Resource> 

 
 
3. EVENTS 
 
Once all Times and Resources are set, they can be used to define the Events (i.e., classes to be 
scheduled). Each Event requires an “Id”, a “Name”, and a “Duration” that indicates the number of 
times that it must be weekly scheduled. 
 
<Event Id="283001"> 
        <Name>Telematica A - Grupo 1</Name> 
        <Duration>5</Duration> 
 

If the Event has already a preassigned time —does not require being scheduled— the optional 
element “Time” must be included to specify the starting time of the Event. But, if it does not have 
a preassigned time, the element “Time” must be omitted. For example, the following syntax 
indicates that the Event "283001", have a preassigned time, thus it must start in the Time "Lun_07-
08" 
 
        <Time Reference="Lun_07-08"/> 
 

 
After indicating preassigned times, if they exist, the resources required to be present in the lectures 
(meetings) of the Event are next defined. For explanation purposes, consider the Resources defined 
for the Event "283001", shown next: 
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        <Resources> 
                <Resource Reference="Gen IC Sem-10 Gpo-1"/> 
                <Resource> 
                        <Role>1</Role> 
                        <ResourceType Reference="Salon"/> 
                </Resource> 
                <Resource> 
                        <Role>2</Role> 
                        <ResourceType Reference="Profesor"/> 
                </Resource> 
        </Resources> 
</Event> 
 

Resources can be both preassigned or expected to be assigned, depending on the syntax used to 
define them. On the one hand, when the “Reference” attribute is present, it references a resource 
preassigned to the event. On the other hand, when the “Reference” attribute is absent, it indicates 
that a resource assignment is required.  
 
The pre-assignment of resources was employed to indicate the curriculum to which each class in the 
instance belongs. Hence, as observed in this example, the “Reference” attribute was used to indicate 
that the Event "283001" belongs to the curriculum "Gen IC Sem-10 Gpo-1". 
 
To perform a resource assignment, each Event must indicate the “Role” and “ResourceType” of the 
required Resource. The attribute “Role” is an identifier that specifies the function that the required 
resource will have within the Event, and “ResourceType” indicates the type of resource required. In 
the described instance, “Role 1” identifies the role of a room, whereas “Role 2”, the role of a 
professor. As observed in the example, two resources are required: a Resource of the type “Salon” 
that will have “Role 1” (room) in the Event, and a Resource of the type “Profesor”, that will have 
“Role 2” (professor). 
 
4. CONSTRAINTS 
 
Constraints are hard (mandatory) and soft (optional) conditions to be satisfied when performing the 
assignment of Times and Resources to the Events. The solution quality of an instance depends on 
the fulfillment of Constraints, therefore, all Constraints are evaluated and included in a cost 
function that assigns a penalty (or weight) to each constraint violation. Optimal solutions are those 
that fulfill all Constraints; feasible solutions are those that fulfill all hard constraints; and, unfeasible 
solutions are those that violate at least one hard constraint. 
 
The XHSTT format includes sixteen types of Constraints, seven of them related to scheduling (i.e., 
time assignment) and nine of them related to allocation (i.e., resource assignment). All of them 
defined using the general syntax described next: 
 
<AnyConstraint Id> 
        <Name>  
        <Required> 
        <Weight> 
        <CostFunction> 
        <AppliesTo> 
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Like other elements, each Constraint requires an “Id” and a “Name”. The attribute “Required” can 
take two values, true to indicate that the fulfillment of the Constraint is hard, or false to indicate 
that is soft. “Weight” is an attribute that defines the penalty for each Constraint violation, this 
“Weight” must be an integer in the range (0, 1000]. “CostFunction” is an attribute that defines the 
way in which the penalties of constraint violations will be added to the cost function; it can be set 
as “Linear”, “Quadratic”, or “Step”. “AppliesTo” is an attribute that defines the elements of the 
instance to which the Constraint applies. Next, we describe the Constraints used to define the 
timetabling instance for the computer science department at the UASLP. 
 
4.1 AssignResourceConstraint 
The AssignResourceConstraint requires the assignment of Resources to Events that do not have a 
preassigned resource. We included two Constraints of this type, the first to request the assignment 
of professors (with a “Role 2”) to Events, the second to request the assignment of rooms (with a 
“Role 1”) to Events. Both constraints were defined as hard, with a penalty value of 1000. 
 
 
<AssignResourceConstraint Id="Asignar_profesores"> 
        <Name>Asignar profesores a las clases</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                 <Events> 
     
                        {List of events without a preassigned professor} 
 
                </Events> 
        </AppliesTo> 
        <Role>2</Role> 
</AssignResourceConstraint> 
 
 
<AssignResourceConstraint Id="Assignar_salones"> 
        <Name>Asignar salones a las clases</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                 <Events> 
     
                         {List of events without a preassigned room} 
 
                 </Events> 
         </AppliesTo> 
         <Role>1</Role> 
</AssignResourceConstraint> 
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4.2 AssignTimeConstraint 
The AssignTimeConstraint requires the assignment of Times to Events that do not have a 
preassigned time. We included a constraint of this type, also defined as hard, as shown next. 
 
<AssignTimeConstraint Id="Assignar_horarios"> 
        <Name>Asignar horarios a las clases</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                 <Events> 
     
                          {List of events without a preassigned time} 
 
                 </Events> 
        </AppliesTo> 
</AssignResourceConstraint> 
 

 
4.3 SplitEventsConstraint 
In the XHSTT format, Events (classes) are split into sub-events (lectures) which correspond to the 
total “duration” defined for each event. For example, an Event called “Finanzas” with a weekly 
duration of three Times can be split into the following lecture configurations: three one-time 
lectures (1-1-1), a two-time lecture and a one-time lecture (2-1), and a single three-time lecture (3). 
 
A significant limitation of the XHSTT format is that once an Event (class) is split 
into subevents (lectures), it does not provide a Constraint to ensure that subevents are scheduled in 
a time-stable manner. Consider the two timetables presented next, which illustrate two different 
schedules for the Event “Finanzas”, split into three one-time lectures (1-1-1). 

     
  

     
 07-08 08-09 09-10      07-08 08-09 09-10 

Lun Finanzas       Lun  Finanzas  

Mar   Finanzas     Mar  Finanzas  

Mie  Finanzas      Mie  Finanzas  

Jue        Jue    

Vie        Vie    

 
In the left table, the sub-events are scheduled each day at a different time. In the right table, the 
events are scheduled each day at the same time —in a time-stable manner— which is a crucial 
requirement for the solution of UASLP timetabling instance. 
 
To preserve time-stability, we use the SplitEventsConstraint to avoid that Events be split into sub-
events. Using this strategy, all Events were set as single lectures required to be consecutively 
scheduled in a time-stable manner in different days. Due to the ‘horizontal’ layout defined for the 
instance, each day a one-time lecture will be scheduled for each class. 
 
A SplitEventsConstraint limits the number of sub-events that may be derived from a given Event, and 
on their durations. To avoid the split of Events into sub-events, we defined the following Constraint: 
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<SplitEventsConstraint Id="No_dividir_sesiones"> 
          <Name>Evitar que las clases se separen en sesiones</Name> 
          <Required>true</Required> 
          <Weight>1000</Weight> 
          <CostFunction>Linear</CostFunction> 
          <AppliesTo> 
                 <Events> 
     
                          {List of events that must not be split} 
 
                 </Events> 
        </AppliesTo> 
        <MinimumDuration>1</MinimumDuration> 
        <MaximumDuration>5</MaximumDuration> 
        <MinimumAmount>1</MinimumAmount> 
        <MaximumAmount>1</MaximumAmount> 
</AssignResourceConstraint> 
 

The attributes “MinimumDuration” and “Maximum duration”, defines the possible “duration” for 
the sub-events that can be derived from an Event, whereas the attributes “MinimumAmount” and 
“MaximumAmount” limits the number of sub-events. As defined in this constraint, all the Events 
must be single lectures, with a “duration” from 1 to 5 Times. 
 
4.4 PreferResourcesConstraint 
The PreferResourcesConstraint specifies that some Resources are preferred to be assigned to certain 
Events. We used this constraint to define the type of professor and room required by each class. 
 
As explained in Section 2.2, professors were grouped according to their expertise area in nine 
ResouceGroups defined for bachelors’ degrees in computer science.  For the proper assignment of 
professors to the Events, we defined a different PreferResourcesConstraint for each expertise area. 
As an example, next we present the syntax employed to require the assignment of a professor with 
expertise in the area of “programacion”. 
 
<PreferResourcesConstraint Id="Seleccionar_profesor_programacion"> 
        <Name>Seleccionar profesor de academia de programacion</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Events> 
               
                    {List of events that requires the assignment of a professor with expertise in programacion} 
 
                </Events>   
        </AppliesTo> 
        <ResourceGroups> 
                <ResourceGroup Reference="Profesor_programacion"/> 
        </ResourceGroups> 
        <Role>2</Role> 

</PreferResourcesConstraint> 
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In a similar manner, the PreferResourcesConstraint was employed to require the assignment of 
proper rooms to the events. For the proper assignment of rooms to the Events, we defined a 
different PreferResourcesConstraint for each type of room. As an example, we present the syntax 
employed to require the assignment of a laboratory LCA for the Events. 
 
<PreferResourcesConstraint Id="Seleccionar_laboratorio_LCA"> 
        <Name>Seleccionar laboratorio LCA</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
        <Events> 
 
                    {List of events that requires the assignment of a LCA laboratory} 
 
        </Events>   
        </AppliesTo> 
        <ResourceGroups> 
                <ResourceGroup Reference="LCA"/> 
        </ResourceGroups> 
        <Role>1</Role> 
</PreferResourcesConstraint> 
 
 

4.5 PreferTimesConstraint 
The Times defined for an XHSTT instance are considered a list of consecutive time intervals, 
following the sequence in which they were defined. In the formulated instance, Times were defined 
in the sequence indicated by the red arrows sown in the next tables. Because of the sequence of 
Times, Events were prone to be scheduled in an unstable time manner, starting on one column and 
ending on another. 

     
  

     
 07-08 08-09 09-10      07-08 08-09 09-10 

Lun    Finanzas      Lun       Finanzas  

Mar 
 

  Finanzas      Mar      Finanzas  

Mie        Mie      Finanzas 
 

Jue        Jue    

Vie     Finanzas       Vie    

 
The left table shows an example of a single lecture (with a duration of three times) scheduled in an 
unstable manner, staring in the Time “Vie_07-08” and ending in the Time “Mar_08-09”. The right 
table shows a time-stable scheduling of the same event, starting in the time Lun_08-09 and ending 
in the Time Mie_08-09. 
 
To ensure a time-stable scheduling of the Events, we employed the PreferTimesConstraint. Using 
this constraint, all the Events required to be scheduled one-time a day —each day at the same 
Time— were required to start on the row “Lun”, thus, avoiding being assigned to more than one 
column.  
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The PreferTimesConstraint specifies that some Times are preferred to be assigned to certain Events. 
Therefore, Events were required to start in the row “Lun” using the following syntax. 
 
 
<PreferTimesConstraint Id="Primera_sesion_en_lunes"> 
        <Name>Primera sesion de clase en dia lunes</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Events> 
                        {List of events that requires to be scheduled one-time a day in a time stable manner} 
                </Events> 
        </AppliesTo> 
        <TimeGroups> 
                <TimeGroup Reference="Lun"/> 
        </TimeGroups> 
 

 
4.6 AvoidSplitAssignementConstraint 
Though most of the Events require to be scheduled one-time per day, some of them —with a weekly 
duration of two Times— require to be scheduled as two-times Events. Two-times Events are 
expected to be scheduled in a single day, thus were formulated using a different strategy structured 
in three steps: i) defining the Events, ii) linking Resources, iii) linking Times. The first two steps are 
explained in this section, the third step is explained in the next section: “OrderEventsConstraint”. 
 
Defining the Events 
Two-times Events were first split and defined as independent Events with a “duration” of one time. 
Then, these independent Events were grouped into the same EventGroup to further link them 
through the application of constraints. The next figure illustrates the structure defined for two-times 
Events in the XHSTT instance. 
 
 

 
 
For example, prior to defining the one-time independent Events required by the Event "282001-L1" 
called "Redes A - Laboratorio - Grupo 1", we defined the following EventGroup: 
 
 
<EventGroup Id="282001-L1"> 
        <Name>282001-L1</Name> 
</EventGroup> 
 

 
Then, we defined two one-time Events and included them into the created EventGroup as follows: 

Event: First    one-
time lecture 

Event: Second one-

time lecture 

EventGroup 
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<Event Id="282001-L1-H1"> 
        <Name>Redes A - Laboratorio - Grupo 1 - H1</Name> 
        <Duration>1</Duration> 
        <Resources> 
                <Resource Reference="Gen IC Sem-9 Gpo-1"/> 
                <Resource> 
                        <Role>1</Role> 
                        <ResourceType Reference="Salon"/> 
                </Resource> 
                <Resource> 
                        <Role>2</Role> 
                        <ResourceType Reference="Profesor"/> 
                </Resource> 
        </Resources> 
        <EventGroups> 
               <EventGroup Reference="282001-L1"/> 
        </EventGroups> 
</Event> 
 
<Event Id="282001-L1-H2"> 
        <Name>Redes A - Laboratorio - Grupo 1 – H2</Name> 
        <Duration>1</Duration> 
        <Resources> 
                <Resource Reference="Gen IC Sem-9 Gpo-1"/> 
                <Resource> 
                        <Role>1</Role> 
                        <ResourceType Reference="Salon"/> 
                </Resource> 
                <Resource> 
                        <Role>2</Role> 
                        <ResourceType Reference="Profesor"/> 
                </Resource> 
        </Resources> 
        <EventGroups> 
               <EventGroup Reference="282001-L1"/> 
        </EventGroups> 
</Event> 
 

Using this syntax, the two one-time Events "282001-L1-H1" and "282001-L1-H2" were defined           
—belonging to the same EventGroup ("282001-L1") and requiring the same type of Resources. 
 
Linking Resources 
To ensure that the independent one-time Events, formulated to model two-times Events, be 
assigned the same resources (i.e., has the same professor and room), we employed the 
AvoidSplitAssignementConstraint. This constraint requires that the Resources assigned to all the 
Events in an EventGroup be the same. 
 
We defined two AvoidSplitAssignementConstraints, one for the assignment of professors, and one 
for the assignment of rooms. The syntax of both constraints is presented next. 

135



Constraint that requires the assignment of the same professor to both one-time Events of an 
EventGroup. 
 
<AvoidSplitAssignmentsConstraint Id="Profesor_clases_dos_horas"> 
        <Name>Asignar el mismo profesor a clases de dos horas</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <EventGroups> 
          
         {List of EventGroups defined to group the Events of two-times lectures} 
 
                </EventGroups> 
        </AppliesTo> 
        <Role>2</Role> 
</AvoidSplitAssignmentsConstraint> 

 
Constraint that requires the assignment of the same room to both one-time Events of an 
EventGroup. 
 
<AvoidSplitAssignmentsConstraint Id="Salon_clases_dos_horas"> 
        <Name>Asignar el mismo salon a clases de dos horas</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <EventGroups> 
          
         {List of EventGroups defined to group the Events of two-times lectures} 
 
                </EventGroups> 
        </AppliesTo> 
        <Role>1</Role> 
</AvoidSplitAssignmentsConstraint> 

 
 
4.7 OrderEventsConstraint 
The OrderEventsConstraint requires that the Times of two events be scheduled so that the first Event 
ends before the second Event begins. Its syntax is 
 
<OrderEventsConstraint Id=> 
        <Name> 
        <Required> 
        <Weight> 
        <CostFunction> 
        <AppliesTo> 
                <EventPairs> 

 
This type of constraint is applied to EventPairs, where each EventPair must be defined as follows: 
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<EventPair> 
        <FirstEvent Reference> 
        <SecondEvent Reference> 
        <MinSeparation> 
        <MaxSeparation> 

 
“FirstEvent” and “SecondEvent” contain references to the two Events whose times are to be linked. 
“MinSeparation” is the minimum number of Times that may separate the two events. 
“MaxSeparation” is the maximum number of times that may separate the two events. 
 
The next table illustrates the example of a two-times Event required to be scheduled the same day 
as a single two-times lecture. As explained in the previous section, this type of Event was formulated 
using two independent one-time Events grouped in the same EventGroup. To ensure that both 
independent one-time Events have the same resources (professors and rooms), we applied 
the AvoidSplitAssignementConstraint; to ensure that they be consecutively scheduled, we use 
the OrderEventsConstraint. 
 

 07-08 08-09 

Lun First one-time lecture Second one-time lecture 

Mar 
 

 

Mie 
 

 

Jue 
 

 

Vie 
 

 

 
As seen in the Table, in the defined sequence of Times (represented by the red arrows) 
the Times “Lun_07-08” and “Lun_08-09” are not consecutive but separated by a “distance” of 
four Times (represented with yellow circles); these are: “Mar_07-08”, “Mie_07-08”, “Jue_07-08”, 
“Vie_07-08”. Thus, to consecutively schedule the “Second one-time lecture” the same day after the 
“First one-time lecture”, we must define a separation of four Times between both lectures. 
 
The consecutive scheduling of the first and second lectures of two-times Events was defined using 
the OrderEventsConstraint. This constraint was applied to ensure that the second lectures of two-
times Events start four Times after the scheduling of their related first lectures. Next, we present 
the syntax of the constraint employed with this purpose. 
 
<OrderEventsConstraint Id="Sesiones de dos horas"> 
        <Name>Ordenar sesiones de dos horas</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <EventPairs> 
                        <EventPair> 
                                <FirstEvent Reference={First one-time lecture of the Event}> 
                                <SecondEvent Reference={Second one-time lecture of the Event}> 
                                <MinSeparation>4</MinSeparation> 
                                <MaxSeparation>4</MaxSeparation> 
                       </EventPair> 

4 

1 

2 

3 
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                </EventPairs> 
        </AppliesTo> 
</OrderEventsConstraint> 

 
 
As a result, of our three-step strategy (defining the events, linking resources, and linking times), all 
two-times Events were successfully formulated as two-time lectures. 
 
4.8 AvoidClashesConstraint 
AvoidClashesConstraint is a basic constraint applied to avoid that resources have clashes; that is, 
that they are scheduled to more than one Event simultaneously. As clashes of resources are not 
acceptable in the formulated instance, all the defined resources (rooms, professors and curricula), 
were included in a single AvoidClashesConstraint using the syntax presented next. 
 
<AvoidClashesConstraint Id="Evitar_conflictos_de_recursos"> 
        <Name>Evitar conflictos de recursos</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Resources> 
 
           {list of all rooms} 
           {list of all professors} 
           {list of all curricula} 
 
                <Resources> 
        </AppliesTo> 
</AvoidClashesConstraint> 
 

4.9 ClusterBusyTimesConstraint 
The ClusterBusyTimesConstraint limits the number of TimeGroups during which a resource may be 
busy. In the formulated instance we employ this type of constraint to reduce the dispersion of the 
Events assigned to professors and students.  
 
Consider the next table that shows the lectures (represented as gray squares) assigned to a 
professor. It may be desirable that the professor has a more “compact” distribution of lectures. For 
example, that all his lectures be scheduled in only one of two possible shifts, “Matutino” (in green) 
or “Vespertino” (in yellow), which were defined as different TimeGroups in Section 1:TIMES. 
 
 

  07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 

Lun              

Mar              

Mie              

Jue              

Vie              
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To require that the lectures assigned to the professors be assigned in only of the two defined 
TimeGroups, “Matutino” (Before 13:00) or “Vespertino” (After 13:00), we defined the following 
constraint. 
 
<ClusterBusyTimesConstraint Id="Compactar_horarios_de_profesores_turno"> 
        <Name>Compactar horarios de profesores en un turno</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Resources> 
 
         {List of professors} 
 
                </Resources> 
        </AppliesTo> 
        <TimeGroups> 
                <TimeGroup Reference="Matutino"/> 
                <TimeGroup Reference="Vespertino"/> 
        </TimeGroups> 
        <Minimum>0</Minimum> 
        <Maximum>1</Maximum> 
</ClusterBusyTimesConstraint>    
 
 

As observed, this constraint requires that the Events assigned to the professors be clustered in only 
one of two possible TimeGroups, “Matutino” or “Vespertino”. This requirement is set using the 
attributes “Minimum” —with a value of zero— and “Maximum” —with a value of one— which 
indicates that at most one of the TimeGroups be used for Event scheduling of the professors. 
 
Similarly, a second ClusterBusyTimesConstraint was defined to require that the Events assigned to 
each curriculum be clustered only in the “Matutino” or “Vespertino” shift. As students have more 
flexibility to attend to disperse scheduled Events, we set this constraint as optional —with a 
“Required” value set as “false” and a lower “Weight” with a value of 100. 
 
<ClusterBusyTimesConstraint Id="Compactar_horarios_de_alumnos_turno"> 
        <Name>Compactar horarios de alumnos en un turno</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Resources> 
 
         {List of curricula} 
 
                </Resources> 
        </AppliesTo> 
        <TimeGroups> 
                <TimeGroup Reference="Matutino"/> 
                <TimeGroup Reference="Vespertino"/> 
        </TimeGroups> 
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        <Minimum>0</Minimum> 
        <Maximum>1</Maximum> 
</ClusterBusyTimesConstraint>    

 
 
Note: Depending on time availability of each professor, further ClusterBusyTimesConstraints can be 
applied to schedule the Events in more specific TimeGroups; such as the “Matutino_1”, 
“Matutino_2”, “Vespertino_1”, and “Vespertino_2”, described in Section 1:TIMES. 
 
4.10 LimitWorkloadConstraint 
Each Event has an associated workload, which for this instance corresponds to its duration. 
Resources are assigned to the Events without considering their workload unless a 
LimitWorkloadConstraint is defined.  
 
The LimitWorkloadConstraint specifies the total workload that can be assigned to Resources, using 
the following syntax: 
 
<LimitWorkloadConstraint Id> 
        <Name> 
        <Required> 
        <Weight> 
        <CostFunction> 
        <AppliesTo> 
        <Minimum> 
        <Maximum> 
 

The attribute “AppliesTo” indicates the Resources whose workload be limited. The workload of 
these Resources may range between the “Minimum” and “Maximum” values. In the formulated 
instance, two LimitWorkloadConstraints were defined. The first one, to set the workload of full-time 
professors (“profesor tiempo completo”), and the second one, to set the workload of part-time 
professors (“professor por asignatura”). Next, we present the syntax of both constraints. 
 
<LimitWorkloadConstraint Id="Limitar_profesor_tiempo_completo"> 
        <Name>Limitar horas de clase de profesor de tiempo completo</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Resources> 
 
         {List of full-time professors} 
 
                </Resources> 
        </AppliesTo> 
        <Minimum>8</Minimum> 
        <Maximum>10</Maximum> 
</LimitWorkloadConstraint> 
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<LimitWorkloadConstraint Id="Limitar_profesor_por_asignatura"> 
        <Name>Limitar horas de clase de profesor por asignatura</Name> 
        <Required>true</Required> 
        <Weight>1000</Weight> 
        <CostFunction>Linear</CostFunction> 
        <AppliesTo> 
                <Resources> 
 
         {List of part-time professors} 
 
                </Resources> 
        </AppliesTo> 
        <Minimum>4</Minimum> 
        <Maximum>25</Maximum> 
</LimitWorkloadConstraint> 

 
 
5. SOLUTION 
 
The XHSTT format structures timetabling archives in two major branches. The first branch, Instance, 
corresponds to the XML tree that defines the formulation of the timetabling problem; the second 
branch, Solution, to the XML tree that describes the assignment of Times and Resources for all the 
Events of such a problem. The global syntax of a XHSTT timetabling archive is represented as follows: 
 
<HighSchoolTimetableArchive> 
        <Instance> 
 {Definition of Times, Resources, Events and Constraints}  
        </Instance> 
        <Solution> 
 {Assignment of Times and Resources to the Events} 
        </Solution> 
</HighSchoolTimetableArchive> 
 
 

The described XHSTT instance can be download from the following link: 
https://www.dropbox.com/s/zkrw0kcpixz2qmi/Solution_XHSTT_UASLP.xml?dl=0 
 

The formulated Instance (first branch of the XHSTT archive), was first syntactically and logically 
validated using the KHE Timetabling Engine2 (a popular XHSTT solver), then also applied to produce 
an initial Solution for the Instance. In the next table, we summarize the constraint violations found 
in this initial Solution (second branch of the XHSTT archive).  
 

Constraint Type Violations Penalty Value 

Assign Time Constraint Hard 8 8,000 

Cluster Busy Times Constraint Hard 23 23,000 

Cluster Busy Times Constraint Soft 4 400 

Limit Workload Constraint Hard 107 107,000 
    

  Total 138,400 

 
2 http://jeffreykingston.id.au/khe/ 
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The total penalty value (i.e., the sum of the “Weights” of hard and constraint violations) is 138,400, 

a high value far from its optimal solution (i.e., a solution with a penalty value of zero). As observed, 

most violations correspond to LimitWorkloadConstraints defined to set the workload range for “Full-

time” and “Part-time” teachers, which were particularly challenging for the KHE Timetabling Engine. 

To improve the quality of the initial Solution, we applied a perturbation-based meta-heuristic 

called Variable Neighborhood Search (VNS). This meta-heuristic was proposed by the GOAL 

Team3 of the Federal University of Ouro Preto and proved to be effective in previous experimental 

tests performed over a synthetically generated dataset of instances. For the improvement of the 

initial Solution, we defined a maximum running time of 3600 seconds. The constraint violations 

found in the Solution improved with the VNS meta-heuristic are presented next. 

Constraint Type Violations Penalty Value 

Cluster Busy Times Constraint Hard 1 1,000 

Cluster Busy Times Constraint Soft 3 300 
    

  Total 1300 
 

As observed, this improved Solution is very close to the optimal. Still, as it incurs in the violation of 
one hard constraint, it is considered as unfeasible. Thus, it remains to be further employed with 
alternative solution methods beyond the scope of this document. 
 
The XML tree of a Solution is a list of the assignments of Resources and Times required by all the 
Events. The Events are described using the syntax shown in the next example, which corresponds to 
the Event "215001" ("Temas selectos de matematicas - Grupo 1"). 
 
<Event Reference="215001"> 
        <Duration>4</Duration> 
        <Time Reference="Lun_13-14"/> 
        <Resources> 
                <Resource Reference="Salon I-11"><Role>1</Role></Resource> 
                <Resource Reference="9779"><Role>2</Role></Resource> 
        </Resources> 
</Event> 
 

The first attribute of an Event is its “Duration”, that if omitted corresponds to the entire duration of 
the Event ―defined in the XML tree of the Instance. Time Reference indicates the starting Time 
assigned to each Event, while Resource References the resources assigned to perform a given “Role” 
(1 – room, 2 - professor) within the Event.  It is important to point out that preassigned Times and 
preassigned Resources are not included as part of the Solution as they are conditions defined in the 
formulation of the Instance. 
 
The scheduling of the Events can be visualized in the timetables of their associated Resources. For 
this example, the Resources associated to this event are three, a preassigned Resource curriculum 
"Generacion ISI-IC Semestre-1 Grupo-1"; and two Resources assigned during the solution process, 
the room "Salon I-11", and the professor "9979". Hence, this event must be included in the 

 
3 http://www.goal.ufop.br/software/hstt/ 
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timetables of these resources, as illustrated in the next table: starting at the Time "Lun_13-14" and, 
according to its “Duration”, ending on the Time "Jue_13-14". 
 

  07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 

Lun       215001       

Mar       215001       

Mie       215001       

Jue       215001       

Vie              

 
 
An additional tool created by Jeffrey H. Kingston, author of the KHE Timetabling Engine, is 
the HSEval4, a web-based evaluator of XHSTT archives. The HSEval asks for an XHSTT file and returns 
an HTML page with detailed reports and visual representations of the timetables contained in 
the Solution of an Instance. 
 
Next, we present an example of the timetable generated with the HSEval for the Curriculum 
"Generacion IC Semestre-9 Grupo-1". In this timetable, “days” are represented as rows but have no 
headers. 
 
Horari

o 07-08  

Horario 08-

09  

Horari

o 09-10  

Horario 10-11  Horario 

11-12  

Horario 12-

13  

Horari

o 13-14  

Horari

o 14-15  

Horari

o 15-16  

Horario 

16-17  

Horario 

17-18  

Horario 

18-19  

Horario 

19-20  

   Computacio

n ubicua - 

Grupo 1  

   Administracio

n de bases de 

datos - Grupo 

1  

Sistemas de 

informacio

n A - 

Grupo 1  

Computacio

n ubicua - 

Grupo 2  

Redes 

A - 

Grupo 1  

      Redes A - 

Laboratori

o - Grupo 

1 - H1  

Redes A - 

Laboratori

o - Grupo 

1 - H2  

Proyecto 

integrador 

- Grupo 1  

Proyecto 

integrado

r - Grupo 

2  

   Computacio

n ubicua - 

Grupo 1  

   Administracio

n de bases de 

datos - Grupo 

1  

Sistemas de 

informacio

n A - 

Grupo 1  

Computacio

n ubicua - 

Grupo 2  

Redes 

A - 

Grupo 1  

      Seminario 

I.C., I.I. - 

Grupo 1  

   Proyecto 

integrador 

- Grupo 1  

Proyecto 

integrado

r - Grupo 

2  

   Computacio

n ubicua - 

Grupo 1  

   Administracio

n de bases de 

datos - Grupo 

1  

Sistemas de 

informacio

n A - 

Grupo 1  

Computacio

n ubicua - 

Grupo 2  

Redes 

A - 

Grupo 1  

            Proyecto 

integrador 

- Grupo 1  

Proyecto 

integrado

r - Grupo 

2  

   Computacio

n ubicua - 

Grupo 1  

   Administracio

n de bases de 

datos - Grupo 

1  

Sistemas de 

informacio

n A - 

Grupo 1  

Computacio

n ubicua - 

Grupo 2  

Redes 

A - 

Grupo 1  

         Redes A - 

Laboratori

o - Grupo 

2 - H1  

Redes A - 

Laboratori

o - Grupo 

2 - H2  

   

   Computacio

n ubicua - 

Grupo 1  

   Administracio

n de bases de 

datos - Grupo 

1  

Sistemas de 

informacio

n A - 

Grupo 1  

Computacio

n ubicua - 

Grupo 2  

Redes 

A - 

Grupo 1  

                  

 
As observed, the timetable of this curriculum has assigned lectures in two TimeGroups, “Matutino” 
(before 13:00) and “Vespertino” (after 13:00), which constitutes a constraint violation for one of the 
defined ClusterBusyTimesConstraints. This constraint violation is reported by the HSEval, just below 
the presented timetable as follows: 
 
Cluster Busy Times Constraint  Constraint name  Point of application  Calculation  Inf.  Obj.  

Compactar_horarios_de_alumnos_turno  
Compactar horarios de 

alumnos en un turno  

Generacion IC Semestre-

9 Grupo-1  

100 * Linear(Matutino + 

Vespertino - 1)  
   100  

      Total (1 point)              100  

 
4 http://jeffreykingston.id.au/cgi-bin/hseval.cgi 
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6. SUMMARY AND LIMITATIONS 
 
In this document, we have explained the formulation of an instance in the XHSTT format to solve a 
real timetabling problem. The set of elements included in the format (i.e., Times, Resources, Events, 
and Constraints) proved to be useful for modeling the timetabling conditions defined for the 
computer science department at the School of Engineering of the UASLP. However, as the XHSTT 
format lacks a constraint to require that lectures be scheduled in a time-stable manner (each day at 
the same time), we defined alternative strategies to model classes using a 'horizontal' time grid         
—days represented as rows and times as columns. 
 
For solving the formulated instance, we applied a two-step solution approach. First, we generated 
an initial solution using the KHE timetabling engine, which incurred in many constraint violations, 
mainly related to the weekly workload defined for the professors. To improve the initial solution, as 
the second step, we applied the VNS meta-heuristic with a maximum running time of 3600 seconds. 
As a result, we obtained an improved solution with few constraint violations, nearly optimal. 
 
Despite the promising results obtained with this formulation and its solution, it is important to point 
out that modeling classes using the described strategies limits the scheduling of lectures to 
consecutive timeslots. Hence, it does not allow the possibility of schedule alternate lectures in a 
time-stable manner. For example, scheduling a class with a weekly duration of three times, on 
alternate days, Monday (Lun), Wednesday (Mie), and Friday (Vie) at the same hour: Lun_08-09, 
Mie_08-09, Vie_08-09. 
 
Finally, it is important to mention that as no user interfaces have been developed to handle XHSTT 
archives, currently, most of the time required to model and solve a timetabling instance is involved 
with data entry. Thus, to practically support the work of educational planners, this limitation is a 
significant work opportunity to be addressed in the future. 
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