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ABSTRACT  
The aim of the present work is to develop a fracture mechanics computational model for the prediction 

and evaluation of the fatigue crack growth in mechanical drilled components. The fracture mechanics 

approach is a damage tolerance design philosophy and is focused on the growing cracks on the 

components by quantifying the critical combination of the flaw size, fracture toughness, geometry 

and the applied stress by either an energy or a stress intensity tactic. 

The studied component, defined from here on as the center-hole-plate model, was an aluminum alloy 

6061-T6 plate with a drilled circular hole of a 3.175 mm radius at its midpoint. A cold hole expansion 

simulation was performed on the drilled hole to induce compressive residual stress near the hole. The 

cold hole expansion simulated the direct mandrel expansion process, passing an oversized rigid 

expander with a 3.305 mm radius through the center-hole-plate model. The numerical simulation has 

been performed through the finite element analysis. The crack propagation has been generated by the 

opening mode I condition. Through thickness symmetric cracks are assumed to be radially emanating 

from the hole.  

Several finite element models were necessary to implement the following research conditions: the 

linear-elastic material behavior, cyclic loading, elastic-plastic material behavior and residual stress 

condition within the base center-hole-plate computational model. Systematically, the first model 

developed were a base model for which the cold hole expansion was not applied, and it was analyzed 

only the with linear elastic material behavior, and a static load case. The central-hole-plate base model 

were validated by two closed-form solutions reported on the literature. Besides the central-hole-plate 

model, also a linear-elastic model for a compact tension specimen (CT-Specimen-model) were 

developed and validated against experimental results reported on the literature. 

Once the linear-elastic base model for the center-hole-plate specimen was validated, the following 

computational models were developed as follows: First, a center-hole-plate computational mode for 

the elastic-plastic material behavior implementation and static load case. Second, the cyclic loading 

case was simulated within the elastic-plastic center-hole-plate model and finally, the cold hole 

expansion process (Residual stress condition) was implemented to the elastic-plastic center-hole-plate 

model. The center-hole-plate model with elastic-plastic material behavior and the residual stress 

condition was defined as the parametrized center-hole-plate model.   

The simulation of the cold hole expansion process generated a non-uniform 3D residual stress field 

near the hole of the center-hole-plate model. The non-uniform 3D residual stress field was captured 

through a three-level sub modelling technique. The sub modelling technique is the simplification of 

a problem by dividing such problem into simple localized models, while optimizing the 

implementation and solution time. The predicted 3D residual stress field was considered as an initial 
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condition for fatigue crack growth finite element simulations. In general, tensile residual stress harm 

the mechanical components accelerating the fatigue crack growth while compressive residual stress 

delays the crack initiation and propagation.   

A comparative of the estimated residual stress field on the three-level sub modelling technique is 

reported, moreover, the impact of the residual stress predicted by the three-level sub modelling 

technique within fatigue simulations has been studied.  

A study between different methodologies, such as the contour integral, displacement and stress 

correlation methods, were conducted to define the optimal method to compute the stress intensity 

factor K within the fatigue simulations, besides, the Paris-Erdogan empirical relation were used to 

compute the fatigue crack growth rates da/dN. Finally, the da/dN-values estimated by the 

computational model for fatigue crack growth in mechanical components were validated against an 

experimental study reported on the literature. 

The fatigue da/dN-values predicted by the computational model for fatigue crack growth in 

mechanical components exhibited the same general trend than the experimental data, however, slight 

differences were found. The differences between the numerical and experimental results are mainly 

attributed to the complex, non-uniform 3D nature of the residual stress field generated by the cold 

hole expansion plus the local variations on the material near the hole.   

All the simulations were performed on the finite element software ABAQUS® 2018 in the Center of 

Investigation and Postgraduate Studies (CIEP) of the Autonomous University of San Luis Potosi. 
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RESUMEN  
La intención del presente trabajo es desarrollar un modelo computacional de mecánica de la fractura 

para la predicción y evaluación del crecimiento de grieta por fatiga en componentes mecánicos 

barrenados. El enfoque de la mecánica de la fractura es una filosofía de diseño en base a la tolerancia 

al daño y está enfocado en la propagación de grietas en componentes mediante la cuantificación de 

la combinación crítica del tamaño de la grieta, la tenacidad a la fractura, la geometría y el esfuerzo 

aplicado, ya sea mediante una táctica de energía o bien mediante una táctica de intensidad de 

esfuerzos.  

El componente estudiado, definido de aquí en adelante como el modelo de placa con orificio al centro, 

fue una placa de aleación de aluminio 6061-T6 con un orificio circular de radio igual a 3.175 mm 

hecho en el centro. Una simulación de expansión en frío fue hecha en el orificio central para inducir 

esfuerzos residuales compresivos en las cercanías del orificio. El proceso de expansión en frío simuló 

el proceso de expansión directa, mediante el paso de un herramental sobredimensionado con un radio 

de 3.305 mm a través de del modelo de placa con orificio al centro. La simulación numérica fue hecha 

mediante el análisis de elemento finito. La propagación de la grieta fue hecha mediante el modo de 

carga, o modo de apertura I. Grietas simétricas a través de todo el espesor que emanan del orificio 

central de la placa fueron asumidas.  

Múltiples modelos de elemento finito fueron necesarios para implementar las siguientes variables de 

investigación: comportamiento lineal-elástico del material, carga cíclica, comportamiento elasto-

plástico del material y esfuerzos residuales en el modelo computacional de placa con orificio al centro.  

Sistemáticamente, el primero modelo desarrollado fue un modelo base para el cual la expansión en 

frío no fue considerada y solamente fue estudiado el comportamiento lineal-elástico del material y 

carga estática. El modelo computacional base de placa con orificio al centro fue validado mediante 

dos soluciones analíticas reportadas en la literatura. Además del modelo base de placa con orificio al 

centro, un modelo lineal-elástico para un espécimen de tensión compacto (CT-espécimen) fue 

desarrollado y validado con resultados experimentales reportados en la literatura. 

Una vez que el modelo base lineal-elástico de la placa con orificio al centro fue validado, los 

siguientes modelos computacionales fueron desarrollados: primero, un modelo de placa con orificio 

al centro para comportamiento elasto-plástico del material y carga estática. Segundo, el caso de carga 

cíclica fue simulado en el modelo elasto-plástico de placa con orificio al centro, y finalmente, el 

proceso de expansión en frío (condición de esfuerzos residuales) fue implementado al modelo elasto-

plástico de placa con orificio al centro. El modelo de placa con orificio al centro considerando 
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comportamiento elasto-plástico del material y condición de esfuerzo residual fue definido como el 

modelo parametrizado de placa con orificio al centro. 

La simulación del proceso de expansión en frío generó un campo de esfuerzos residuales no uniforme 

en las cercanías del orificio. El campo no uniforme de esfuerzos residuales fue capturado mediante la 

técnica de tres niveles de sub modelado de elemento finito. La técnica de sub modelado de elemento 

finito está basada en la simplificación de un problema mediante la división de dicho problema en 

modelos simples y con una localización específica, esto mientras se optimiza el tiempo de 

implementación y solución. El campo 3D de esfuerzo residual estimado por las simulaciones fue 

considerado como una condición inicial para las simulaciones de crecimiento de grieta por fatiga. En 

general, esfuerzos residuales a tensión dañan los componentes mecánicos acelerando el crecimiento 

de grieta por fatiga, mientras que los esfuerzos residuales compresivos retardan la iniciación y 

propagación de grietas por fatiga. 

La comparación entre los campos de esfuerzo residual estimados mediante la técnica de sub modelado 

de tres niveles es reportada en el presente trabajo, además, la influencia del campo de esfuerzo 

residual estimado por los tres niveles de sub modelado en las simulaciones de fatiga fue estudiado.  

Un estudio entre las diferentes metodologías, tal como la integral de contorno, las correlaciones de 

desplazamientos y esfuerzos, fue hecho para definir el método óptimo para estimar el factor de 

intensidad de esfuerzos K en las simulaciones de fatiga, además, la relación empírica de Paris-

Erdogan se utilizó para estimar las velocidades de crecimiento de grieta da/dN. Finalmente, los 

valores de da/dN estimados por el modelo computacional para crecimiento de grieta por fatiga en 

componentes mecánicos fueron validados contra un estudio experimental reportado en la literatura.  

Los valores de da/dN estimados por el modelo computacional para crecimiento de grieta por fatiga 

en componentes mecánicos mostraron la misma tendencia general que los datos experimentales, sin 

embargo, ligeras diferencias fueron encontradas. Las diferencias entre los resultados numéricos y 

experimentales son atribuidas principalmente a la compleja naturaleza no uniforme del campo 3D de 

esfuerzos residuales que fue generado por el proceso de expansión en frío además de las variaciones 

locales en el material cercano al orificio. 

Todas las simulaciones fueron hechas en el programa de elemento finito ABAQUS® 2018, en el 

Centro de Investigación y Estudios de Posgrado (CIEP) de la Universidad Autónoma de San Luis 

Potosí. 
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INTRODUCTION 

Typically, when a mechanical system and therefore their components are subjected to loads that are 

below the material´s yield strength, it is not expected the system to fail, though, when the applied 

loads are not static but cyclic, a gradual damage in the components occurs, weakening the whole 

system[1]. The characteristic flaw caused by the fatigue are the cracks, which represent a potential 

risk on the normal operation of the system, especially if they remain undetected, the cracks can derive 

on the component fracture and therefore on a catastrophic failure. 

The potential catastrophic consequences that can be produced by cracked components, have been 

reduced due to the scientific and technological advances in materials and fabrication processes. 

However, the stress raisers, peak stresses, environment, and the inherent defects of the material and 

processing, plus the service loads have led the fatigue phenomena to remain as the main cause of 

mechanical failures in several systems such as aircraft [2]. High-tech components are required by the 

transportation industry; aerospace, automotive and railway systems. These components must be 

engineered designed to be reliable and safe over the long-term, so the manufacturers require new or 

revised methods and procedures to enhance the component´s useful life. Besides of a better 

understanding and prediction of the fatigue life in cracked components. 

An effective method to enhance the fatigue life in mechanical components is the residual stresses 

induction. An efficient technique used to induce residual stress within a mechanical component, is 

cold worked hole expansion. The cold hole expansion consists on passing an oversized rigid expander 

through a drilled component with a smaller radius. Due to the expansion, a residual stress field is left 

behind on the vicinity of the hole. It has been demonstrated that the residual stresses have a direct 

repercussion in the fatigue life, since the tensile residual stress accelerate the damage while the 

compressive residual stress is beneficial and delay the fatigue crack growth[3][4]. By the cold hole 

expansion, a non-uniform 3D residual stress is generated through the thickness of the expanded 

component  .  That is precisely one of the main constraints of the cold hole expansion technique, the 

nature of the residual stress field, lead to complex repeatability on serial processes and complicated 

measurement of them.  

Despite the new trends on composite materials, the aluminum alloys are among the top chosen 

materials for the transportation industry due to the aluminum mechanical characteristics such as the 

strength-density relation, thermal conductivity, corrosion resistance, recyclability and ductility. A 

weight reduction up to 50% can be achieved by the substitution of steel by aluminum within body-

in-white on the automotive industry, this can result on 20-30% total vehicle weight reduction when 

other weight optimizations are added. Moreover, the zinc coats are not necessary for aluminum to 
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achieve acceptable paint durability, such as with the steel [5], besides the aluminum is a suitable 

material for fatigue life improvement treatments [6]. In the present work the aluminum alloy 6061-

T6 has been selected to be the analyzed material due to its common use in fabrication and 

consumption on the industry such as in the wing tip skin and frame in aircraft [7]. 

In recent years, the numerical simulations have become a relevant tool within the mechanical 

engineering development. The traditional development process at which several resources had to be 

invested on design, prototyping and try-failure tests is undergoing through several changes due to the 

new technological society demands, which have led to the research community to optimize resources. 

By the usage of design software in conjunction with the finite element analysis, the behavior of the 

mechanical components and systems can be predicted and studied without any physically test.  

The present work presents the development of finite element computational models based on the 

damage tolerance design. The computational models have been proposed for the prediction of fatigue 

crack growth rates and evaluation of fatigue life in aluminum alloy 6061-T6 laboratory specimens 

(rectangular plate drilled at the mid-point and compact tension specimen). Moreover, the present work 

shows the influence of the cold hole expansion, i.e. residual stress, in the fatigue crack growth rates. 

All the numerical results have been compared with closed-form solutions and experimental results 

reported on the literature. 

 

OBJECTIVES 
General Objective: 

Development of a fracture mechanics computational model for the prediction and evaluation of the 

fatigue crack growth and fatigue life in mechanical drilled components made of the aluminum alloy 

6061-T6. 

Specific objectives: 

1. To develop a computational base model for the analysis of a radial crack emanating from a 

drilled plain hole within a plate subjected to static loading and linear-elastic material 

behavior.  

2. To apply closed-form solutions for a radial crack emanating from a plain hole for the 

validation of the computational base model 

3. Application of a parametric analysis to the computational base model for the following 

research variables: 
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- Elastic-plastic material behavior  

- Cyclic loading 

- Cold worked hole (initial residual stress) 

4. To validate the parametrized computational models based on experimental results existing 

on the literature. 

 

HYPOTHESIS 
The traditional perspective is that residual the stresses (RS) are an undesired consequence from the 

manufacturing processes, though, a favorable RS distribution can be set into mechanical components, 

thus the fatigue performance of such components can be improved. Some of the techniques that 

induce favorable RS are the peening and the cold hole expansion. A non-uniform RS field is generated 

by the cold hole expansion technique, such RS field has a direct repercussion on the fatigue life of 

mechanical drilled components whether the RS is tensile or compressive. The experimental 

measurement of the RS generated by the cold hole expansion is a challenging task, from a technical 

and economical point of view but is essential within the fatigue life estimations. A reliable alternative 

for the prediction of RS is the numerical simulation based on the finite element (FE) analysis. A 

fracture mechanics computational model based on the FE analysis is proposed to predict the RS field 

generated by the cold hole expansion and therefore evaluate the fatigue life modification within a 

cracked mechanical component. The correlation between the computational model and the fatigue 

life estimations will be performed based on the capability of the computational model to determine 

the stress intensity factor K and use it as a single parameter for the prediction of fatigue crack growth 

(FCG) rates in components with RS.   

JUSTIFICATION 
Some of the principal failure modes within the mechanical components are the corrosion, the brittle 

fracture, overloads and creep, among others. However, despite the technological advances in science 

and technology, the fatigue mechanism remains as one of the principal failure modes within the 

engineering components. According to the study reported by Findlay et al.[2], the fatigue failure 

mechanism is the first failure mode in aircraft components and range second for all the engineering 

components, just below the corrosion mechanism. The characteristic flaw generated by the fatigue 

are the cracks, which, are actually the most common cause of structural failure in aircraft [2]. 

Moreover, the most common fatigue crack initiation sites within the aircraft are the fastened joints, 

in fact, fatigue fracture in fasten holes stands for more than 50% of in-service failures of aircraft 

components [2], [8], [9]. Fastened joints are very common within the aircraft, especially in the 
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fuselage skin and  frame [7], [9]. According to the study reported by Latger et al. [10], the 

manufacturing process of Airbus wings, requires approximately 40 million holes annually. Besides, 

aircraft fuselage is commonly made of aluminum alloys [9],[10]. The aluminum alloys mechanical 

properties, the continuous innovation on metallurgy, plus the years of experience in aluminum 

manufacturing have settle the aluminum alloys as one of the top materials for aircraft in the coming 

years [6]. 
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1.1 MATERIAL 

On the early stages of aircraft, the primary material used were the wood, but nevertheless since 

approximately the 30’s the aluminum has dominated the market of production and consumption of 

the aviation industry[6], Some other markets where the aluminum is one of the leading materials are 

the food containers and packaging, construction, marine and automotive industries[11][5].  

The pure aluminum is a non-ferrous malleable material, usually used on the wire and sheet 

production, however the pure aluminum is not an adequate material for structural application. To 

improve the aluminum properties needed for structural applications, other materials are used as alloy 

metals[12]. Several aluminum alloys have been developed through the years to accomplish the 

necessities of the industry, in general, looking forward to accomplishing the drivers that lead the 

different markets, such as weight-strength relation, corrosion resistance, fracture toughness, 

manufacturability and the acquisition and maintenance costs. 

 The aluminum alloys are classified by series and each series consists of four digits. The first digit is 

the group of the alloy, the second digit is the change of the original alloy or the impurity limit, the 

zero value is the original alloy and numbers from one to nine are the modifications. From the 2xxx 

series up to the 8xxx series the last two digits are the different aluminum alloys of each group [12]. 

Table 1 shows the aluminum alloy classification[11]. 

Table 1. Aluminum alloys denomination [11] 

Denomination Alloy material 

1xxx Commercially pure aluminum 

2xxx Copper (Cu) 

3xxx Manganese (Mn) 

4xxx Silicon (Si) 

5xxx Magnesium (Mg) 

6xxx Magnesium (Mg) and silicon (Si)  

7xxx Zinc (Zn) and Magnesium (Mg) 

8xxx Others 

 

Regarding the hardening of the aluminum alloys, it can be classified by solid solution hardening and 

precipitation hardening. The solid solution hardening mode is the addition of the alloying material 
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atoms by substitution or insertion within the aluminum matrix. On the other hand, the precipitation 

hardening mode is obtained by thermal treatments. The series 1xxx, 3xxx and 5xxx are mainly 

hardened by solid solution, while the series 2xxx, 4xxx, 6xxx, 7xxx and 8xxx are mainly hardened 

by precipitation, i.e. By thermal treatments [12]. Table 2 shows the designation of the thermal 

treatments for aluminum alloys. 

Table 2. Quenching denomination for aluminum alloys [11]  

Denomination Definition 

F As fabricated 

O Annealed 

H Cold work hardened 

T Thermally treated  

W Treated with solutions 

 

According to the aluminum alloy classification above-mentioned, the aluminum alloy 6061-T6, 

which was the alloy selected for the present work, is an Al-Mg-Si alloy thermally treated and aged 

artificially. The thermal treatment and the artificial aging basically consist on three steps: 1 

Solubilization, which is the dissolution of the alloying components. 2 Cooling, which consist on 

obtaining an oversaturated solid solution and 3 artificial aging, which is the precipitation from the 

oversaturated solution at a temperature above the room temperature [12]. Typical mechanical 

properties of the aluminum alloy 6061-T6 are shown on Table 3 [11]. 

Table 3. Mechanical properties of aluminum alloy 6061-T6 [11] 

Property Value 

Young’s Modulus 68.9 - 71 GPa 

Poisson’s ratio 0.33 

Yield strength 275 - 276 MPa 

Max. Strength 310 MPa 

Vickers Hardness 107 

Fatigue limit strength 97 MPa 

Fracture toughness 29.1 MPa√� 
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Aluminum alloy 6061-T6 presents excellent corrosion resistance due to the formation of a thin 

alumina film on the surface, low density (2.7 g/cc) compared against the typical steel density (8 g/cc), 

high strength-weight ratio and good machinability (50% of a 0-100 scale for aluminum alloys) [13].   

 

1.2 FATIGUE 

The reduction in the ability of a mechanical component to resist stresses below the yield strength 

generated by cyclic loading is called fatigue. The cyclic loading is defined as fluctuant loads that can 

be originated mechanically or thermally. Each loading cycle has a maximum and minimum value. 

The maximum and minimum loads at each cycle generates also a maximum and minimum stress 

value and the corresponding amplitude between them, moreover a mean stress and a ratio can be 

defined. The ratio is the minimum stress split by the maximum stress but also the minimum load and 

split by the maximum load. Eqs. 1-3 show the stress amplitude, mean stress and load ratio. 

Stress amplitude 

�� =  ��	
����

�    (1) 

 

Mean stress 

�� =  ��	
����

�    (2) 

 

Stress ratio 

� =  ���

��	
 =  ���


��	
   (3) 

 

Figure 1 shows the schematic of three cyclic loading cases plus the schematic of the variables 

presented on Eqs. 1-3. 
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Figure 1 Schematic of cyclic loading a) Completely reversed stressing, zero mean stress  b) Non-

zero mean stress and c) Zero-to-tension stressing [1] 

 

Nowadays, there are three major approaches for the study of fatigue and its failure. First, the stress-

based approach, generally used on the high cycle fatigue where the deformations are primarily elastic 

due to low stresses. The characteristic diagram for the stress-based approach are the so called Wöhler 

curves (S-N curves) which describe the behavior of a given material and typically are affected by 

several factors such as the fatigue mean stress, the specimen’s geometry, the chemical environment, 

the temperature and the cyclic frequency, among others. This approach is generally known as design 

based on infinite life. 

The second approach is the strain-based, generally used for the low cycle fatigue regimen where the 

amount of plastic deformation is significant in response to high stress levels. The characteristic 

diagram for the strain-based approach is the strain as a function of the number of cycles (ϵ-N) diagram. 

However, neither the stress-based nor the strain-based approaches incorporate the possibility of 

evaluating cracks in components. 

Finally, the fracture mechanics is the third approach, which is used by the damage tolerance design 

philosophy and focuses on the growing cracks in the components by quantifying the critical 

combination of the crack size, fracture toughness, geometry and the applied stresses by either an 

energy (Ɠ) or a stress intensity tactic (K). The energy tactic is known as strain energy release rate and 

refers to the energy per unit crack area required to extend the crack. On the other hand the stress 

intensity tactic involves a characteristic factor known as stress intensity factor K. K characterizes the 

severity of stresses surrounding the crack tip by associating the geometry, crack size and applied 
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stress [1]. The characteristic diagram for the fracture mechanics approach is the fatigue crack growth 

rate as a function of the stress intensity factor range diagram (
��
�� � ∆�) [1][14]. 

The analysis of the cracked specimen will be focused on the loading mode I shown on Figure 2, since 

most cracking problems within engineering applications are related to such mode or crack surface 

displacement. Mode I is caused mainly by tensile loads while the other two are caused mainly by 

shear loading in different directions, as shown on Figure 2. 

 

Figure 2. Basic models of crack surface displacement or loading modes [1] 

 

1.3 FRACTURE MECHANICS 

The present work will be based on the fracture mechanics approach. Despite an elastic-plastic material 

model was considered, the present work is based on the linear elastic fracture mechanics (LEFM), 

which basically implies that the material follows the Hooke´s law. It is possible to use the LEFM 

since the plasticity region generated at the crack tip is very small regarding the crack length and 

component dimensions, as shown on Figure 3, thus the stress intensity factor K, which characterizes 

the severity of the crack situation, remains valid. Further information for the stress intensity factor 

will be given in the following paragraphs. 

 

Figure 3. Crack schematic and the plastic zone at the crack tip. K-field or K-dominance zone [1] 
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The measurement of the plastic zone near the crack tip can be computed by two methods: The Irwin 

approach and the and the strip-yield model. Eq. 4(a)-(b) shows the Irwin approach and the strip-yield 

model respectively, both used to estimate the plastic zone at the crack tip.  

2� = �
� ��

���
   (4a) 

Where r is the plasticity radius, K the stress intensity factor corresponding to the crack length and � 

the applied stress. 

� =  �
 � �!

��"#��
   (4b) 

Where �$ is the corresponding mode I stress intensity factor, �%& the yield strength and  � represents 

the length of the plastic zone.  

For the present work the Irwin approach was used, such approach is based on the use of the elastic 

stress analysis to estimate the elastic-plastic boundary. The boundary between the elastic and plastic 

behavior occurs when the normal stress (�'') in a linear elastic material satisfy a yield criterion. For 

plane stress conditions, yielding occurs when �'' = �%& [14].   

Within the literature [14], the plastic zone shape is assumed to be a circular area while the stress 

field distribution exhibits an elliptical-kind shape.  Figure 4 shows the elliptical-kind shape for 

plane stress and plain stress generated by the loading mode I. 

 

 

 

 

 

 

 

 

Figure 4. Crack tip plastic zones approximate shape for loading mode I [14] 
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The damage tolerance design (fracture mechanics approach) is an approach based on the combination 

of the geometry, crack size, applied stress to a body and the fracture toughness, which is the capacity 

of a material to resist failure due to a crack. Such combination is evaluated by a single factor K, known 

as stress intensity factor. If  K is known the entire stress distribution at a crack tip can be computed 

via Eq. 5(a)-(c), i.e. the K factor completely characterizes the severity of a crack within a component 

[14].  

�(( = �
√��) *+, �-

�� .1 � ,01 �-
�� ,01 �2-

� �3   (5-a) 

�'' = �
√��) *+, �-

�� .1 4 ,01 �-
�� ,01 �2-

� �3   (5-b) 

5(' = �
√��) *+, �-

�� ,01 �-
�� *+, �2-

� �    (5-c) 

 

Figure 5 shows the stress state for an element near the crack tip. 

 

 

 

 

 

 

 

Figure 5. Stress state for an element near the crack tip [14] 

Within the fracture mechanics approach, there are different methodologies to estimate the stress 

intensity factor K and the fatigue life, such as closed-form solutions, contour integral method, stress 

ahead the crack tip correlations and displacements behind the crack tip correlations. However, there 

are some cases where there the most adequate methodology to determine the K-factor is not 

established such as for the case of variable amplitude cyclic loading, overloading loading cycles and 

the presence of residual stress near the crack tip. 

Eq. 6 shows the general structure for the closed-form solutions reported on the literature for an ideal 

sharp crack in a linear-elastic and isotropic material. The differences between an ideal sharp crack 
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and a real crack are shown on Figure 6.  The real crack tip shape is generated due to the severe plastic 

deformations occurring at the crack tip, such severe deformation generates the ideal sharp crack tip 

to become blunted. 

 

� =  6�7√89  (6) 

Where S is the stress applied on the remote field, a is the crack length and 6� is the characteristic 

shape factor which depend of the geometry of the specimen. 

 

Figure 6.  Schematic of an ideal and a real crack tip behavior [1] 

 

The aim of the fracture mechanics (damage tolerance design) is the prediction of the remaining life 

of cracked components. Thus, the fatigue crack growth rates (da/dN) within a mechanical cracked 

component can be associated with the stress intensity factor K and the size for failure can be computed 

if the fracture toughness is known, such crack failure size is commonly known as crack critical length 

[14]. The correlation between da/dN-values, K-values and fracture toughness is generally given by 

fatigue crack growth (FCG) modes. Within the literature there are numerous FCG models, however, 

the models varies from one another in the fitting parameter required. Some of the FCG used within 

the damage tolerance design are the Foreman model the Walker equation, the Paris-Erdogan model, 

among others. The Foreman model take into account the material fracture toughness �:.The Foreman 

model can predict accelerated growth near the final toughness, and it can be used to fit data in regions 

II and III. In the Walker equation the effects of the stress ratio R is considered. An increase in the R-

ratio of the cyclic loading causes growth rates for a given ΔK to increase, the effect is usually more 

pronounced for brittle materials. The Paris-Erdogan model was the first FCG model proposed on the 

early 60’s, moreover, is the simplest model to predict fatigue life. The Paris-Erdogan model and the 

Walker equation are only capable to predict fatigue life during the stable crack propagation, or region 

II of the curve shown on Figure 7. 
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Figure 7 shows the da/dN-values as function of the ∆�-values which is the characteristic diagram of 

the damage tolerance design philosophy. The first region of the curve shown on Figure 7 is defined 

as the threshold region. At the threshold region it is common to define the cracks as “short cracks” 

and such short cracks are mostly influenced by the microstructure. The fracture mechanics concept 

of the stress intensity factor K is not applicable for short cracks [15]. The first region also shows the 

transition between the short and long cracks. Within region two of Figure 7 intermediate values of  

∆� can be appreciated. At intermediate values of  ∆� there exists a linear behavior given by the Paris-

Erdogan empirical relation (Eq. 7). The predictions about the residual life as well as the actual residual 

fatigue life for damaged cracked mechanical components are mostly given by Eq. 7, because it is the 

region of stable fatigue crack growth (FCG) and the cracks are large enough to be detected by non-

destructive tests. Finally, it is defined that the unstable fatigue crack growth (Region 3 of Figure 7) 

and sudden failure occurs when the stress intensity factor K approaches to the fracture toughness of 

the material �$;. 

 

 

Figure 7. The three regions of the characteristic diagram of the fracture mechanics approach [15] 

 

As previously mention, regardless of the method used, once the K-factor has been computed it is 

possible to associate K-values with the crack growth per cycle, or fatigue crack growth rate (da/dN). 

In the present work the Paris-Erdogan empirical relation shown on Eq. 7 has been used.   
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��
�� = <∆��  (7) 

 

Where the C and m are the fitting material coefficients determined experimentally. The C coefficient 

represent the intercept of the linear region extension with the vertical axis (da/dN axis) and the m 

coefficient is the slope of the graph. The least square estimation is considered as the main method to 

evaluate the material coefficients [16]. Moreover, the computation of the fitting material coefficients 

is fundamental to estimate accurate fatigue crack growth rates and therefore, accurate fatigue life. 

Despite the material coefficients are experimentally determined for a certain material, such 

coefficients can vary due to localized material flaws and environmental conditions such as Tanaka et 

al. demonstrated on their study where a considerable variability were found on 25 identical specimens 

under similar loading conditions. A method used to improve the estimation of the fitting material 

coefficients is the table look-up scheme. Through the table look-up scheme, it is possible to describe 

the da/dN-values as function of the ΔK-values or vice versa. A clear example of the table look-up 

scheme application is the use of Damage Tolerance Design Handbooks information along with table 

look-up algorithms in crack growth life predictions. 

 

1.3.1 Stress intensity factor evaluation (K-values evaluation) 

As previously mentioned, the stress intensity factor K can be calculated from a diversity of methods 

within the fracture mechanics approach. The methods used in the present work for the K calculus 

were the closed-form solutions, the stress correlation, the displacements correlation and the contour 

integral method (J-integral method).  

The closed form solutions, generally, are analytical solutions proposed for the ideal sharp crack case 

and linear-elastic isotropic material. The general structure of the closed-form solutions was presented 

on the Eq. 6. The general structure of the closed-form solutions has been based on the theory of linear 

elasticity, such as in Eq. 5(a)-(c). The stresses in Eq. 5(a)-(c) seem to approach an infinite value as r 

approaches the zero-value, that is to say, as r approaches the crack tip. Thus, the stresses are 

proportional to 1/√� and a mathematical singularity exists at the crack tip and no value of stress at 

the crack tip can be given. Note that all the stresses on Eq. 5(a)-(c) are proportional to the stress 

intensity factor K, thus, K characterizes the crack. The mathematical definition of K is shown on Eq. 
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8; however it is generally expressed as previously shown on Eq. 6 where the dimensionless shape 

factor F is needed to account the differences between geometries [1]. 

� =  lim),-→CD�√28�E  (8) 

For the present work the closed-form solutions reported in the literature for Matos et al. [17] as well 

the one reported by Dowling [1] were considered. The closed-form solution reported by Matos et al. 

[17] uses a strip-yield approach for two radial symmetric cracks of length a within an infinite plate 

with a central hole of radius rh under plane stress conditions. Moreover, the closed-form solution 

proposed for Matos et al. [17] is an extension of the Nowell´s plane stress model[18]. The plane stress 

Nowell’s model uses three sets of boundary elements that represents the crack, the strip-yield and the 

growing crack, Matos et al. [17] adapted such model (Nowell’s) for the center hole geometry. 

However, the closed-form solution proposed by Matos et al. [17] as well as the presented by Dowling 

[1] exhibits the same basic structure of the previously presented Eq. 6 or rather the same structure 

than Eq. 8. Besides the closed-form solutions presented differ from one another by the shape factor. 

Eqs. 9(a)-(b) show the closed-form solutions proposed for Matos et al. [17] and by Dowling [1] 

respectively. 

� =  7√89 F1 � GH1 4 0.358G 4 1.425G� � 1.578G2 4 2.156GQR  where   G = )S 
�   (9a) 

�T represents the hole radius, a the crack length from the center of the hole to the crack tip and S is 

the remotely applied stress to the specimen.  

� =  7√89 0.5 H3 � URV1 4 1.243H1 � UR2W  where   U = X
�    (9b) 

Where a is the crack length from the center of the hole to the crack tip, l is the crack length from the 

hole edge to the crack tip and S is the remotely applied stress to the specimen. 

Other techniques used to estimate the K-values are the stress and displacement correlation methods. 

The stress correlation method is based on the stresses ahead the crack tip to estimate the corresponding 

K-values. Within the stress correlation method, the K-values ahead the crack tip are estimated through 

the previously presented Eqs. 5(a)-(b), all variables of such equations are known but the K-value. Eqs. 

5(a)-(b) are valid only near the crack tip, where the singularity 1/√� dominates the stress field and 

contrary to the closed-form solutions, Eqs. 5(a)-(b) does not consider neither the geometry of the 

specimen nor the influence of the specimen edge (finite plate) [14]. Once the K-values ahead the crack 

tip have been determined, the graph of the K-values as function of the radial distance r from the crack 

tip to the uncracked section can be obtained. By discarding the results from nodal points close to the 
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crack tip the most approximate solution for K can be extrapolated to r=0 (crack tip) [19]. Figure 8 

shows the stress correlation method schematically. 

Figure 8. Stress correlation method a) K-values as function of the radial distance and extrapolation 
r=0 b) Schematic crack tip radial distance and loading angle [45] 

 

The displacements correlation method is based on the displacements behind the crack tip u to 

calculate the corresponding K-values. The K-values within the displacement correlation method can 

be computed through Eqs. 10(a)-(b) presented below. Like with the stress correlation method, Eqs. 

10(a)-(b) does not consider neither the geometry of the specimen nor the influence of the specimen 

edge (finite plate) such as the closed-form solutions previously discussed. Once the K-values behind 

the crack tip have been determined, the graph of the K-values as function of the radial distance r from 

the crack tip to the cracked surfaces can be obtained. As in the stress correlation method, by discarding 

the results from nodal points close to the crack tip the most approximate solution for K can be 

extrapolated to r=0 (crack tip). 

Y( =  �
�Z [ )

��  *+, �-
�� .\ � 1 4 2,01� �-

��3   (10a) 

 

Y( =  �
�Z [ )

��  ,01 �-
�� .\ 4 1 � 2*+,� �-

��3  (10b) 

Where µ is the shear modulus and \ = 3 � 4] for plain strain and \ = H3 � ]R/H1 4 ]R for plane 

stress. ] represents the Poisson’s ratio. Eqs. 10(a)-(b) are valid for the loading mode I, which is the 

studied mode within the present work. 

A study reported on the literature by Qian et al. [20] performed a comparison between different 

methods for loading mode I K-values calculation. Moreover, Qian et al. [20]  used both, 2D and 3D 

Compact Tension (CT-specimen) models for the K-values calculation. Within the study reported by 

Qian et al. [20] the stress and displacement correlation methods, among others, were compared. The 
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material model used within the simulations was defined as a linear elastic material with Young’s 

modulus E of 200 GPa and a Poisson’s ratio υ of 0.3. The models used 8-node brick elements and 20-

node hexahedral elements for the 2D and 3D respectively. Besides, a total of 2500 and 64000 finite 

elements were used within the 2D and 3D models. The approximate element size for the finite 

elements near the crack was 0.02 mm for both, 2D and 3D models. Qian et al. [20] also performed a 

loading simulation for which a 0.3 mm displacement were prescribed to the up side of the models 

while the bottom remained fixed. The results that Qian et al. [20] obtained through the displacement 

and stress correlations were consistent for the 2D and 3D CT-specimen models such as can be 

appreciated on Figure 9(a)-(d). Moreover, the results provided reasonable accuracy regarding the K 

calculation according to the ASTM closed-form solution for the CT-specimen (3620 ^_9√�). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Stress intensity factors calculated through the displacement and stress correlation methods 
for 2D and 3D models 

 

Another method to estimate the K-values within a cracked component is the contour integral method 

or J-integral method. By the contour integral method, an anti-clockwise integral path encloses the 

a) b) 

c) d) 
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crack tip from an initial to a final point which lie on the two crack faces [19]. The path that encloses 

the crack tip, for linear elastic materials is path-independent. Path independent integrals are generally 

used in physics to estimate the intensity of a singularity of a field quantity without knowing the exact 

shape of the field near the singularity. The contour integrals are derived from the conservation laws 

[21]. A schematic of the contour integral path can be appreciated on Figure 10 along with Eq. 11 

which shows the contour integral.  

The contour integral is basically an energetic method. The contour integral method is equivalent with 

the energy release rate in a nonlinear elastic cracked component. That is to say, there are an 

idealization from the elastic-plastic material behavior to a nonlinear elastic material. The behavior for 

the two materials is the same when the loading occurs but differ on the unloading. The elastic-plastic 

material follows a linear unloading path with slope equal to the Young’s modulus while the nonlinear 

elastic material unloads along the same path as it was loaded [14].  

` =  a �bUc � de fg�
f( U,�h        (11) 

Where w is the strain energy density, de the components of the traction vector Ye the displacement 

vector component and ds the length increment along the contour Γ. 

 

 

 

 

 

Figure 10. Arbitrary contour around the crack tip of a crack[14] 

The energy release rate, and therefore the contour integral method present that the fracture on a 

cracked component occurs when the energy available for crack growth is sufficient to overcome the 

resistance of the material [14]. The energy release rate, i.e. the contour integral, can be related to the 

stress intensity factor K if the material response is linear and for a through crack in an infinite plate 

subjected to a uniform tensile stress [14]. Eq. 12 shows the relation between the contour integral (J-

integral) and the stress intensity factor K for the loading mode I. 
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` =  �j
k       (12) 

Despite the contour integral method is widely used within the rate-independent quasi-static fracture 

analysis, is mostly used for linear material response analysis since the integral’s values within linear-

elastic analysis are path-independent, that is to say that can be calculated on the remote field and yet 

characterizes the conditions within the crack tip. However, it is possible to extend its use to the elastic-

plastic analysis, yet the integral’s values become path-dependent. The path-dependence is due to the 

contour integral is based on the strain energy density w, from which stresses can be derived, such 

assumption exclude the local re-arranging of stresses due to the yield condition, hence, the contour 

integral results depends on whether the contour passes through the plastic zone or not.  

The use of the contour integral and elastic-plastic material behavior can be done by generating a path-

independent contour integral. To generate a path-independent contour integral along with elastic-

plastic material behavior, the contour integral domain must be large enough to surround the plasticity 

zone and capture only the elastic zone, though when large plastic deformations occurs this is not 

possible [21].  

The computation of the K-values for a growing crack turns out to be a complex problem since the 

evolution of such K-values as the crack propagates varies, i.e. the path that the crack tip will follow 

within the mechanical component cannot be known in advance [22]. As general rule, the crack will 

propagate along the path which release the maximum energy (energy release rate). In real materials 

the crack tip path can be deviated due to a number of factors such as the presence of material flaws, 

a residual stress field and microscopic anisotropy [23]. Due to the irregular path through which the 

cracks grows various studies for irregular cracks have been reported in the literature (e.g. [24]–[26]), 

However, for the present work, the zone of the studied specimen which is most probable to generate 

and propagate cracks is the surface of the specimen, therefore the most critical crack growth is 

assumed to be along the line of symmetry. Moreover, on the present work the K-values for linear-

elastic, elastic-plastic, and elastic-plastic with residual stress models were computed through the 

closed form solutions, stress and displacements correlations and by the contour integral method. 

 

1.4 COLD HOLE EXPANSION EFFECTS IN FATIGUE DESIGN    

The primary mechanical components, identified as those which threaten the whole system if fail, are 

designed to avoid failure due to the service conditions, among which is the fatigue failure. To fulfill 

this purpose, several techniques have been applied to them such as post processing of the final 
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manufactured component i.e. quenching, coatings and shot peening, among others, and changes in 

geometrics details, like in fillets and holes, to reduce the stress concentration, but nevertheless there 

are limits imposed by the functionality of the components. Hence, alternative methods to improve the 

fatigue performance must be used.   

An effective method to enhance fatigue life without compromising functionality of mechanical 

components is the introduction of residual stress. The residual stress within mechanical components 

have the same beneficial effect than applying compressive pre-loads to the component rather than 

tensile. The resultant stress at the component’s stress raiser is reduced due to the compressive residual 

stress effect.  

A common technique used within the aerospace industry, specifically for drilled components, is the 

cold hole expansion technique. The phenomenon occurring during the cold hole expansion is that 

while the mandrel is pulled through the specimen, the material on the vicinity of the hole is deformed 

plastically and then, when the mandrel leaves the specimen the material far from the hole, which only 

were deformed elastically, generates a compressive residual stress field around the hole. The 

compressive residual stress around the hole is generated by the elastic strain that is not recovered after 

the expansion. The compressive residual stress generated by a cold hole expansion can be appreciated 

on Figure 11.  

 

Figure 11. Typical residual stress distribution around an expanded hole [8] 

The base of this technique is that by passing an oversized rigid expander through a drilled component 

a residual stress field is generated along the hole. There are different versions of this technique, 

basically the variation among hole expansion techniques lies on the type of expander used. Among 

the common versions of expansion processes are the, split-sleeve, cold hole ball expansion, hole edge 

expansion and direct mandrel expansion. 
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In the split-sleeve a mandrel and a split sleeve are used to do the cold hole expansion, the split sleeve 

is used to avoid the surface damage generated by the interference between the mandrel and the 

specimen. In the cold hole ball expansion, the cold hole expansion is done by passing an oversized 

hard steel ball through the specimen’s hole to be expanded. The hole edge expansion process is carried 

out by an indenter through which an axial force F is applied to the hole’s edge and therefore such 

zone is strengthened. The hole edge expansion process is limited to surface residual stress generation. 

The direct mandrel expansion is done by passing an oversized mandrel through the hole of the 

specimen and removing the mandrel from the other side of the specimen, however the geometry of 

the mandrel can vary. Moreover, within the split-sleeve hole expansion it is possible to use a mandrel, 

whether it is tapered or not, and also a ball, such as the cold hole ball expansion technique [8]. Figure 

12 shows the direct mandrel expansion process.  

 

Figure 12. Direct mandrel hole expansion technique  [8] 

 

Some of the parameters that influences the hole expansion are the material properties, geometry, 

lubrication and radial interference. However, one of the parameters that most influences the residual 

stress generated by the cold hole expansion is the radial interference between the mandrel and the 

specimen’s material. The radial interference is a percentage that represents the degree of expansion, 

i.e. Accounts the differences between the dimensions of the mandrel and the specimen’s hole. The 

radial interference e is calculated according to Eq. 13, where �� is the mandrel radius and �� the plain 

hole radius. Common interference values used in the aerospace industry varies from 2 to 6% [8], since 

it has been demonstrated that that the residual stress increase as the percentage of radial interference 

increases until 5% and then decrease for values beyond 6% [27].  The residual stress drop after the 

5% of radial interference can be appreciated on Figure 13, which shows the results reported by 

Gopalakrishna et al. [27].   
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l = mn�mj
mn  o 100%  (13) 

 

Figure 13. Stresses induced by the cold hole expansion and a tapered mandrel [27]  

 

Despite the improvement on the fatigue life due to the cold hole expansion, one of the main concerns 

on this technology is the accurate measurement of the residual stress field. It is challenging to measure 

the residual stress distribution since it is not uniform along the thickness of the specimen. Moreover, 

the non-uniform residual stress field effect affects the effective stress intensity factor K. The effective 

stress intensity factor considers the residual stress plus the stress intensity factor caused by the 

external applied load [8].  

According to the Fatigue Technology Inc. (FTI), which is the main supplier of cold expansion 

instruments and technical support, the complete process of cold hole expansion includes the finish 

reaming of the hole to the nominal dimension. Johnson et al. [28] proposed 2D and 3D finite element 

models which, among other variables, simulated the final reaming of the process. The simulations 

were performed for a 4% of expansion in aluminum alloys 7050-T7451 and 2024-T351 using 

isotropic and kinematic hardening material models on ABAQUS® finite element package and the 

results were compared against experimental results. The study revealed that the finish reaming of the 

hole wall has a negligible effect on the maximum value and distribution of residual stress field 

predicted by the finite element models. Figure 14 shows the comparison between the model including 

the final reaming and the model where the reaming was not included. 
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Figure 14. Residual stress predicted by a finite element model with and without the final reaming 
simulation [28] 

 

Several measurement methods for residual stress have been developed through the years such as the 

hole drilling and Sachs methods which are destructive tests, X-ray diffraction and moiré 

interferometry, which are non-destructive methods, but relatively limited to measurement of surface 

residual stresses and some others that are limited to localized residual stress measurements like the 

strain gage method. However, it is still a challenging task, from a technical and economical point of 

view, to measure and predict the distribution of the residual stress, especially for the internal material 

around the hole.  

Due to the limitations of the experimental methods for residual stress measurements such as accuracy 

constraints, equipment availability and costs, on the recent years the numerical simulations have 

become an important tool to predict and study the three-dimensional residual stress distributions and 

its repercussion on the fatigue life.    
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1.6 STATE OF THE ART FOR COMPUTATIONAL MODELS: COLD HOLE 

EXPANSION AND FATIGUE LIFE 

Finite element simulation has been widely utilized to study the residual stress fields generated by the 

cold hole expansion on its different variations and therefore its repercussion on the fatigue life of 

mechanical components. Analytical solutions for the residual stress and stress intensity factors are 

primarily for plane stress.  

Some of the initial attempts to model the cold hole expansion process and its effect on the fatigue life 

were limited to 2D finite element models. Priest et al. [29] presented a 2D finite element model of a 

drilled rectangular plate. The model considered the Al 2024-T351 mechanical properties for the 

simulations, moreover the material response was characterized using data reported in the literature 

from uniaxial tensile tests. The 2D finite element model were proposed to simulate the thickness of 

the AL 2024-T351 plate by using 600 second-order elements and considering isotropic and kinematic 

hardening behavior. The cold hole expansion process simulation did not include the mandrel finite 

element model, besides the process was simulated fixing the nodes on the base of the 2D model and 

prescribing uniform displacements to the nodes situated at the hole wall. The nodal displacements at 

the hole wall were such that simulated a 4% of radial interference, i.e. A degree of expansion of 4%. 

Figure 15 shows the simplified 2D model presented by Priest et al.[29] . 

 

 

Figure 15. Axysymmetric 2D finite-element model for a cold hole expansion process within an Al 
2024-T351 plate [29]  

 

Also, an experimental cold hole expansion with a radial interference of 4% were performed to 6 mm 

thick aluminum alloy 2024-T351 specimens, then an experimental residual stress measurement was 

performed by the X-ray diffraction technique. Finally, the results from the 2D finite element model 
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were compared against analytical solutions as well as against the experimental results. The analytical 

models used were the Rich and Impellizzeri plane strain model and the Hsu and Forman model for 

plane stress. The numerical results compare favorably with the analytical solutions. Though, 

regarding the experimental results, the study shows that the residual stress field vary significantly 

through the thickness of the plate and therefore neither analytical solutions nor the finite element 

model were able to represent the complex through thickness residual stress state.  

Papanikos and Meguid [30] also proposed a simplified 2D model of a drilled plate shown on Figure 

16 The model presented by Papanikos and Meguid [30] considered the Al 7075-T652 material 

properties for the simulations. Due to symmetry, only one quarter of a rectangular plate was modelled 

by using six-node triangular elements. A higher element density were used on the region near the hole 

regarding the model’s region far from the hole, such as shown in Figure 16. Moreover, several 

convergence analyses were conducted. Application of a uniform radial displacement at the hole 

boundaries were imposed to the model to simulate the hole expansion, so the cold hole expansion 

simulation did not include the mandrel’s computational model.  Papanikos and Meguid [30] reported 

that the simplified 2D axisymmetrical model has some limitations such as it was unable to predict the 

residual stress variation at the entrance and exit faces, moreover the 2D axisymmetrical model did 

not account for the contact conditions. Due to the 2D axisymmetrical model limitations a new 3D 

model were done by Papanikos and Meguid [30].  The 3D finite element model presented the cold 

hole expansion for adjacent holes and was compared against experimental results. The 3D model 

simulated the cold nhole expansion of adjacent holes since many aerospace applications involve the 

cold hole expansion at several holes that are close one to each other. The material model considered 

for the 3D model remained as that considered for the 2D model. Twenty-node hexahedral elements 

were used in the region close to the holes so the high gradients could be captured. For the regions of 

the 3D model far from the holes the 3D model used ten-node tetrahedral elements. The contact 

interaction between the mandrel and the specimen to be expanded were considered by using contact 

elements. The 3D model was compared against experimental results reported on the literature. A 

discrepancy of 8% between the numerical and experimental results is reported. 
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Figure 16 Two-dimensional finite element models proposed for a) Single hole  and b) adjacent 

holes [30] 

 

On a later study reported by Matos et al. [31] the effects of the common simplifications, normally 

used for the split sleeve cold worked holes modeling process, and the performance of 2D, 2D 

axisymmetrical  and 3D computational models were evaluated. Some of the common simplifications 

used for the split sleeve cold worked holes modeling process are the consideration of an infinite 

domain, i.e. The boundaries of the specimen has no influence on the cold hole expansion process, the 

usage of symmetry boundary conditions and the uniform hole expansion. The material used for the 

study reported by Matos et al. [31] was aluminum alloy 2024-T3 with elastic perfectly plastic and 

hardening material behavior. For the 2D and 3D models reported by Matos et al. [31] a rigid mandrel 

was modelled. However, the split sleeve cold worked holes modeled used both, the uniform radial 

displacement and a contact interaction, to simulate the interference between the mandrel, the split 

sleeve and the specimen. The 2D model used 5000 bi-quadratic 8-node elements for the aluminum 

plate, the 2D axisymmetrical model used 15000 4-node linear elements and the 3D model consisted 

on 41600 3D 8-node linear elements. ABAQUS® 6.2 was used to carry out the analyses. According 

to the study, it is not recommended the utilization of 2D models to simulate the cold hole expansion 

process since they do not capture the through thickness variation of the residual stress field. On the 

other hand, the 2D axisymmetrical and the 3D models provides the possibility to predict the residual 

stress field variation through the thickness. The 2D axisymmetrical model predicted greater amount 

of hole enlargement than the 3D since the 2D axisymmetrical model used 50 finite elements through 

the thickness of the aluminum plate, while the 3D model used only 16 finite elements for the same 

a) b) 
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region. However, despite the difference between the finite element’s density of the 2D axisymmetrical 

and 3D model similar residual stress were predicted by both models.   

An alternative to the 2D axisymmetrical and 3D models for the split sleeve cold worked process also 

was proposed by Babu et al. [32] under the argument that the typical simulations involve many 

assumptions, such as uniform displacements along the hole  edge to simulate the cold hole expansion 

and the lack of contact interactions between mandrel, sleeve and specimen. The method proposed is 

based on the nature of the process i.e. In the experimental cold hole expansion process, as the mandrel 

go through the specimen, the radial interference is achieved gradually, resulting in gradual expansion 

of the hole layer by layer from the entrance face to the exit face of the specimen. The computational 

model proposed by Babu et al. [32] replicated the above mentioned phenomenon by creating layers 

within the thickness of the model. The thickness of the proposed model was divided in 16 layers of 4 

finite elements each layer, and the cold hole expansion was simulated by gradually prescribing 

displacement layer by layer. For the model presented by Babu et al. [32] the material properties of 

the aluminum alloys 2024-T3 and 7075-T6 were considered. Moreover, the material model 

considered the isotropic hardening model. Regarding the mandrel, any computational model was used 

within the simulations since, as previously mention, the expansion was simulated by prescribing 

displacement to the layers of the aluminum plate model.  The model consisted on a quarter of a 

rectangular plate due to the symmetry conditions. The quarter plate used 8000 8-node elements for 

the Al 2024-T3 and 12800 8-node elements for the Al 7075-T6 plate. The variation in the quantity of 

finite elements used was due to a slight difference in the dimensions of the aluminum plate models.  

Good agreement was found between the model proposed by Babu et al. [32] and  previous 3D contact 

simulations reported by Johnson et al.[28]. Besides, the simulations performed by Johnson et al.[28] 

were compared against experimental results showing a good agreement. The new method proposed 

by Babu et al. [32] is simpler and computationally less complicated than the 3D models, but neglect 

the axial force flow of the material due to the mandrel interference with the plate. This assumption 

can lead to considerable differences between residual stresses predicted and experimentally obtained 

as was remarked by other study reported on the literature by Maximov et al. [33]. Figure 17 shows 

the results of the study reported by Maximov et al. [33] where the curves number 1 and 2 are 2D 

axisymmetrical models proposed by Maximov, curve number 3 is a 2D model for which uniform 

radial displacements were prescribed to the hole edge, curve number 4 is the “layer by layer” model 

proposed by Babu et al. [32], and the curve number 5 is the experimental measurement of the residual 

stress through the X-Ray diffraction method.   
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Figure 17. Residual stress obtained by various finite element models and from the experimental X-
ray diffraction [33] 

As it can be appreciated on Figure 17, the finite element models that prescribed displacements at the 

hole edge, whether the displacements are prescribed uniformly or layer by layer, overestimate the 

compressive residual stress at the hole edge and then underestimate the residual stress for the rest of 

the affected zone.  

Regarding the effect of the cold hole expansion in the fatigue life of mechanical components, 

Chakherlou and Vogwell [4] reported a 3D finite element model for a cold hole expansion of 4.6% 

of radial interference within a rectangular plate. After the simulation of the cold hole expansion, 

longitudinal loads were prescribed to the far end of the finite element model, so the residual stress 

initial condition was considered, moreover, Chakherlou and Vogwell also conducted an experimental 

study with of the cold hole expansion and the longitudinal loads. The material model used within the 

plate model proposed by Chakherlou and Vogwell [4] considered the mechanical properties of the 

aluminum alloy 7075-T6. Moreover Chakherlou and Vogwell [4] considered the kinematic hardening 

behavior for the material model. The simulation considered the finite element model of the aluminum 

plate as well as the finite element model of the mandrel. For both finite element model 8-node linear 

isoparametric elements along with symmetry conditions were used. The aluminum plate finite 

element model was constrained on the Z direction at the exit face nodes. The cold hole expansion 

finite element simulations predicted a non-uniform residual stress field throughout the plate thickness 

with compressive residual stresses near the hole and tensile further from the hole edge. The study 

reported by Chakherlou and Vogwell [4] can be divided in two, first the cold hole expansion 

simulation so the initial residual stress condition was considered and then the simulation of 

incremental longitudinal loads prescribed on the far end of the aluminum plate. The longitudinal loads 

were such that induced stresses from 0 to 200 MPa. The longitudinal loads were prescribed such that 
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the loading mode I was simulated. It is reported that for loads that induced normal stresses up to 100 

MPa, the longitudinal stress at the hole edge remains compressive for the entrance, middle and exit 

face planes, i.e. Due to the initial residual stress condition, the effective residual stress at the hole 

edge (residual stress due to cold hole expansion plus the stress due to the prescribed external load) 

remains compressive. For applied loads that induced stresses from 100 to 200 MPa, the effective 

stress at the hole edge increased and became tensile for the three studied planes (Entrance, middle 

and exit face). As the applied load increased the entrance face became the zone with the most tensile 

stress values. 

As previously mentioned, later on the same study reported by Chakherlou and Vogwell [4], the 

experimental cold hole expansion and zero-to-tension, constant amplitude fatigue tests were 

performed. The cold hole expansion was performed on an aluminum alloy 7075-T6 specimen. The 

specimens had a 5 mm hole at the midpoint which was drilled and reamed before the expansion. The 

cold hole expansion was performed by inserting a pre-lubricated tapered mandrel. Regarding the 

fatigue tests, they were performed with sinusoidal cyclic loads (R=0) such that induced stresses 

between 100 and 200 MPa to the specimen. The results show that the fatigue life for cold hole 

expanded specimens were almost 10 times higher compared against the plain hole condition such as 

can be appreciated on Figure 18, where the stress-cycles (S-N) curve of the cold hole expanded 

specimen is compared against the curve for the specimen without cold hole expansion. 

 

Figure 18. S-N curve for the fatigue life results from a cold hole expanded and a “as-drilled” Al 
7075-T6 specimen 

The usual enhancement in the fatigue life for cold worked components is 3 to 6 times regarding the 

plain hole condition as experimentally shown by Gopalakirshna et al. [27]. They [27] also concluded 

that the split-sleeve tapered pin technique produces a greater fatigue life improvement than the split-
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sleeve ball expansion technique and that beyond 6 mm from the hole edge the effect of the cold hole 

expansion is minimal. The maximum value of the compressive residual stress reached by the split-

sleeve ball expansion technique was about 350 MPa and 400 MPa for the split-sleeve tapered pin 

technique. The maximum compressive residual stresses reached by both expansion methods are 

similar in magnitude to the material yield stress (375 MPa) but the split-sleeve tapered pin technique 

used more effectively the material strain hardening behavior. Similar results were reported by Yan-li 

et al. [7] where the extension of the affected zone by the expansion embraces an approximate distance 

of 4.5 mm from the hole edge. The study reported by Yan-li et al. [7] was conducted in a 3 mm thick 

aluminum alloy 6061-T6 specimen. The specimen was drilled at the midpoint and the hole’s diameter 

was 8 mm. The specimen was expanded by a steel tapered mandrel with a maximum radius such that 

generated a 4% of radial interference. Besides, within the study reported by Yan-li et al. [7], 10 

specimens were tested under cyclic loads with a load ratio R of 0.1. The residual stress field generated 

by the cold hole expansion was measured by the X-Ray diffraction method. 

Other studies that report a remarkable fatigue life enhancement by the cold hole expansion process in 

aluminum alloy specimens were divulged by Yongshou et al. [34] and Shizen et al. [35]. As it can be 

appreciated on Figure 19, according to the study reported by Yongshou et al. [34], the fatigue life  

was improved by about 6 times regarding the non-expanded specimens. It is also reported that the 

best fatigue life enhancement was obtained by generating a radial interference within 4 and 6%. 

 

Figure 19. Comparison of fatigue life of specimens with a hole expansion of 2, 4 and 6% of radial 

interference, and without any hole expansion [34] 
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On the study reported by Yonshou et al. [34], a cylindrical and rectangular 2D finite element models 

were performed, plus a 3D rectangular finite element model. Moreover, Yonshou et al. [34] also 

performed an experimental study with validation purposes. The study reported by Yonshou et al. [34] 

was performed using the material properties of the aluminum alloy LY12-CZ in the finite element 

models and the same material for the validation experiment. Regarding the 2D cylindrical model, a 

plate of 100 mm of radius was modelled with a hole at the midpoint of 2.5 mm radius. The rectangular 

2D and 3D models were a plate of 200 by 40 mm (thick of 4 mm for the 3D), with a hole at the 

midpoint of a radius equal to 5 mm. The numerical study was performed on ABAQUS® finite element 

package using 4-node bilinear plane stress and 8-node linear brick reduced integration elements for 

the 2D and 3D models respectively along with symmetry conditions for the three finite element 

models. The experimental validation of the three finite element models, regarding the residual stress 

field generated by the cold hole expansion was done by experimentally expanding a rectangular plate 

and measuring the experimental residual stress through the X-ray diffraction method. Regarding the 

validation for the fatigue life, the experiment, as well as the simulations, were conducted with constant 

load amplitude and stress ratio R of 0.1, the maximum applied longitudinal load was such that induced 

a 100 MPa stress to the specimen.  

For the residual stress field, good agreement was found between the finite element models and the 

experimental results at approximately 3 mm and up from the hole edge. On the other hand, the 

comparison was not good for the zone near to the hole´s edge. The results of numerical and 

experimental residual stress field can be appreciated on Figure 20. 

 

Figure 20. Comparison between numerical and experimental residual stress field due to a cold hole 

expansion [34] 
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According to the results reported on the literature by Yonshou et al. [34], the predicted residual stress 

at the hole edge was much more compressive compared against the experimental data, such as shown 

on Figure 20. Yonshou et al. [34] attribute the disagreement between the numerical and the 

experimental data to the fact that the gradient of the residual stress is very steep near the hole edge 

and therefore, neither the finite element method nor the X-Ray diffraction measurement were 

trustworthy. However, the overestimation of the compressive residual stress within the first 3 mm 

from the hole edge can severely affect the fatigue crack growth estimations end therefore fatigue life 

estimations. 

On the other hand the study reported by Semari et al. [3] compares FEM simulations and experimental 

data regarding the fatigue life of cold hole ball expansion process for aluminum alloy 6082-T6. For 

the study reported by Semari et al. [3] the Single edge notch tension (SENT) specimens with 1.7, 3.4 

and 4.3% of expansion were modelled. The SENT specimens are not a drilled component but a dog-

bone like specimen which is notched to generate the stress raiser, however for the study reported by 

Semari et al. [3] a hole was drilled at the midpoint of the SENT specimen. The central part of the 

specimen configuration used by Semari et al. [3] can be appreciated on Figure 21. 

 

Figure 21. Single edge notch tension specimen configuration reported by Semari et al. [3] 

Semari et al. [3] proposed a 3D finite element model for which the mechanical properties of the 

aluminum alloy 6082-T6 were used for the material model, moreover, the kinematic hardening 

material behavior was also considered within the numerical simulations reported. Semari et al. [3] 

used 8-node solid elements along with symmetry conditions for the proposed 3D model. Besides the 

3D model of the aluminum plate, Semari et al. [3] also modelled the expander as a rigid ball. The 

simulation of the cold hole ball expansion was conducted by prescribing displacements to the top of 

the ball, so it passed through the hole shown on Figure 21.  Semari et al. [3] also simulated a fatigue 

test for which a constant amplitude loading with a load ratio of 0.57 was simulated. The estimation 



35 

 

of the stress intensity factors corresponding to the cyclic loading was done by the superposition 

stresses technique. In the superposition technique first the stress σres associated to the residual stress 

field, generated by the cold hole expansion, is calculated, then the σres is superposed to the stress 

generated by the external loading σapp to give an effective, or total, stress σT. The total stress σT is 

calculated for the corresponding maximum and minimum loads applied to the specimen. The σT 

generates the opening of the crack face and through such displacement a total stress intensity factor 

K can be estimated and therefore, the total stress intensity factor range ΔK.  

Semari et al. [3] estimated the fatigue life by the Paris-Erdogan empirical relation for which the C 

and m coefficients used were determined experimentally for the aluminum alloy 6082-T6 (C=2.7E-07  

m=3.1) and the ΔK used were those estimated by the superposition method above mentioned. 

Additional to the proposed 3D finite element model, Semari et al. [3] also conducted an experimental 

cold hole ball expansion and a fatigue test. The experiment was conducted for the same SENT 

specimen configuration as the 3D finite element model and with an 8 mm thick plate of Al 6082-T6.  

A fatigue life enhancement of the specimen due to the cold hole ball expansion was found despite 

tensile residual stresses were predicted on the entrance and mid planes of the specimen by the 3D 

finite element model. Regarding the fatigue crack growth rate da/dN as function of the crack length 

a and the fatigue life (Number of cycles N versus crack length a), good correspondence between 

numerical simulations and experimental data is reported such as shown on  Figure 22(a)-(c). The 

experimental fatigue crack growth was measured by using a video camera with scale of 0.1 mm. 
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Figure 22. a) Cold hole ball expansion numerical simulation. Comparison for a SENT specimen 

with 4.3% of expansion b) Fatigue life and c) crack length vs fatigue crack growth rate da/dN [3] 

Besides the results shown above [3], there are some other studies reported on the literature that 

compare numerical results against experimental data in regards to the fatigue life modification  in 

cold hole expanded specimens, such as those divulged by Lacarac et al. [36] and Yan-li et al. [7].  

The former[36] proposed a 2D axisymmetric finite element model through which simulated a cold 

hole expansion with a  4%  of radial interference plus a fatigue test simulation for the cold hole and 

plain hole conditions. 

The 2D finite element model proposed by Lacarac et al. [36] simulated the cold hole expansion 

prescribing displacement to a mandrel such that the mandrel passed through the specimen. The 

mandrel was modelled as a rigid surface. Lacarac et al. [36] considered the mechanical properties of 

the aluminum alloy 2650 along with the combined hardening behavior for the material model. The 

study reported by Lacarac et al. [37] was performed in the commercial finite element package 

ABAQUS®. Additionally to the 2D finite element model Lacarac et al. [37] also performed an 

experimental split-sleeve cold hole expansion study to validate the numerical simulations. The 

experiment were conducted on a 6 mm thick rectangular plate made of aluminum alloy 2560. A hole 

with a diameter of 6.35 mm was drilled at the midpoint of the specimens.  Moreover, an experimental 

fatigue test were performed considering constant amplitude cyclic loading with load ratios R of -0.5, 

0.1 and 0.7 for the expanded specimen as well as for a non-expanded specimen. 

b) c) 

a) 
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Through the cold  hole expansion process numerical simulations performed by Lacarac et al. [37], a 

through-thickness variation of residual stress field were predicted. However, such through-thickness 

variation was not considered for the fatigue simulations, but rather an average residual stress field 

was considered. The 2D axisymmetrical model did not considered the split-sleeve used in the 

experimental simulation since such consideration would have required a three-dimensional model, 

and therefore the computational cost would have increased. The averaged residual stress field 

generated by the cold hole expansion simulation were considered as an initial condition in a corner-

cracked 3D finite element model. For the fatigue simulations, the previously mentioned fatigue 

conditions used in the experiment were considered. Regarding the crack length a as function of the 

crack growth rate da/dN good agreement is reported for the results from the plain hole condition 

model and the results from the experimental fatigue test of the plain hole condition specimen. On the 

other hand, the agreement between the results from the fatigue test performed to the cold hole 

expanded model and the experimental expanded specimen is not as good as for the plain hole 

condition. Figure 23(a)-(b) shows the results reported by Lacarac et al. [36] for the plain and expanded 

hole condition. 

 

 

 

 

 

 

 

 

 

 

 

In the study reported by Yan-li et al. [7], a finite element model of a rectangular plate with a hole at 

the midpoint was proposed. Only one quarter of the plate was modelled due to the symmetry 

conditions. Yan-li et al. [7] used the mechanical properties of the aluminum alloy 6061-T6 for the 

a) b) 

Figure 23. Comparison between numerical and experimental results for crack length a versus fatigue 
crack growth rate da/dN for a) Plain hole condition b) Cold hole expanded condition. 
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material model used on the simulations, besides the kinematic hardening model was utilized. Yan-li 

et al. [7] simulated the split-sleeve cold hole expansion process  by modeling a tapered mandrel which 

was passed through the plate model. The tapered mandrel was modelled such that generated a 4% of 

radial interference with the plate model. Besides the split-sleeve cold hole expansion simulations, an 

external loading to the plate model was also simulated. The external loading simulated a maximum 

load such that induced a 210 MPa stress.  

Additional to the numerical simulations performed by Yan-li et al. [7], an experimental split-sleeve 

cold hole expansion and fatigue test was conducted for an identical specimen, regarding the geometry 

and material. The experimental residual stress was measured by the X-Ray diffraction method and 

the cracked surfaces were also studied to observe the effect of the split-sleeve cold hole expansion on 

the specimen’s fatigue life. The results from the numerical simulations were compared against the 

morphology of the fracture surface. Yan-li et al. [7] reports that the compressive stress predicted by 

the numerical simulations coincides with the striation features experimentally found. The fatigue 

striations are small ridges produced by propagating fatigue cracks, the ridges are perpendicular to the 

direction of crack propagation [14].  The average striation spacing is often used to represent the 

fatigue crack growth rate. Much longer striation spacing intervals were found in expanded specimens 

regarding those with the non-expanded condition. The longer striation spacing intervals represents a 

higher cycles of fatigue life regarding the non-expanded hole condition.  

Although several FEM works have been performed to study the through-thickness residual stress field 

and fatigue life of cold hole expanded specimens most of them are focused on the split-sleeve 

methodology while the studies for direct mandrel hole expansion are scarce, moreover the present 

work has been carried out with the sub modelling technique for which very limited information has 

been found on the literature [38]. 
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COMPUTATIONAL FATIGUE CRACK GROWTH MODELS 
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In the present chapter the methodology followed for the computational fatigue crack growth models 

is presented, such general methodology can be appreciated on Figure 24.     

 

Figure 24. Schematic of the methodology for the fatigue crack growth (FCG) computational model 

creation. 

 

2.1 PARAMETERS DEFINITION: GEOMETRY TO BE STUDIED AND 

MATERIAL MODEL  

The geometry of the central-hole-plate is schematically shown in Figure 25. The geometry consists 

of a rectangular plate with the following dimensions: 

• Length: 200 mm 

• Width: 100 mm 

• Thickness: 6.35 mm 

2.1. Parameters definition: Geometry to be studied and 
material model.

2.2. FE base model: Center-hole-plate, linear-elastic 

material model and static load. 

2.3. K-values from FE base models compared against 

closed-form solutions.

2.4. Center-hole-plate base model parametrization:

-Elastic-plastic material model

-Cyclic loading

-Residual stress (Cold hole expansion)

2. 5. Fatigue crack growth data calculation and 

comparison against experimental data
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Moreover, the plate has a through thickness hole at the midpoint with a radius of 3.175 mm  

 

 

Figure 25. Central-hole-plate specimen  

The material considered for the central-hole-plate model show on Figure 25 is aluminum alloy 6061-

T6 whose nominal mechanical properties were previously presented on Table 3. Moreover, the 

elastic-plastic parameters for the aluminum alloy 6061-T6 used were those reported on the literature 

by Torabi et al. [39]. The elastic-plastic values used for the material model can be consulted on Table 

4 and Table 5 presented below on section 2.4 in Table 1.  From here on the specimen shown on Figure 

25  will be named as the central-hole-plate specimen. 

Additional to the center-hole-plate specimen, also a CT-specimen has been studied. The CT-specimen 

is a parametric standard specimen for fatigue tests which is notched at the half to concentrate the 

stresses from the cyclic loading. Figure 26 schematically shows a CT-specimen. 

 

 

 

 

 

Figure 26. Compact-tension specimen (CT-specimen) 
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The material considered for the specimen of  Figure 26 is, as for the central-hole-plate, aluminum 

alloy 6061-T6. 

2.2 LINEAR-ELASTIC COMPUTATIONAL BASE MODEL 

2.2.1 Central-hole-plate model 

ABAQUS® finite element package was used to perform the computational model. The loading 

conditions and the geometry defined in Figure 25, corresponding to the central-hole-plate specimen, 

are symmetrical, therefore only a quarter of the plate was modelled, and symmetry boundary 

conditions were used at the XZ and YZ planes.  

 

 

 

 

 

 

 

 

 

 

Figure 27. 2D quarter geometry FE model a) Symmetry boundary conditions and remote applied 

load b) FE mesh 

b) a) 
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Figure 28. Quarter geometry FE model. a) Symmetry boundary conditions and remote applied load 
b) FE mesh 

For the central-hole-plate FE base model only static loads were considered. The load applied was 

such that induced 30% of the yield strength for the Al 6061-T6 with a load ratio R of 0.1. The loads 

were applied to the far end of the plate as shown on Figure 28, such that the loading Mode I was 

simulated.  The central-hole-plate model considered only linear-elastic material behavior. The 

parameters used in the material model were according to the aluminum alloy 6061-T6, Young’s 

modulus E of 68.9 GPa and Poisson’s ratio υ of 0.33. The E modulus and the υ of the model were 

used along with isotropic material behavior. 

The analysis of the central-hole-plate FE base model were divided in two stages. The first stage was 
a 2D analysis and the second stage was a 3D analysis. For the 2D FE model previously presented on  

 

 

 

 

 

 

 

 

 b) 

a) 

a) 
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Figure 27 the analysis were performed basically to establish the meshing strategy as well as the 

element type and size. The 3D FE model was used to calculate the ΔK-values and then such values 

were compared against results from closed-form solutions. The central-hole-plate was meshed with 

4-node bilinear plane stress quadrilateral elements and 8-node linear brick elements for the 2D and 

3D models respectively. The approximate element size for 2D FE model were determined through a 

convergence analysis using approximate element sizes of 1.058, 0.635, 0.317, 0.158 and 0.079 mm. 

The results became independent from the mesh at an approximate element size of 0.317 mm, therefore 

such size was used to perform the 2D simulations as well as the simulations with the 3D FE models.  

Both models, 2D and 3D simulated through thickness symmetrical radial cracks emanating from the 

center hole of the plate.  

The K-values for the central-hole-plate model were numerically calculated by the displacement 

correlation method as well as by the contour integral method.   

Multiple 3D cracked finite element models were done simulating an initial crack length of 4 mm to a 

final crack length of 19.5 mm, which based on the plain fracture toughness for the Al-6061-T6 

corresponds to the critical crack length. 

 

2.2.2 CT-specimen model 

 The standardized geometry, as well as the boundary conditions and loads defined on Figure 26, 

corresponding to the CT-specimen, are symmetrical, therefore only a half of the specimen was 

modelled, and symmetry boundary conditions were used at the XZ plane. Figure 29 shows the half 

geometry model, the applied load and its symmetry boundary conditions. 
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Figure 29. Half CT-specimen geometry FE model. a) Symmetry boundary conditions and applied 

load b) FE mesh 

For the CT-specimen model only static loads were considered. A load ratio R of 0.1 and a maximum 

load of 2.78 kN and a load range ΔP of 2.5 kN were considered for the simulations. The loads were 

applied on the upper surface of the hole whose center is marked as RP (Reference Point) such as 

shown on Figure 29(a)-(b) . Regarding the material model, it remained the same as for the center-

hole-plate model. The FE model was used to calculate the stress intensity factors at maximum and 

minimum applied loads. 

The ΔK-values for the CT-specimen model were calculated numerically by the displacement 

correlation method as well as by the contour integral method.  

Multiple 3D CT-specimen cracked models were done simulating an initial crack length of 9 mm to a 

final crack length of 20 mm, which based on the plain fracture toughness for the Al-6061-T6 

corresponds to the critical length. 

 

2.3 LINEAR-ELASTIC COMPUTATIONAL MODEL VALIDATION 

2.3.1 Central-hole-plate model 

The ΔK-values from the 3D center-hole-plate base model were compared against the results obtained 

by closed-form solutions reported in the literature. the closed-form solutions reported by Matos et al. 

[17] and Dowling [1], presented in Eq. 11(a)-(b) respectively and Figure 30, were compared among 

them and against the numerical results for ΔK-values. 

b) a) 
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� =  7√89 F1 � GH1 4 0.358G 4 1.425G� � 1.578G2 4 2.156GQR  where   G = )S 
�   (11-a) 

�T represents the hole radius, S the uniform remote applied stress and a the crack length from the center of the 

hole to the crack tip.  

 

� =  7√89 0.5 H3 � URV1 4 1.243H1 � UR2W  where   U = X
�    (11-b) 

 

 

 

     

 

 

 

Figure 30. Schematic of characteristic variables used within the closed-form solutions [1] 

2.3.1 CT-specimen model 

The stress intensity factors K at maximum and minimum applied loads were calculated from the CT-

specimen model. Such K-values were compared against a closed-form solution reported on the 

literature by Dowling [1]. Equation 12 shows the closed-form solution for the CT-specimen 

� =  �H��qR
rsnjH��qRtj

H0.886 4 4.64u � 13.32u� 4 14.72u2 � 5.6uQR   (12) 

With  u = 9/v 

Where P is the applied load, W the width, a the crack length and B the specimen thickness (See Figure 

26). 

Once the K-values, and therefore the ΔK-values, were calculated and compared against the closed-

form solution the corresponding fatigue crack growth rates da/dN were computed through the Paris-

Erdogan empirical relation. The numerically estimated da/dN-values as function of the crack length 

a as well as the fatigue life estimation (number of cycles N as function of the crack length a) were 

compared against an experimental study reported on the literature by Ambriz [40]. 
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2.4 CENTRAL-HOLE-PLATE MODEL PARAMETRIZATION  

The model parametrization was focused on the following directions:  

1. Implementation of the elastic-plastic material behavior and hardening material behavior  

2. Constant amplitude cyclic loading  

3. Implementation of the residual stress field (Cold hole expansion) 

In the following sub sections the above-mentioned directions 1 and 2 are explained while direction 3 

is explained in the following chapter 3.  

2.4.1 Implementation of elastic-plastic material behavior 

 To introduce the elastic-plastic material behavior to the model, first an analytical calculus (Eq. 4) of 

the plasticity zone generated at the tip of a 5 mm crack was done. Then, several convergence analyses 

were performed to determine the element type and size to be used within the simulations. The 

analytical plastic zone previously estimated was used as a reference for the convergence analyses. 

The convergence analyses were performed with approximate element sizes of 0.079, 0.039, 0.019 and 

0.01 mm. Moreover, linear and quadratic elements were used within the convergence analyses. The 

use of 4-node bilinear plane stress quadrilateral elements and 8-node linear brick elements for the 2D 

and 3D models respectively was defined for the plasticity implementation to the FE model. Besides, 

the approximate element size of 0.019 mm has been defined for the implementation of the plasticity 

behavior to the central-hole-plate model, since the results from the convergence analyses, regarding 

the plasticity zone, turned out to be independent from the mesh at such size (0.019 m).  

Regarding the material hardening model, the isotropic, kinematic and combined hardening models 

were studied. Cyclic loading simulations were performed to understand the differences between the 

parameters used for the FE models. Though the use of the combined model along with the previously 

mentioned element type and size were defined for further simulations based on the convergence 

analyses and the analytical reference of the plasticity zone computed through Eq. 4. 

The parameters used within the FE model for the material model were consulted from an experimental 

stress-strain curve reported on the literature [39]. Besides, various experimental curves reported on 

the literature were studied [39], [41], [42]. The different stress-strain curves studied that are reported 

on the literature can be appreciated on  Figure 31(a)-(c). As it can be appreciated on  Figure 31(a)-

(c), the yield strength as well as the ultimate strength can vary from one experiment to another, despite 

the studied material is the same (Al 6061-T6).   
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Figure 31. Experimental stress-strain curve reported by a) Torabi et al. [39], b) McCullough et al. 

[41] and c) Safdarian [42] 

Table 4 shows the stress-strain values used to define the material model for the isotropic and 

combined hardening models, besides Table 5 shows also the specific values used to define the 

material model when using the kinematic hardening model within the FE model. 

 

 

a) b) 

c) 
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Table 4. Material parameters for Al-6061-T6 used for the isotropic and combined FE models 

Parameter Value 

�C    264.11 MPa 

��   

��  

�2  

�Q  

�w  

�x  

�y  

zC
{  

z�
{  

z�
{  

z2
{  

zQ
{  

zw
{  

zx
{  

zy
{  

269.42 MPa 

274.15 MPa 

278.88 MPa 

281.83 MPa 

287.74 MPa 

293.06 MPa 

296.6 MPa 

0 

0.0005658 

0.001358 

0.0036209 

0.005318 

0.009392 

0.01516 

0.02014 

 

 

 

Table 5. Material parameters for Al-6061-T6 used for the kinematic FE model 

Parameter Value 

�C    264.11 MPa 

��   

 

zC
{  

 

z�
{  

 

296.6 MPa 

 

0 

 

0.02014 
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2.4.2 Constant amplitude cyclic loading 

First, for the central-hole-plate FE model, the simulations of maximum and minimum load were 

performed independently, i.e. The maximum and minimum loads were prescribed on different 

simulations. Moreover, cyclic loading simulations were also performed with only linear-elastic 

material behavior. Then, to introduce the plasticity history within the central-hole-plate FE model, 

cyclic loading along with the material hardening behavior was implemented to the simulations.  

For the present work constant amplitude cyclic loading has been considered.  The constant amplitude 

cyclic loading is characterized by subjecting the component to the same maximum and minimum 

cyclic loading, as was graphically indicated in Figure 1 at the beginning of section 1.  The constant 

amplitude cyclic loading prescribed to the central-hole-plate model had a maximum load such that 

induced a 30% of the theoretical yield strength for the Al 6061-T6 with a load ratio R of 0.1. The 

simulation process consisted on the simulation of a crack by releasing the nodes of the cracked 

surfaces and then a loading cycle, such process can be schematically appreciated in Figure 32. 

Besides, test simulations were performed reversing the loading cycle from minimum-maximum load 

to maximum-minimum load but no differences were found. 

 

 

 

 

 

 

 

 

 

Figure 32. Cyclic loading simulation process 

 

Through-thickness radial cracks were considered for the cyclic loading simulations. The step one 

shown in Figure 32, “Crack simulation” was done at the beginning of the simulation. The 

incorporation of the crack was simulated by releasing the nodes located in the cracked surfaces while 

maintaining the symmetry boundary conditions in the nodes of the rest of the model. The cracked 

surfaces, as well as the symmetry boundary conditions are shown in Figure 33. Once the incorporation 

of the crack was done (Step one in Figure 32) the cyclic loading was performed, i.e. The steps two 

and three shown in Figure 32 were repeated subsequently.   

1. Crack simualtion 

(release nodes of 

the cracked 

surfaces)

2. Minimum load 3. Maximum load 
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Figure 33. Step one of the cyclic loading simulation process 

 

Simulations of one, five and ten loading cycles were performed for the cracked central-hole-plate FE 

model. The symmetry boundary conditions shown in Figure 33 Table 4 remained the same for the 

one, five and ten cyclic loading simulations.  Moreover, the cyclic loading simulations were 

performed for the isotropic, kinematic and combined hardening models. Through the cyclic loading 

simulations using different hardening material models the corresponding hysteresis curves were 

generated, so the differences between the three hardening models could be studied. 

Besides studying the differences between the three hardening models, K-values were calculated for 

the first, fifth and tenth loading cycle within every simulation. By computing the K values at different 

stages (cycles) of the simulations, a comparison between the K values were done regarding the lack 

of plasticity history (K computation at first cycle) or, on the other hand, the consideration of the 

plasticity history. 

 

2.4.3 Implementation of residual stress 

As mentioned on chapter one, the residual stress (RS) has a direct repercussion on accurate fatigue 

life estimations, therefore precise prediction of the RS field is crucial for the central-hole-plate FE 

model reported on the present work since it includes the cold hole expansion process simulation as a 

technique  used to induce RS to the mechanical component.  

On the present work the introduction of the RS has been implemented to the central-hole-plate FE 

model by simulating the cold hole expansion throughout direct mandrel expansion process (Figure 

12). The sub modelling FE technique was employed to capture the through-thickness RS field on the 

Symmetry conditions XZ plane  

Symmetry 

conditions 

YZ plane  

Released nodes 

to simulate a 

cracked 

specimen  
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central-hole-plate model. The normal reaction force on the mandrel as function of its displacement 

through the plate thickness was compared against experimental results reported on the literature by 

Cuevas [43]. The predicted RS field on the central-hole-plate model generated by the cold hole 

expansion, was considered as the initial state during the following fatigue simulations. 

Further details about the cold hole expansion process FE simulations will be given on chapter 3.  

 

2.5 PARAMETRIZED COMPUTATIONAL MODEL: FATIGUE SIMUALTIONS 

By the implementation of the elastic-plastic material behavior, the analysis of the constant amplitude 

cyclic loading and the induction of RS by the cold hole expansion simulations, the central-hole-plate 

model parametrization was completed, and the FE model was ready to the next stage which was the 

fatigue crack growth model (FCG model).  

For the fatigue FCG model, only six through-thickness crack lengths were chosen to be analyzed. The 

crack lengths a of 4, 6, 8, 12, 16- and 19-mm were simulated to study their ΔK values and therefore 

their corresponding fatigue crack growth rates da/dN. The selection of such crack lengths was based 

on two main factors: first in the cold hole expansion most affected zone  and second on the critical 

crack length according to the plain fracture toughness for the Al-6061-T6. Some studies found on the 

literature by Yan-Li et al.  and Gopalakirshna et al. [7], [27]  have reported that the cold hole 

expansion most affected zone embraces the material from the hole edge up to 6 mm radially, and 

beyond such length the effect of the cold hole expansion is minimal regarding the RS field. Moreover, 

the analysis of only six through-thickness crack lengths was a way to optimize the computational cost 

of the FE models. It is considered that a FE models optimization is done since the time required to 

simulate the cold hole expansion and a loading cycle for a crack length was approximately 54 hours 

plus an approximate memory usage of 6 Gb.   

For the computation of the K-values within the parametrized FE model, an analysis between the 

displacement correlation method and the stress correlation method was performed to determine the 

optimal method to calculate K. Such analysis studied the equivalency of both correlation methods 

(displacement and stress) and the factors that may affect the correlation methods such as the boundary 

conditions of the central-hole-plate parametrized FE model. The stress correlation method was 

selected to compute K-values from the FE central-hole-plate parametrized model. The selection of 

the stress correlation method over the displacement correlation method was due to the sensibility of 

the displacement correlation method to the central-hole boundary condition while the stress 

correlation method was not sensible to such boundary condition. Moreover, the previous analysis of 
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constant amplitude cyclic loading showed that not significant differences between the K-values 

computed at the 1st, 5th or 10th cycle could be found, thus, one loading cycle was simulated to compute 

K-values at minimum and maximum load for each of the above through-thickness crack lengths. The 

K-values were determined at the surfaces of the central-hole-plate model and at the mid-plane of the 

model.  

The minimum and maximum loads applied to parametrized FE model were prescribed to simulate the 

loading mode I to the central-hole-plate model, such as in the FE base model shown in Figure 28. The 

loading parameters (maximum load and load ratio R) were defined according to an experimental study 

reported on the literature by Cuevas [43].  

In order to replicate the study performed by Cuevas [43], first the maximum load applied to the 

parametrized FE was 49 kN. Considering such load and the effective transverse area of the central-

hole-plate, i.e. the area at the middle where the hole can be found, the 49 kN induced 30% of the 

theoretical yield strength of the Al-6061-T6. A load ratio R of 0.1 was considered.  

Then, according to the experimental study [43], the 49 kN maximum load was decreased to a 36 kN 

maximum load, such load adjustment were done based on the experimental 49 kN maximum load 

results and to ensure that the stress to which the central-hole-plate model is much lower than the yield 

strength of the Al 6061-T6. The 36 kN maximum load was also simulated on the parametrized FE 

model as well with R of 0.1. Figure 34(a)-(b) shows the servo-hydraulic machine used for the fatigue 

test as well as the used system to measure the crack lengths. 

 

 

 

 

 

 

 

 

Figure 34. a) Servo-hydraulic machine used for the fatigue test of the central-hole-plate specimens 
and b) Microscope and telescopically system used to measure the crack lengths  [43] 

a) b) 
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Once the K-values at minimum and maximum load were calculated from the FE parametrized model, 

and therefore the ΔK-values, it was possible to determine the fatigue crack growth rates da/dN 

corresponding to the above mentioned through-thickness crack lengths  (4, 6, 8, 12, 16- and 19-mm) 

such da/dN values were computed by the Paris-Erdogan empirical relation (Equation 6). Moreover, 

the da/dN calculated from the numerical ΔK-values were compared against an experimental study 

reported on the literature by Cuevas [43] to verify the effectiveness of the FE parametrized model.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

FINITE ELEMENT SIMUALTION FOR COLD HOLE 
EXPANSION 
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In the present work the cold hole expansion process by the direct mandrel expansion technique was 

simulated. The aim of the cold hole expansion is to induce a residual stress (RS) field on the material 

near the hole of the central-hole-plate model. The RS has a direct repercussion on the fatigue life of 

mechanical components, it has been demonstrated that tensile RS propitiate the nucleation and 

propagation of cracks while the compressive RS delay the nucleation and propagation of cracks [3], 

[4]. The finite element (FE) commercial package ABAQUS® was used to perform all the simulations 

of the cold hole expansion process.  

3.1 MANDREL FE MODEL 

As previously mentioned, the process of cold hole expansion consists in passing an oversized mandrel 

through a hole, such process generate radial interference between the mandrel and the drilled 

specimen to be expanded. For the present work two mandrel geometries have been modeled, both as 

3D analytical rigid bodies, which means that the stiffness of the mandrels is considered as infinite. 

The expansion tool, i.e. the mandrel, must be made of a much stiffer material than the material of the 

expanded component to avoid plastic deformations within the mandrel during the expansion. The 

analytical rigid bodies allows to consider the stiffer condition of the mandrel regarding the central-

hole-plate material model, moreover, represents a relatively lower computational cost regarding the 

use of finite-element-based bodies.  

The mandrel geometries studied within the present work were defined as a mandrel completely 

cylindrical and as a conical mandrel. Figure 35 shows the two mandrel geometries studied. Both 

mandrels were modelled with a maximum radius of 3.305 mm, so both generated a 4% of radial 

interference according to Equation 7.  
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Figure 35. Mandrel geometries modelled a) Cylindrical b) Conical 

The mandrel surfaces shown on Figure 35(a)-(b) were defined as the master surfaces while the surface 

of the central-hole-plate model at which the mandrels establish contact was defined as the slave 

surface. In a combination of a rigid and a deformable body, the deformable body should be the slave 

surface while the rigid body should be the master surface. Some penetration of the master surface into 

the slave surface can be observed. The radial interference between the mandrels and central-hole-

plate model can be modelled as a contact pair, which means that two surfaces interact with each other. 

Besides, the contact pair can be whether node-to-surface contact discretization or surface-to-surface 

contact discretization. In the node-to surface contact discretization each node within the slave surface 

interacts with a point on the master surface while in the surface-to-surface contact discretization the 

interactions are averaged over a region rather than point to point as in the node-to-surface. In general, 

the surface-to-surface provides more accurate stress and pressure results since in the node-to-surface 

discretization the forces tend to concentrate in the slave nodes which generates an irregular stress 

distribution across the studied surface. On the other hand, the surface-to-surface discretization has 

smooth results due to the averaged penetration resistance among slave and master surface. Thus, for 

the present work the contact pair with surface-to-surface contact discretization have been defined for 

the simulations of the cold hole expansion process. 

Figure 36 shows the FE model for the cold hole expansion process which consist of the mandrels and 

the previously shown central-hole-plate model, moreover the corresponding expansion direction (-Z) 

can be appreciated. The surface of the central-hole-plate model on the XY plane, where the mandrel 

first stablish contact, was defined as the entrance face while the opposite side was defined as the exit 

face. As mentioned on previous chapters the central-hole-plate model is symmetric only a quarter of 

a) b) 
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the specimen was modeled, and boundary symmetry conditions were imposed along the XZ and YZ 

planes in order to use less computational resources than with the full model. On the other hand, the 

mandrels were modelled as rigid bodies and no symmetry boundary conditions were considered.  

 

 

 

 

 

 

 

 

Figure 36. Assembly mandrel-plate a) Cylindrical mandrel b) Conical mandrel 

Regarding the boundary conditions for the mandrels, a reference point (RP) was defined within the 

mandrel’s models, as can be appreciated on Figure 36, such RP controls the movement of the whole 

mandrel. The mandrel’s RP were constrained in all their degrees of freedom but on Z direction, which 

is the expansion direction. Finally, to simulate the cold hole expansion process regular increments of 

0.144 mm were prescribed to the corresponding RP of each mandrel to simulate the displacement of 

the mandrel through the central-hole-plate model.  

3.2 CENTRAL-HOLE-PLATE MODEL (SUB MODELLING) 

For the prediction of the through-thickness RS field the FE sub modelling technique was used. By 

the FE sub modelling technique, it is possible to go from the general to the specific. The sub modelling 

technique consists on the creation of a FE global model (GM) with a relatively coarse mesh and the 

subsequent creation of sub models (SM) of a localized zone or zones with a refined mesh. The aim 

of the sub modelling technique is the division of a complex problem into simple localized FE models 

focused on a smaller part of the problem, moreover, the use of the sub modeling technique allows to 

optimize the implementation and solution time, especially for 3D models. 

 

Figure 37 shows the scheme of a two-level sub modelling technique; however, since the sub model 

analysis run as separated model, the sub modelling technique is not restricted to only two-level 

a) b) 
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analyses and multiple, sequential sub models can be done. The general considerations for the sub 

modelling technique can be summarized on the following points: 

• Run the GM and save the significant results to be transferred to the SM. 

• Define a set or sets of driven nodes or surfaces within the SM. The driven nodes or surfaces 

are those regions within the SM and defined by the user at which the results from the GM are 

prescribed. 

• ABAQUS® does not perform any check of the driven nodes or surfaces within the SM(s), so 

it is responsibility of the user to correctly define such regions according to the results (stress 

or displacements) that may be relevant. 

• The SM(s) must be situated on the same spatial position where the zone of interest is located 

within the GM.  

•  For practicality, the SM(s) should keep the boundary conditions prescribed on the GM. 

However, such condition is not mandatory within the sub modeling technique and if it is not 

possible to prescribe the exact same boundary conditions in the SM(s) and GM, the analysis 

remains valid. 

 

 

 

 

 

 

 

 

 

Figure 37. Sub modelling technique scheme 

Once the GM and SM(s) have been created the solution of the GM is computed first. Then a region 

at which the results from the GM will be transferred is defined on the next level SM (driven nodes or 

surfaces).  The results from the GM are transferred to the SM as a boundary condition that can be 

whether nodal displacements (nodal-based sub modelling) or stress on the finite elements (surface-
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based sub modelling). Figure 38 shows an example of the SM surfaces at which the results from the 

GM have been prescribed as a nodal displacement boundary condition.  

 

 

 

 

 

 

 

 

 

 

Figure 38. Sub model of a central-hole-plate model. Global model nodal displacements results 
prescribed at the red regions of the sub model 

The nodal-based sub modelling is the more general technique and is recommended when there are 

not significant variations among the stiffness of the GM and SM as well as for big displacements and 

rotations. On the other hand, the surface-based sub modelling is recommended for models where the 

stiffness among GM and SM is considerably different as well as for simulations driven by loads or 

stresses. However, the combined used of both sub modelling techniques is not restricted. 

 

For the present work a nodal-based three-level sub modelling technique was used, i.e. the analysis 

started with the creation of a FE global model (GM) then an intermediate FE sub model (I-SM) and 

finally a fine FE sub model (F-SM). The purpose of the utilization of a three-level sub modelling 

technique is to generate a smooth transition between the results from GM and the F-SM throughout 

the utilization of an I-SM. Figure 39 shows a general arrangement for the three-level sub modelling 

technique. In general, the accuracy of the sub modelling technique can be measured by comparing 

contour plots among the GM and the sub models. Continuity of the contour plot between the GM and 

the sub models represents an adequate transition of the results within the FE models. 

On the present work, the three levels, GM, I-SM and F-SM represents the central-hole-plate 

specimen; nevertheless, the FE models differ from each other in certain characteristics. On the 

following sections the description of each sub modelling level will be detailed. 
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Figure 39. Intermediate and fine sub model’s localization within the central-hole-plate global model 
a) Cylindrical mandrel b) Conical mandrel 

 

3.2.1 Central-hole-plate global model  

The finite element global model (FE GM) is the first level to be analyzed within the three-level sub 

modeling technique and embraces the central-hole-plate as well as the rigid mandrel. Figure 40 shows 

the FE GM for the cold hole expansion. The central-hole-plate specimen is symmetrical and therefore, 

for the GM, only a quarter of the plate was modelled. Symmetry conditions were imposed to the GM 

on the XZ and YZ planes.  

 

 

 

 

 

 

 

Figure 40. Central-hole-plate global model a) Boundary conditions b) FE mesh 

Global model 

Global model 

a)  

b)  

a) b) 
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Additional to the symmetry conditions on the central-hole-plate GM, the central-hole-plate GM was 

constrained in the X axis. The X axis constraint was prescribed to the model YZ face that is not in 

contact with the mandrel, such condition can be appreciated on Figure 40(a). Besides, the central-

hole-plate GM Z axis displacement was also constrained. The Z constraint was imposed to the model 

entrance face edge corresponding to the border of the central-hole-plate model, this constraint can be 

also appreciated on Figure 40(a). The X and Z displacement constraints were imposed to replicate the 

experimental study reported on the literature by Cuevas [43] which is shown on Figure 41.  

 

  

 

  

 

 

 

 

Figure 41. Experimental cold hole expansion [43] 

The material model used in the GM was the elastic-plastic behavior with combined hardening model 

with material properties for the Al-6061-T6; Elastic modulus E of 68.9 GPa and Poisson’s ratio of 

0.33. Regarding the material plastic behavior, the parameters previously reported on Table 4 were 

used. 

The mesh used within the GM was relatively coarse, however the meshing strategy included element 

size transitions, i.e. the element size near the hole was approximately 0.26 mm and such size were 

gradually increasing up to an element size of 2 mm for the material far from the hole. The 0.26 mm  

element size of the GM was determined based on the previous convergence analysis performed for 

the linear-elastic central-hole-plate FE base model. The convergence analysis probed that the K-

values were correctly determined with the 0.26 mm element size. The element size transitions can be 

appreciated on Figure 40(b) and Figure 41 which is a zoom in to appreciate the transitions. The GM 

used 162000 8-node linear brick elements with reduced integration.  

Z 

Y 
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Figure 42. Zoom in to the central-hole-plate model mesh and transitions 

The cold hole expansion was simulated by gradually displacing the mandrel model through the 

central-hole-plate GM. The simulation was performed by 196 steps. A 0.144 mm displacement of the 

mandrel on the -Z direction was prescribed on each step. The radial interference between mandrel 

and plate was simulated by a surface-to-surface contact interaction with finite sliding.  

The main function of the GM was to capture the displacements generated by the radial interference 

of the mandrel by the relatively coarse mesh. Then, the nodal displacements were imposed as a 

boundary condition on the intermediate sub model (I-SM).  

3.2.2 Central-hole-plate intermediate model 

The central-hole-plate intermediate sub model (I-SM) is the second level of the sub modelling 

technique reported on the present work. Figure 43 shows the I-SM which only embraces a specific 

zone of the central-hole-plate model. The I-SM covers from the midpoint of the hole, x=0, up to x = 

-18.825 mm and the height of the model is from the symmetry plane, y=0, up to y=6.587 mm. The 

mandrel model is not required anymore since the nodal displacements that generated the radial 

interference were already captured by the GM.  The specific location of the I-SM within the GM can 

be appreciated on Figure 39. 
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Figure 43. Central-hole-plate intermediate sub model a) Boundary conditions and sub modeled 
regions b) FE mesh 

According to the general considerations for the sub modelling technique, the symmetry boundary 

conditions imposed on the GM remained on the I-SM. The symmetry boundary conditions that 

remained from the GM can be appreciated on Figure 43(a) along the lower XZ face and along the 

right YZ face. Nevertheless, the X and Z displacement constraints imposed on the GM did not 

remained since the I-SM only represents the material near the hole.  

The surfaces highlighted in red on Figure 43(a) represents the surfaces where the sub model driven 

nodes lie (node-based technique). The nodal displacements generated by the mandrel that were 

captured by the GM were then imposed as a displacement boundary condition at the sub modelling 

driven nodes. Therefore, the sub modelling driven nodes acted as the linking zone among the GM 

and the I-SM.  

Figure 43(b) shows the FE mesh used on the I-SM. The mesh used on the I-SM were finer regarding 

the mesh used on the GM. The approximate element size used within the I-SM was 0.15 mm. The 

0.15 mm approximate finite element size used within the I-SM was selected based on the optimization 

of the computational resources, i.e. leveling the finite element density and the solution time, and 

considering that the stress gradients presented within the region that the I-SM embraces far from the 

hole edge were smaller than the critical gradients exhibited near cold hole expanded hole. The I-SM 

used 131440 8-node linear brick elements with reduced integration. 

The amount of FE used on the I-SM, compared against the elements used on the GM, were reduced. 

Nevertheless, the I-SM volume is approximately 44 times smaller than the GM volume and therefore 

a much higher elements density can be found on the I-SM. The principal function of the I-SM is to 

a) b) 
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act as a bridge between the GM and the F-SM, so a smooth transition of the nodal displacement 

boundary condition can be achieved without loss of accuracy.  

 

3.2.3 Central-hole-plate fine model 

The central-hole-plate fine sub model (F-SM) was the third level of the sub modelling technique 

reported on the present work. The aim of the F-SM is to capture the high stress gradient near the hole 

due to the cold hole expansion, i.e. the induced residual stress (RS). 

Figure 44 shows a F-SM which only embraces a small zone near the hole’s edge. The mandrel model 

is not required in the F-SM since the nodal displacements that generated the radial interference were 

already captured by the GM, subsequently by the I-SM and now by the F-SM. The localization of the 

F-SM shown on Figure 44(a)-(b) within the GM and the I-SM can be appreciated on Figure 39.  

 

Figure 44. Central-hole-plate fine sub model a) Boundary conditions and sub modeled regions b) 
FE mesh  

 

According to the general considerations for the sub modelling technique, the symmetry boundary 

conditions imposed to the GM on the XZ plane were transmitted to the I-SM and subsequently to the 

F-SM such as shown on Figure 44(a) along the lower XZ face of the model. Nevertheless, neither the 

YZ symmetry boundary condition nor the X and Z displacement boundary conditions were imposed 

to the F-SM. Once again, the surfaces highlighted in red on Figure 44(a) represents the linking region 

among the I-SM and the F-SM, i.e. The driven nodes at which the nodal displacements from the I-

SM were transmitted. 

b) a) 
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The elevated residual stress gradient near the hole were captured by the highly refined mesh of the F-

SM shown on Figure 44(b). According to the convergence analyses performed for the implementation 

of the elastic-plastic material behavior, the approximate finite element size defined for the F-SM was 

0.019 mm. The F-SM used 160000 (average) 8-node linear brick elements with reduced integration 

elements. The amount of FE used within the F-SM was similar to the FE used on the GM, nevertheless 

the volume of the F-SM is approximately 5520 times smaller than the GM, so a very high FE density 

can be achieved by the F-SM. Table 6 shows the summary of the FE used on the GM, I-SM and F-

SM.    

 

Table 6. Finite element density of the three-level FE sub modelling technique. 

Model  Amount of used FE  FE density 

V |}
~~�W 

Global model (GM) 162000 5 

Intermediate sub model (I-SM) 

Fine sub model (F-SM) 

131440 

160000 (Average) 

183 

27996 

   

   

Table 6 shows the quantity of FE used within the F-SM as an average. The reason of such condition 

(averaged) is that not only one F-SM was proposed on the present work since the aim of the sub 

modeling technique is to study localized or specific zones and according to the information previously 

reported on section 2.2, Parametrized Computational Model – Fatigue Simulations, six through-

thickness crack lengths were chosen to be analyzed. The crack lengths a of 4, 6, 8, 12, 16- and 19-

mm were studied. Therefore, only the fragments of central-hole-plate model that matches with the 

studied crack lengths regions (4, 6, 8, 12, 16 and 19 mm) worth to have the highest FE density. 

Moreover, by applying the third level of sub modelling only to the zones of the above-mentioned 

crack lengths regions (6 different F-SMs) significant savings of computation time and memory have 

been achieved rather than extending the one single F-SM from the 4 to the 19 mm crack lengths.  

To sum up, a F-SM for each crack length region studied in the fatigue simulations was proposed to 

analyze the residual stress gradient generated by the mandrel’s radial interference. Figure 45(a) shows 

the GM, the I-SM and the distribution of the various F-SM along the symmetry X axis. Figure 45(b) 

is a zoom to the zone of the three-level sub modelling zone at which multiple F-SM were proposed. 

Due to the F-SM are related to certain crack lengths regions that were studied in the fatigue 
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simulations, the name of the F-SM is based on such crack lengths regions. The F-SM-a4 is related to 

the 4 mm crack region, the F-SM-a6 is related to the 6 mm crack region and so on. 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Overlay plot of the three-level sub modelling technique for the central-hole-plate model 

 

3.3 THREE-LEVEL SUB MODELLING RESOLUTION  

3.3.1 Residual stress prediction 

The residual stress RS component generated during the cold hole expansion, that turned out to be 

relevant for the present work is the vertical RS component (Y). The vertical RS is the most significant 

component since such stress component is aligned with the loading mode I. Such loading mode was 

previously defined for the present work since most of engineering applications are within such loading 

mode (see Figure 2).  

A comparison of the mandrel’s reaction force as function of its displacement through the thickness 

of the central-hole-plate model were done between the two mandrel geometries modelled. Also, the 

vertical RS component induced on the central-hole-plate model by the two mandrel geometries were 

compared between them and against an experimental study reported on the literature by Cuevas [43]. 
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Regarding the three-level sub models, a comparison between the RS field captured by the different 

FE densities presented on the GM, the I-SM and the various F-SM were done.  The numerically 

estimated RS field were measured radially (along the X axis) from the hole edge as well as through 

the thickness (along the Z axis) of the central-hole-plate model. Specifically, on the entrance face, the 

mid-plane and the exit face of the central-hole-plate model regarding the expansion direction (See 

Figure 36).  

The results from the central-hole-plate examined planes (entrance face, mid-plane and exit face) were 

studied to determine the radial extension of the most affected zone by the cold hole expansion. 

Moreover, the vertical component of the induced RS computed at the three examined planes were 

compared to define the zone most likely to initiate and propagate cracks. 

 

3.3.2 Fatigue simulations 

The RS fields estimated by the three-level sub models were considered as an initial condition for the 

fatigue simulations. A reliable RS field estimation is vital for an accurate fatigue life estimation, 

therefore the impact of the three-level sub models’ resolution on a cracked and loaded component 

was studied. 

The fatigue cycle simulation process was defined on the previous chapter (See Figure 32). The 

presence of a crack was simulated by defining a crack length, and therefore, a cracked surface within 

the GM. Such cracked surface can be appreciated on Figure 33. Despite the cracked surface was lying 

on the symmetry plane XZ it was defined as a surface or region where the displacement was allowed 

in all its degrees of freedom. On the other hand, the boundary symmetry conditions previously defined 

on the same symmetry plane XZ remained for the rest of the surfaces. The boundary generated in 

between the cracked surface region and the symmetry plane was defines as the through thickness 

crack front.  

Once the presence of a crack was simulated on the GM the RS field is redistributed on the released 

nodes and the ligament. The RS redistribution and the nodal displacements on the cracked surface 

(released nodes) were captured by the GM and the results of such model were imposed to the I-SM 

and subsequently to the F-SM as boundary conditions.  

The same sub modelling sequence were used for the maximum and minimum loads simulations. The 

remotely applied loads to the central-hole-plate model were prescribed to the far end of the GM as 

can be appreciated on Figure 46(a)-(b) simulating the loading mode I. 
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Figure 46. Central-hole-plate global model a) Cracked b) Remotely loaded 

 

The remotely applied loads redistributed the RS field within the component and generated nodal 

displacements on the cracked surfaces. The RS redistribution as well as the nodal displacements were 

captured by the three-level sub models by transferring the nodal displacements as boundary 

conditions among them, such as in the cold hole expansion FE simulations. The combined sequence 

followed for the cold hole expansion process and the fatigue simulations within the sub modeling 

technique was done as follows: First simulating the cold hole expansion process on all the three-levels 

FE models as previously explained (see Figure 37). Then, from the expanded GM, the simulation was 

restarted with the RS field as initial condition. The presence of a crack as well as a loading cycle were 

simulated during the GM restarted simulation. The crack as well as the loading cycle simulated during 

the GM restart simulation generated new nodal displacements, such nodal displacements were then 

transferred to the expanded I-SM (intermediate sub model) as a boundary condition. The nodal 

displacement were then captured by the I-SM higher finite element density. Sequentially, the nodal 

displacements generated within the expanded, cracked and loaded I-SM were prescribed as a new 

boundary condition to the expanded F-SM. Finally, the results of the expanded, cracked and loaded 

central-hole-plate model were captured by the highest finite element density within the three-level 

a)  b)  
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sub modeling. Figure 47 shows the hierarchical order in which the fatigue simulations were performed 

by considering the initial RS condition and the three-level sub modelling technique. 

 

 

 

 

 

 

 

 

 

 

Figure 47. Hierarchical order for the three-level sub modeling within the fatigue crack FE 
simulations 

The stress intensity values (K-values) at minimum and maximum loads were numerically computed 

and used within the Paris-Erdogan empirical relation to predict the corresponding fatigue crack 

growth rates da/dN. A comparison between the da/dN-values calculated by the three-level sub models 

were done to study the impact of the finite element density on the da/dN predictions as well as the 

sub modelling technique effectiveness. The da/dN predicted by the model proposed on the present 

work were compared against experimental data reported on the literature by Cuevas [43].  
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Within chapter 4 the results of the research will be presented according to the order previously shown 

in chapter 2. First, the results from the closed-form solutions for the stress intensity factor, second, 

the linear elastic computational base model results. Third, the results from the displacement 

correlation method applied to both specimens and finally the results from the central-hole-plate model 

parametrization. 

4.1 CLOSED-FORM SOLUTIONS FOR THE STRESS INTENSITY FACTOR K 

CALCULATION 

As previously mentioned on section 2.3.1 on Eq. 11(a)-(b), the closed-form solutions used in the 

present work were reported on the literature by Dowling [1] and by Matos et al. [17].   

4.1.1 Central-hole plate specimen 

The analytical K-values at the maximum and minimum load were estimated for crack lengths from 4 

to 19.5 mm by both closed-form solutions and a comparison between the results of both closed-form 

solutions were done, Figure 48 shows such comparison plus the comparative o the corresponding the 

ΔK-values. The crack lengths from 4 to 19.5 mm were chosen based on the critical length according 

to the plane stress closed-form solution. The critical crack length is that at which the K-value reach 

the plain strain fracture toughness KIC for the Al 6061-T6. The maximum load considered for the 

closed-form solutions was such that induced a 60% of the yield strength for the Al 6061-T6 while for 

the minimum load it was considered a loading ratio R of 0.1. 
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Figure 48. Closed-form solutions comparison for the ΔK values for the maximum and minimum 
applied loads. 

 

According to the results shown on Figure 48 the differences between the closed-form solutions at the 

maximum and minimum load were less than 1.2%. Therefore, the differences between the ΔK-values 

calculated by both closed-form solutions were also negligible. The results calculated by both closed-

form solutions were practically the same, thus, it was decided to only use the closed-form solution 

proposed by Matos et al.[17].  

4.1.2 Compact tension specimen (CT-specimen) 

As previously mentioned on section 2.3.2 on Eq. 12, the closed-form solution to be used in the present 

work was reported on the literature by [1]. Contrary to the closed-form solutions for the center-hole-

plate, in the CT-specimen only one closed form solution was considered. A load range ΔP of 2.5 kN 

with a load ratio R of 0.1 was considered for the closed-form solution calculus. Contrary to the central-

hole-plate specimen, where the K-values were estimated for crack lengths from 4 to 19.5 mm, for the 

CT-specimen, the analytical K-values at maximum and minimum load were estimated for a minimal 

crack length of 9 mm to a maximal crack length of 21 mm. The difference between crack lengths 

calculations among the central-hole-plate specimen and the CT-specimen was because the crack 

critical length for both geometries is different. For the CT-specimen 21 mm was estimated to be the 

critical length according to the plane stress closed-form solution, turns out to be the critical crack 

length. The K-values for the maximum and minimum loads were calculated by the closed-form 

solution and therefore, the corresponding ΔK-values. Figure 64 shows the results for the ΔK-values 

as function of the crack length a.  
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Figure 49.ΔK-values as function of the crack length a for a CT-specimen. ΔK-values calculated 
from the closed-form solution reported on the literature. 

 

Once the ΔK-values for both, the central-hole-plate specimen as well as the CT-specimen were 

computed through the corresponding closed-form solutions, a comparative between the behavior of 

such ΔK-values were done. The comparative can be appreciated on Figure 50. 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. ΔK-values for central-hole-plate specimen and CT-specimen through closed-form 
solutions 



75 

 

As it can be appreciated on Figure 38, the ΔK-values computed for the central-hole-plate specimen 

are practically the same, despite they were computed by two different closed-form solutions. 

Regarding the severity for the fatigue crack growth (FCG), the CT-specimen exhibited larger ΔK-

values, thus, the central-hole-plate presents a superior resistance against the FCG. Besides, Figure 50 

shows the standard behavior of the ΔK-values during the FCG process in a mechanical component.  

4.2 LINEAR ELASTIC COMPUTATIONAL BASE MODELS 

4.2.1 Central-hole-plate base model 

For the linear-elastic central-hole-plate model (Figure 28) the stress intensity factors K were estimated 

by two methods, the displacement correlation method and the J-contour integral. Moreover, the 

numerical results were compared against analytical values from the closed-form solution presented 

by Matos et al. [17] .  

A 2D analysis were performed prior to the 3D analysis. The 2D models were developed to define 

meshing strategies and determine adequate element sizes for the problem. A convergence analysis 

was carried out for the 2D models with different crack lengths and loads.  

For the first convergence analysis, a load such that induced the 60% of the nominal yield strength of 

the Al 6061-T6 were imposed to the far end 2D center-hole-plate model. The first convergence 

analysis was done for a 7 mm through-thickness crack. The convergence analysis were applied to 2D 

models with 4-node bilinear plane stress elements, and 3D models with 8-node linear brick elements. 

The element sizes used were 1.058, 0.635, 0.3175, 0.1587- and 0.079-mm. Figure 51(a)-(d) shows 

the results for the convergence analysis. 
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Figure 51. Convergence study results for a 7 mm cracked center-hole-plate model a) K-values 
calculated by the displacement correlation method and linear elements, b) K-values calculated by 
the contour integral and linear elements, c) K-values calculated by the displacements correlation 
method and quadratic elements and d) K-values calculated by the contour integral and quadratic 

elements 

 

Figure 51(a) and (c) shows the K-results for the linear and quadratic elements respectively determined 

by the displacement correlation method. On the contrary to the information reported on the literature 

(see section 1.3.1 and Figure 8), the numerical results shown on Figure 51 (a) and (c) for the 

displacement correlation exhibit a non-linear behavior, i.e. after discarding the nodal values near the 

crack tip not only one slope has been found. Therefore, the extrapolation of the characteristic K-value 

for the crack tip is not defined. When plotting the K-factor with the scale in the independent axis from 

0 to 30 ^_9√� the non-linear behavior may not be appreciated easily, but when applying a zoom-

in to the plots of Figure 51 such behavior turns evident. Figure 52 shows the zoom-in to the 

corresponding plots of Figure 51. Information about such non-linear behavior has not been found 

within the literature. This non-linear behavior was further analyzed by a comparison with the CT 

specimen and the results are presented in the following section. 

On the other hand, Figure 51 (b) and (d) shows the results for the K-values calculated from the contour 

integral method with linear and quadratic elements with the independent axis scale also set to 0 to 30 

b) a) 

c) d) 
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^_9√� . As it can be appreciated on Figure 51 (b) and (d), the K-values varied slightly between the 

element sizes of 0.3175, 0.1587 and 0.079 mm regardless the use of linear or quadratic elements. On 

the contrary the computation time for the quadratic elements was higher than for the linear elements.  

The zoom-in were also applied to the plots of Figure 51(b)-(d), such close-up can be appreciated on 

Figure 52. Despite de zoom-in, the non-linear behavior was not found and the difference between the 

K-values estimated by the 0.3175, 0.1587- and 0.079-mm element sizes is less than 1%. Therefore, it 

can be said that the K-values converged at an element size of 0.317 mm. The convergence value has 

approximately 1.1% of difference regarding the closed-form solution.  

 

Figure 52. Zoom-in to the convergence study results for a 7 mm cracked center-hole-plate model a) 
K-values calculated by the displacement correlation method and linear elements, b) K-values 

calculated by the contour integral and linear elements, c) K-values calculated by the displacements 
correlation method and quadratic elements and d) K-values calculated by the contour integral and 

quadratic elements 

 

For the second convergence analysis a load such that induced the 30% of the yield strength of the Al 

6061-T6 were imposed to the far end of the 2D and 3D models of the center-hole-plate model. The 

second convergence analysis was done for a 4 mm through-thickness crack and the study evaluated 

the results of K-values calculated by two methods, the displacement correlation method and the 

contour integral method, the numerical results were also compared against the analytical value from 

a) b) 

c) d) 



78 

 

the closed-form solution presented by Matos et al. [17]. The second convergence analysis were 

applied to 2D models with 4-node bilinear plane stress elements, and 3D  models with 8-node linear 

brick elements. The element sizes used were 1.058, 0.635, 0.3175- and 0.1587-mm. Figure 69(a)-(d) 

shows the results for the convergence analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Convergence study results for a 4 mm cracked center-hole-plate model a) K-values 
calculated by the displacement correlation method and linear elements, b) K-values calculated by 
the contour integral and linear elements, c) K-values calculated by the displacements correlation 
method and quadratic elements and d) K-values calculated by the contour integral and quadratic 

elements 

 

Figure 69 (a) and (c) shows the results for the K-values for linear and quadratic elements respectively 

for the displacement correlation method. As in the 7 mm cracked specimen study, the displacement 

correlation exhibits a non-linear behavior. As in the analysis of the 7 mm cracked specimen, a  zoom-

in was applied to the plots of Figure 69 to have a better perspective of the non-linear behavior. The 

zoom in can be appreciated on Figure 54. However, the non-linearity is less evident in this second 

convergence analysis than in the previous analysis performed to the 7 mm cracked specimen. The 

non-linear behavior turned out to be less evident in the second convergence analysis since the crack 

length was smaller and therefore, the finite elements considered for the displacement correlation 

method were limited, i.e. The finite elements between the crack tip and the model boundary (central 

a)  b)  

c)  d)  



79 

 

hole) were less, compared with those considered in the 7 mm cracked specimen. The non-linear 

behavior can be overlooked on the results from the 4-node linear elements (Figure 54a), however the 

non-linearity turns notorious at the 0.1587 mm element size. On the other hand, the non-linear 

behavior on the results from the 8-node quadratic elements (Figure 54c), can be appreciated since the 

0.3175 mm element size.  

 

Figure 54. Zoom-in to the convergence study results for a 4 mm cracked center-hole-plate model a) 
K-values calculated by the displacement correlation method and linear elements, b) K-values 

calculated by the contour integral and linear elements, c) K-values calculated by the displacements 
correlation method and quadratic elements and d) K-values calculated by the contour integral and 

quadratic elements 

 Figure 52 (b) and (d) as well as Figure 54(a) and (d), shows the results for the K-values calculated 

from the contour integral with linear and quadratic elements. Like in the 7 mm cracked specimen 

convergence study, the K-values converged at an approximate element size of 0.3175 mm. The 

differences between the K-values estimated by the 0.3175- and 0.1587-mm element sizes is less than 

1.2%. Therefore, it can be said that the K-values converged at an element size of 0.317 mm. The 

convergence values difference regarding the closed-form solution values are approximately 1.6% and 

0.4% for the linear and quadratic elements respectively. The convergence analysis in both crack 

lengths within the central-hole-plate specimen proved that the 0.3175 mm linear finite element is 

enough for mesh independent results. 

a) b) 

c) d) 
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From the 2D study, the usage of 0.3175 mm 4-node bilinear plane stress quadrilateral elements with 

reduced integration were defined for the 3D FE center-hole-plate base model, however for the 3D FE 

model, the elements became 0.3175 mm 8-node linear brick elements. Moreover, the use of the 

displacement correlation method was discarded for the 3D FE model due to the non-linear behavior 

found within the convergence analyses.  

Once that the finite element size was set to achieve mesh independent results, the analysis for the 3D 

case was performed, but on the contrary to the convergence analysis, the K-values at maximum and 

minimum load were calculated for several crack lengths, i.e. For the 3D case the analysis performed 

was not a convergence analysis but a fatigue crack growth (FCG) analysis. The K-values within the 

3D central-hole-plate base model were calculated for crack lengths from 4 to 19.5 mm by the contour 

integral method, moreover, since the FE model is 3D, the K-values were studied at the surface of the 

3D FE model as well as at the half of the thickness. As previously mentioned, the maximum crack 

length of 19.5 mm was defined as the critical crack length according to the plain fracture toughness 

for the Al 6061-T6. 

Once the K-values at maximum and minimum loads were computed the ΔK-values were calculated 

and compared against the results from the closed-form solutions reported by Matos et al. Figure 55  

shows the behavior and comparison of the K-values at minimum and maximum loads from the 

contour integral, moreover Figure 74 shows the corresponding ΔK-values as function of the crack 

lengths.  
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Figure 55. K- values at maximum and minimum loads as function of the crack length a for the 
center-hole-plate linear-elastic model.  K- values calculated analytically and from the contour 

integral values. 

 

 

       

 

 

   

 

 

 

 

 

Figure 56. ΔK- values as function of the crack length a for the center-hole-plate linear-elastic 
model.  ΔK- values calculated analytically and from the contour integral values. 
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The average discrepancy between the ΔK-values calculated by the FE base model and the results from 

the closed-form solution, are 3.7% and 5.4% for the results at the surface of the model and at the half 

of the thickness respectively.  

The match of ΔK-values calculated through the 3D FE base model  at the surface of the model exhibit 

a better match with the closed form solution for cracks larger than 14 mm. On the other hand, the 

results of the ΔK-values calculated at the half of the thickness shows a better match regarding the 

closed-form solution for cracks up to 10 mm. However, as previously mentioned, the average 

discrepancy is lightly higher for the results at the half of the thickness. The larger discrepancy within 

the numerical results at the half of the thickness is attributed to the fact that the closed form solution 

considered was proposed for plane stress condition and the finite elements at the surface of the 3D 

FE base model partially replicates the plane stress condition.  

The comparison between the numerical (contour integral) and the analytical results also can be 

appreciated on the fatigue crack growth rates da/dN calculated from the FE modal and through the 

Paris-Erdogan empirical relation (Eq. 7). Figure 57 shows the da/dN values as function of the crack 

length a calculated by the contour integral method and by the closed-form solution. For the da/dN-

values the material coefficients C and m used were those reported on the literature by Ambriz[40]. 

Like in the ΔK-values results, the match between da/dN numerical results at the surface of the FE 

base model is better than the da/dN numerical results for the half of the thickness regarding the closed-

form solution results due to the plane stress condition.  
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Figure 57. Fatigue crack growth rates da/dN as function of the crack length a for the center-hole-
plate linear-elastic model 

 

4.2.2 Compact tension specimen FE model 

K-values from the displacement correlation and contour integral method have also been calculated 

for the CT-specimen FE model for both, the 2D and the 3D cases. The displacement correlation 

method as well as the contour integral were previously explained on section 1.3.1 Stress intensity 

factor evaluation (K-values evaluation).  

Once K-values were calculated for maximum and minimum loads, the corresponding ΔK-values were 

determined. The numerical ΔK-values results from the CT-specimen FE model have been compared 

against a closed-form solution previously presented. Moreover, numerical fatigue life estimations 

have been compared against experimental results reported in the literature by Ambriz [40].  

Like in the previous base model reported on section 4.2.1, a 2D analysis were performed prior the 3D 

analysis so an adequate finite element size and type could be determined for the 3D simulations. 

For the convergence analysis, a load of 2.78 kN were imposed to the 2D CT-specimen FE model, 

besides, the loading conditions remained the same for study within the 3D CT-specimen FE model. 

The loads were prescribed on the upper half of the specimen hole, as shown on Figure 26 and Figure 

29. The convergence analysis was done for a 10 mm through-thickness crack, according to the crack 

length measurement schematically shown on Figure 26. The convergence study evaluated the results 

of K-values calculated by the displacement correlation method and the contour integral method 
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against the analytical value from the closed-form solution. The convergence analysis was done for 1, 

0.75, 0.5, 0.25, 0.2, 0.1- and 0.05-mm element sizes as well as for 4-node bilinear plane stress and 8-

node quadratic elements. Figure 58 shows the results for the convergence analysis. 

 

 

 

 

 

 

 

 

 

Figure 58. 2D convergence study for a CT-specimen linear-elastic FE model 

 

The results from the contour integral presented on Figure 58 shows that the K-values estimated by 

the coarsest element size varied slightly regarding the finest element size for both, linear and quadratic 

elements. In the case of linear elements, the variation between the use of a 1 mm or 0.05 mm element 

size was of less than 2%. In the case of the quadratic elements, the variation between the use of 1 mm 

and 0.05 mm element size was of less than 1%. The difference between the K-values calculated from 

the contour integral (≈ 14.6 ^_9 ) regarding to the closed form solution (13.68 ^_9 ) was 

approximately of 6% for both linear and quadratic elements.  

On different circumstances, the K-values calculated through the displacement correlation method 

converged till the 0.1 mm element size. The K-values from the displacement correlation method 

converged at approximately the same value (14.6 MPa) than the K-values from the contour integral. 

By comparing the results shown on Figure 58, it was demonstrated that the use of the contour integral 

method to calculate the K-values provide accurate results with coarser FE meshes, than the use of the 

displacement correlation method. The results reported on Figure 58, about the advantages of the 

contour integral over the displacement correlation method, regarding the FE mesh, are in agreement 

with previously reported results reported on the literature by Courtin et at. [19].  
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From the 2D study, the usage of 0.1 mm 20-node quadratic brick elements were defined for the 3D 

CT-specimen FE model. The usage of such size and type of finite elements was defined because 

through them comparable results for both methods (contour integral and displacement correlation), 

can be dragged.  As in the central-hole-plate model, once that the finite element size was set to achieve 

mesh independent results, the analysis for the 3D case was performed, but on the contrary to the 

convergence analysis, the K-values at maximum and minimum load were calculated for several crack 

lengths, i.e. For the 3D case the analysis performed was not a convergence analysis but a fatigue crack 

growth (FCG) analysis. 

K-values at maximum and minimum load were calculated with the 3D CT-specimen FE model. K-

values were calculated for crack lengths from 9 to 21 mm by the displacement correlation method 

and by the contour integral method. Moreover, since the FE model is 3D, the K-values were studied 

at the surface of the 3D CT-specimen FE model as well as at the half of the thickness. As previously 

mentioned, the maximum crack length of 21 mm was defined as the critical crack length according 

to the plain fracture toughness for the Al 6061-T6. 

Once the K-values at maximum and minimum loads were computed the ΔK-values were calculated 

and compared against the results from the closed-form solutions previously reported in section 4.1. 

Figure 77 shows the ΔK-values as function of the crack length.  

 

 

 

 

 

 

 

 

 

 

Figure 59. ΔK-values as function of the crack length a. K-values calculated by various methods 
throughout a 3D CT-specimen FE model 
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Results from the displacement correlation: 

The average difference between the K-values from the displacement correlation method and the K-

values from the closed-form solution is less than 2% for both locations at the surface or at the half of 

the thickness of the 3D CT-specimen FE model. However, a slightly better match for the results at 

the surface of the 3D CT-specimen FE model was exhibited regarding the closed-form solution. The 

better match of the results at the surface of the 3D CT-specimen FE model is attributed to the fact 

that the closed-form solution was proposed for a plane stress condition and the finite elements at the 

surface of the model partially replicates the plane stress condition. Figure 78(a)-(c) shows the results 

for the vertical displacements at different crack lengths. 

 

 

 

 

 

 

 

 

 

 

Figure 60. Vertical displacements at maximum load within a cracked CT-specimen FE model a) 11 
mm crack b) 16 mm crack and c) 21 mm crack length 

Figure 60(a)-(c) shows how the FE model was re meshed from one crack length simulation to another. 

The finest zone of the FE mesh moved along the X axis as the crack became bigger.  

Results from the contour integral:  

The average discrepancies between the K-values calculated by the contour integral and the K-values 

calculated from the closed-form solution, are 17.4% and 4.3% for the surface and half of the thickness 

respectively. Unlike the central-hole-plate specimen and the previous displacement correlation results 

for the 3D CT-specimen FE model, the calculus from the contour integral at the half of the thickness 

are closer to the closed-form solution than the contour integral results at the surface of the FE model, 

however the discrepancies are considerable. 

a)  b)  c)  
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The discrepancy among the ΔK-values calculated by various methods (Figure 77 shown above), i.e. 

closed-form solution, displacement correlation and contour integral, have an effect in the fatigue 

crack growth rates da/dN estimations, and therefore on the fatigue life estimations (Numbre of cycles 

N as function of the crack length a). Larger ΔK-values produces larger da/dN rates, while in the 

opposite case. Smaller ΔK-values produces as well smaller da/dN rates. Moreover, the higher the 

estimated da/dN-values, the shorter the fatigue life will be and vice versa. 

For the da/dN-values estimation, the used material coefficients C and m, 3.97o10�  and 3.32 

respecitvely, were those reported on the literature by Ambriz [40].  The da/dN-values estimated by 

the CT-specimen FE model and by the closed-form solution were compared against experimental 

data reported on the literature by Ambriz [40]. Figure 81 shows a comparision among different of 

da/dN-values. 

 

 

 

 

 

 

 

 

 

 

Figure 61. Fatigue crack growth rates da/dN as function of crack length a calculated by various 
methods for a CT-Specimen 

 

As it can be appreciated on Figure 81, there are slight differences between the numerical predictions 

and the experimental results, except for the results estimated at the surface of the 3D CT-specimen 

FE model through the contour integral method (lowest values). 

For crack lengths below 13 mm, the da/dN numerical predictions overestimated the experimental 

values. For intermediate crack lengths (13 to 19 mm) the numerical predictions underestimated the 
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experimental da/dN-values and finally, for cracks between 19 and 21 mm the numerical results 

approximately match with the experimental da/dN-values. Significant discrepancies between the 

numerical and experimental da/dN-values as function of the crack length, have severe repercussions 

on the fatigue life estimations.  

Figure 62 shows a comparison of fatigue life estimated by the different methods used in this research, 

and as well by the experimental fatigue test reported in the literature. 

 

  

 

 

 

 

 

 

 

 

Figure 62. Number of cycles N as function of the crack length a for a CT-Specimen. 

 

Figure 62 revealed a notorious underestimation of the fatigue life by the predictions of the finite 

element simulations and the closed-form solution, regarding the experimental data. The predictions 

underestimated the fatigue life by an approximate factor of 2.5 except for the results from the contour 

integral at the surface of the FE model that exhibited the worst correlation with the experimental 

da/dN values. In general, the numerical and closed-form results predicted that fatigue crack length 

reached 21 mm in the CT-specimen at approximately 31500 cycles, while the same crack length was 

reached, experimentally, by 81000 cycles.  

To discuss the discrepancies among the difference between the experimental and numerical fatigue 

life estimations, the experimental data reported on the literature by Ambriz [40] were analyzed. In the 

study performed by Ambriz [40] a pre crack of 1 mm was introduced to the specimens, moreover it 
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was detected that for the first 3 experimental measurements the crack length a remained constant 

while the number of cycles elapsed was already 20000, i.e. Experimentally, 20000 cycles were 

required before any fatigue crack growth rate da/dN could be detected. In the case of the CT-specimen 

FE model no pre-cracking cycles were considered. Moreover, to improve the accuracy of the fatigue 

life estimations an adjustment of the da/dN-values was done according to the experimental data based 

on the material coefficients C and m.  

The original C and m material coefficients, 3.97o10�  and 3.32, were coefficeints reported for the 

whole range of the ΔK-da/dN curve as can be appreciated on Figure 63 reported by Ambriz. But 

considering a single pair of coefficients for the whole range can lead to underestimate or overestimate 

the fatigue crack growth rates, specially for those values that are farther from the trend line. Sligth 

variations in the da/dN-values can affect severly the fatigue life estimations. 

 

 

 

 

 

 

 

 

 

Figure 63. Paris coefficients adjustment reported experimentally by Ambriz [40] 

By considering the original C and m coefficients reported by Ambriz the numerical and analytical 

fatigue life estimations were very conservative since the numerical and analytical life estimations 

predicted approximately 30000 cycles to reach the critical crack length of 21 mm while 

experimentally 81000 cycles were necessary to reach the same crack length. Because of the extremely 

conservative fatigue life estimations due to the consideration of the original C and m coefficients. The 

da/dN-values were adjusted.   
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The methodology to do the da/dN-values adjustment is known as a table look-up scheme. The table 

look-up scheme consists on the usage of experimental FCG data to describe the da/dN-values as 

function of the ΔK-values or vice versa. Contrary to the classical adjustment for the Paris coefficients, 

such as the reported in Figure 63, where the adjustment is done for the whole range, in the table look-

up scheme the adjustment is performed point-to-point. Figure 64(a)-(b) shows the da/dN-values 

values adjusted by the table look-up scheme as function of the crack length and their corresponding 

adjusted fatigue life estimation.  

 

Figure 64. Results from table da/dN table look-up scheme for a CT-specimen a) Fatigue crack 
growth da/dN as function of the crack length a. b) Fatigue life curves. 

 

Figure 64(a) shows the results from the table look-up scheme for the da/dN-values. The results 

calculated by the contour integral at the surface of the CT-specimen FE model remained at the lowest 

da/dN rates since the less severe ΔK-values (see Figure 59) corresponded to such estimation (surface 

of the CT-specimen FE model). Contrary, the results calculated by the contour integral at the half of 

the thickness, remained as the highest rates. On the other hand, the da/dN results obtained from the 

a) 

b) 
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closed-form solution and the displacement correlation method, for both surface and half thickness, 

have a maximum average discrepancy of 9% regarding the experimental measurements.  

Figure 64(b) shows the fatigue life estimations based on the table look-up scheme da/dN-values, 

Figure 64(a). The less conservative fatigue life prediction was done by the results from the contour 

integral at the surface of the CT-specimen FE model. The estimation of the contour integral at the 

surface predicted approximately 100900 cycles to reach the 21 mm crack length while the 

experimental cycles to reach the same length were 81000 cycles. All the analytical and numerical 

results for the fatigue life estimations were compared against the experimental fatigue life, i.e. The 

81000 cycles elapsed to reach the 21 mm critical fatigue crack length. 

On different circumstances, the most conservative estimation was done by the results from the contour 

integral at the half of the thickness, which predicted an approximate of 49000 cycles to reach the 21 

mm critical fatigue crack length. 

Differently, the fatigue life estimation from the closed-form results and from the displacement 

correlation at the surface and half of the thickness of the CT-specimen FE model shows a much better 

match against the experimental measurements. 

The fatigue life estimation from the results of the displacement correlation method at the surface of 

the CT-specimen FE model, predicted a total of 75450 cycles to reach the 21 mm crack length, while 

the results at half of the thickness, predicted 71860 cycles to reach the same 21 mm crack length. In 

other words, through the 3D CT-specimen FE model along with the use of the displacement 

correlation method fatigue life predictions of approximately 91% of accuracy regarding experimental 

data were achieved. Moreover, 96% accurate fatigue life estimation was achieved from the closed-

form results, which is equivalent to predict 77800 cycles to reach the 21 mm crack length. 

Finally, the results from the linear-elastic CT-specimen FE model, can be summarized as follows: 

• The displacement correlation method was sensitive to the hole’s edge effect as  a nonlinear 

variation of K as function of the fatigue crack length was observed. Thus, larger discrepancies 

were reported in the K-values for the center-hole-plate base model (hole boundary condition) 

regarding the closed-form solution, while results in agreement with the closed-form solution 

were reported for the CT-specimen FE model. 

• The ΔK-values obtained by the 3D CT-Specimen FE model with the displacement correlation 

method exhibited less than a 2% of discrepancy regarding the closed-form solution.  
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• The ΔK-values obtained through the 3D CT-Specimen FE model along with the contour 

integral method exhibited a value of approximately 17.3% of underestimation and 4% of 

overestimation regarding the closed-form solution for the surface and half of the thickness of 

the 3D CT-specimen FE model (Figure 59). 

• The Paris-Erdogan empirical relation was used to obtain the fatigue crack growth rates da/dN 

associated with the different ΔK-values (Displacement correlation, contour integral and 

closed form solution). The results of the da/dN-values were compared against experimental 

results reported on the literature by Ambriz [40] (Figure 61).   

• Despite slight variations were found between the predicted and the experimental da/dN data 

were found (Figure 61), the fatigue life estimations turned out to be very conservatives 

regarding the experimental results. To improve the linear-elastic 3D CT-specimen FE model 

and its fatigue life predictions, the da/dN values estimation was adjusted based on 

experimental results reported on the literature by Ambriz [40]. The adjustment was done by 

the table look-up scheme, such adjustment consists on modifying the da/dN-values as 

function of the ΔK-values reported on the experimental study reported by Ambriz [40]. That 

is to say, as the ΔK-values were known from the experimental study and therefore their 

corresponding experimental da/dN-values,  an adjustment of the numerical da/dN-values 

were done as function of those experimental ΔK-values.   

• An enhancement of the da/dN-values calculated by the displacement correlation, contour 

integral and closed-form solution was achieved by the table look-up scheme (Figure 64) and 

therefore, an enhancement for the fatigue life estimations.  

• An approximate 96% accurate fatigue life estimation was achieved by the usage of the results 

from the closed-form solution and the table look-up scheme. 

• An approximately 91% accurate fatigue life estimation was achieved by the 3D CT-specimen 

FE model along with de displacement correlation method and the table look-up scheme 

(Figure 64).  

• Nevertheless, regarding the experimental data, the fatigue life estimations from the contour 

integral results within the 3D CT-specimen FE model, overestimated the fatigue life by 24% 

for the surface of the FE model, and underestimated the fatigue life by 39%, for the contour 

integral at the half of the thickness of the 3D CT-specimen FE model respectively. Such 

significant differences between the fatigue life estimations and the experimental fatigue life, 

are attributed to the ΔK-values discrepancies previously shown on Figure 59.  
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4.2.3 Displacement correlation method study  

The K-values calculated through the center-hole-plate base model and the displacements correlation 

method, exhibited a non-linear behavior, which can be appreciated on Figure 52 and Figure 54(a) and 

(c). To show the displacement correlation method sensibility to the boundary conditions and geometry 

presented on the central-hole-plate base model a comparison of the displacement correlation method 

behavior between the central-hole-plate model and the CT-specimen FE model was conducted. The 

computational FE model for a standard Compact Tension (CT-specimen)  were conducted to further 

analyze the effectiveness of the displacement correlation method for the calculation of the K values. 

The literature revision about the usage of the displacement correlation method to calculate K indicated 

that the non-linear behavior observed for the K results in Figure 52 and Figure 54 has not been 

previously reported.  

A 10 mm cracked CT-specimen 2D FE model was analyzed to study the K-values behavior from the 

displacement correlation method. The K-values from the displacement correlation method were 

studied at different mesh refinement levels, the coarsest element size was 1 mm and the finest element 

size was 0.05 mm. Moreover, the behavior of the K-values was studied with 4-node bilinear plane 

stress and 8-node quadratic elements. Figure 65(a)-(b) shows the results of the displacements 

correlation method for the finest element size (0.05 mm) and for linear and quadratic elements. 

Additionally, the non-linear results for the finest element size (0.079 mm) from the center-hole-plate 

base model are shown to compare the K-values behavior. 

 

 

 

 

 

 

 

 

Figure 65. K-values numerical results from the displacement correlation method for a) 10 mm 
cracked CT-specimen linear-elastic FE model and b) 7 mm cracked center-hole-plate linear elastic 

FE model. 

a)  b)  
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Contrarily to the non-linear behavior exhibited for the center-hole-plate model (Figure 65b), for the 

CT-specimen FE model, the K-values as function of the radial distance from the crack tip r (Figure 

65a), agree with the information reported on the literature (see Figure 8), i.e. after discarding nodal 

K-values near the crack tip, only one slope is exhibited by the K-values results, therefore the 

extrapolation to the characteristic K-value at the crack tip (r = 0) is defined.  

By comparing the results shown on Figure 65(a)-(b), can be determined that the displacement 

correlation method is sensible to the hole boundary condition. Inaccurate results were reported for the 

center-hole-plate base model, while acceptable results were reported for the CT-specimen FE model. 

Thus, unlike for the center-hole-plate base model, the use of the displacement correlation method 

along with the contour integral turned out to be suitable for the K-values calculation within the CT-

specimen FE model.  

 

4.3 CENTRAL-HOLE-PLATE MODEL PARAMETRIZATION 

According to the previous discussion within the Chapter 1, cracks act as stress raisers within the 

mechanical components, therefore plastic deformations occurs at the vicinity of the crack tip. The 

generated plasticity zone near the crack tip is known as the plasticity zone. An analytical expression 

to estimate the plasticity radius were developed by G.R. Irwin. The Irwin approach to calculate the 

plasticity radius were presented on section 1.2 Fatigue.  

To proceed with the parametrization of the center-hole-plate model the plastic material behavior 

simulation was essential. The simulation of the elastic-plastic material behavior was done according 

to the methodology presented on section 2.4.1 Implementation of elastic-plastic material behavior.  

Prior activating the plasticity behavior within the FE software, ABAQUS®, the plastic properties 

were defined for the commercial aluminum alloy 6061-T6.  Figure 31 shows the experimental stress-

strain curved used, such curve were reported on the literature by Torabi et al. [39]. Table 4 shows the 

coordinate pairs (stress-strain) extracted from the experimental stress-strain curve that were used 

within the FE model for the isotropic and combined hardening models. Moreover, Table 5 shows the 

coordinate stress-strain pairs used within the FE model to implement plasticity along with the 

kinematic model.  

Once the plastic properties for the aluminum alloy 6061-T6 were defined, a convergence analysis was 

performed to determine the approximate finite element size that best captures the plasticity near the 

crack tip of the cracked center-hole-plate model.  
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The convergence analysis was performed by a one cycle loading simulation within a 5 mm cracked 

center-hole-plate 2D model. The simulations were performed for the isotropic, kinematic and 

combined hardening models. Figure 66 to Figure 68 Plastic zone results at the crack tip resolved by 

the combined hardening model at the maximum applied load for the central-hole-plate FE model. 

Element sizes: a) 0.079 mm b) 0.039 mm c) 0.019 mm and d) 0.01 mm approximate finite element 

size 

 shows the results for the convergence analysis for the three hardening models. The mesh used within 

the center-hole-plate model and the three hardening models were refined from an approximate 

element size of 0.079 mm till an approximate element size of 0.01 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 66. Plastic zone results at the crack tip resolved by the isotropic hardening model at the 
maximum applied load for the central-hole-plate FE model. Element sizes: a) 0.079 mm b) 0.039 

mm c) 0.019 mm and d) 0.01 mm approximate finite element size 
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Figure 67.Plastic zone results at the crack tip resolved by the kinematic hardening model at the 
maximum applied load for the central-hole-plate FE model. Element sizes: a) 0.079 mm b) 0.039 

mm c) 0.019 mm and d) 0.01 mm approximate finite element size 

 

 

 

 

 

 

 

 

 

 

Figure 68. Plastic zone results at the crack tip resolved by the combined hardening model at the 
maximum applied load for the central-hole-plate FE model. Element sizes: a) 0.079 mm b) 0.039 

mm c) 0.019 mm and d) 0.01 mm approximate finite element size 
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A half circular shape, which represents the plasticity zone, was generated near the crack tip.  The 

diameter of the plasticity zone was measured along the X axis according to the legend shown on 

Figure 66 to Figure 68, “Measured length”. The diameters of the numerically determined plasticity 

zone, were compared against the analytical value from the Irwin approach (Eq. 4) for a 5 mm cracked 

center-hole-plate model. The analytical value for the diameter of the plasticity zone, according to the 

Irwin approach, is 0.502 mm. Table 7 shows the approximate element sizes and their corresponding 

measured length as function of the three different hardening models.   

Table 7. Plasticity radius captured by different finite element sizes 

Hardening 
model 

Isotropic Kinematic Combined 

Element size 
[mm] 

Plasticity 
radius [mm] 

Plasticity 
radius [mm] 

Plasticity 
radius [mm] 

0.079 0.4792 0.5574 0.4779 

0.039 0.5576 0.5178 0.5576 

0.019 0.518 0.4981 0.518 

0.01 0.4915 0.4915 0.5015 

 

For the numerical simulations, the element size that exhibited the better results for the plasticity zone, 

regarding the analytical value from the Irwin approach, was the 0.019 mm FE size. Table 8 shows the 

results for the 0.019 mm approximate element size and the three hardening models. 

Table 8. Results for the plasticity diameter of a 5 mm cracked center-hole-plate model 

Approximate element size 

[mm] 

Hardening model Diameter of the plasticity zone 

[mm] 

0.019 Isotropic 0.5180 

0.019 Kinematic 0.4981 

0.019 Combined 0.4979 

  

Additional to the convergence analysis regarding the plastic zone, simulations for 1, 5 and 10 loading 

cycles (R=0.1) were performed. The cyclic loading simulations were conducted to obtain the cyclic 

stress-strain curves corresponding to each hardening model. The FE parameters remained the same 

for the 1 cycle as well as for 5 and 10 cycles loading simulations, i.e. the crack propagation simulation 

was not performed. Figure 69 shows the hysteresis curves corresponding to the three hardening 

models.  
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Figure 69. 10 cycles hysteresis curves for different hardening models 

 

To generate the hysteresis curves shown on Figure 69, 10 loading cyclic simulations were performed. 

As can be appreciated on Figure 69, the cyclic stress-strain cyclic curves for the isotropic and 

combined models are very similar but differ from the kinematic. The differences among the three 

hardening models were studied by analyzing the behavior of the plasticity area generated near the 

crack tip, i.e. By studying the differences between the cyclic loading simulations performed for the 

results considering the isotropic, kinematic and combined hardening models.   

The evolution of the plasticity active area near the crack tip was studied within the 10 loading cycles 

simulation. The plasticity area generated near the crack tip were measured at specific intervals during 

the 10 loading cycles simulation. The plasticity active area was measured at the maximum and 

minimum load of the 1st, 3rd, 7th and 10th cycle. Table 9 shows the results of the area measurements 

for the three hardening models, moreover Figure 70 shows the behavior of the plasticity area at the 

maximum and minimum loads as function of the cycle at which it was measured.  
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Table 9. Plasticity area evolution during a 10-loading cycle simulation. Plasticity area at the crack 
tip of a 5 mm cracked center-hole-plate model. Maximum load such that induced 30% of the yield 
strength for the Al 6061-T6 and load ratio R of 0.1 

Cycle Plasticity area from 

isotropic hardening model 

V���W 

Plasticity area from  

kinematic hardening model 

V���W 

Plasticity area from  

combined hardening model 

V���W 
Maximum  

load 

Minimum  

load 

Maximum 

load 

Minimum 

load 

Maximum 

load 

Minimum 

load 

1 0.0869 0.00326 0.0784 0.00478 0.0865 0.00413 

3 0.0619 0.00239 0.068 0.00326 0.0672 0.00457 

7 0.0587 0.00239 0.0328 0.00326 0.0644 0.00457 

10 0.0504 0.0022 0.023 0.00348 0.0635 0.00457 

 

 

Figure 70. Plasticity active area behavior within a 10-loading cycle simulation. FE approximate size 
0.019 mm. 

 

As it can be noted on Table 9, for the isotropic hardening model the plasticity active area at maximum 

load reduces significantly from the 1st to the 3rd cycle (28% plasticity active area reduction), and then 

a) 

b) 
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varies only slightly from the 3rd to the 7th and 10th cycle.  On the other hand, for the plasticity active 

area at minimum load the behavior is similar. The plasticity active area reduces 26% from the 1st to 

the 3rd cycle, and then varies only slightly.  

For the kinematic hardening model, the plasticity active area at maximum load is reduced in 13% 

from the 1st cycle to the 3rd cycle, 51% from the 3rd to the 7th cycle and 30% from the 7th to the 10th 

cycle, i.e. The plasticity active area keeps decreasing as the loading cycles go by. For the plasticity 

active area at minimum load there are a 31% area reduction from the 1st to the 3rd cycle and then there 

are only slight changes. 

Finally, the evolution of the plasticity active area within the combined hardening model exhibits a 

similar behavior to the plasticity area evolution within the isotropic hardening model. The plasticity 

area at maximum load with the usage of the combined hardening model reduces 22% from the 1st to 

the 3rd cycle, and then varies only slightly. While the plasticity area at minimum load increases 10% 

from the 1st to the 3rd cycle and then remains stable.  

The results of the plasticity area evolution at maximum load during a 10 loading cycles simulation 

that were presented within Table 9, also can be appreciated on Figure 71. Figure 71 shows the results 

for the isotropic, kinematic and combined hardening model in columns a, b and c respectively, 

moreover Figure 71 shows the plasticity area at the 1st, 3rd, 7th and 10th cycle in the rows 1, 2, 3 and 4 

respectively.  
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Figure 71. Plasticity area evolution on a 10-loading cycle simulation within a 5 mm cracked center-
hole-plate model row 1 represents the 1st loading cycle, row 2 represents the 3rd loading cycle, row 
3 represents the 7th loading cycle and row 4 represents the 10th loading cycle. Columns show the 

results as follows: a) Isotropic hardening model b) Kinematic hardening model c) combined 
hardening model 

a)  b)  c)  

1  

2  

3  

4  
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According to the results shown on Table 9, Figure 70  and Figure 71 the evolution of the plasticity 

active area near the crack tip is affected by the cyclic loading. The general trend shows that the 

plasticity active area at maximum load decreases as the loading cycles goes by while the plasticity 

active area remains stable at minimum load. However, there are clear differences between the three 

hardening models used.  

The isotropic and kinematic hardening models shows higher and more abrupt changes regarding the 

plasticity active area captured during the 10 loading cycle simulations. On the other hand, the 

combined hardening model behaves more stable regarding the evolution of the plasticity active area 

during the cyclic loading simulations, i.e. the plasticity area reductions are smooth during the 10 

loading cycles.  

Once the elastic-plastic properties for the aluminum alloy 6061-T6 were defined and through the 

conjunct results from the central-hole-plate 2D FE model, which are: The finite element size analysis 

(Table 7), the stress-strain cyclic curves comparative and the plasticity area evolution on the cyclic 

loading simulations for the three hardening models, it was defined the use of an approximate finite 

element size of 0.019 mm along with combined hardening model for further simulations. Besides, 

once the combined hardening model was defined, a study within a 10-loading cycle simulation was 

conducted to observe the equivalent plastic strain evolution in the vicinity of the crack tip. Figure 72 

shows equivalent plastic strain (PEEQ) as function of the steps in the simulation. Step one represents 

the first maximum load, then step two represents the first minimum load so two steps are one cycle. 

The X axis of Figure 72 shows the 20 steps of the simulation which corresponds to the 10 loading 

cycles.  As it can be appreciated on Figure 72, the PEEQ for the FE that were located near the crack 

tip (2nd) increases every cycle due to the stress concentration. On the other hand, once a value of 

PEEQ is reached within the FE located farther from the crack tip (8th), the PEEQ is maintained 

through the cycles. 
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Figure 72. Equivalent plastic strain behavior for a 8 mm cracked central-plate-hole FE model during 
a 10-loading simulation. Two steps are equivalent with one loading cycle. 

 

Though, once the hardening model and the element size to be used for the elastic-plastic material 

behavior were defined, the ΔK-values as function of the crack length a were computed for the 1 and  

5 loading cycles simulations so the plasticity history was included on the ΔK-values calculus within 

the central-hole-plate 2D FE model. Figure 73 shows the comparison between the ΔK-values 

calculated at the 1st and 5th cycle as well as the ΔK-values calculated for the pure elastic center-hole-

plate model as reference.  
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Figure 73. ΔK-values calculated for cyclic loading simulations within a cracked center-hole-plate 
model. ΔK-values for pure elastic and elastic-plastic center-hole-plate models 

According with the results shown on Figure 73, despite the plasticity active area reduction previously 

shown on Figure 71, resembling ΔK-values are obtained on the computational model whether if they 

are calculated at the first cycle or at subsequent cycles, therefore for simplicity and computational 

resources optimization the ΔK-values were calculated with only one loading cycle in further 

simulations. 

 

4.4 COLD HOLE EXPANSION (RESIDUAL STRESS CONDITION) 

4.4.1 Mandrel geometry effects in the residual stresses 

The results of the direct mandrel cold hole expansion simulations for the center-hole-plate model will 

be presented as follows: first, the reaction force produced on the mandrel during the hole expansion 

as a function of its displacement through the central-hole-plate model and second, the residual stress 

prediction within the three-level sub modelling technique.  

As previously mentioned on section 3.1 Mandrel FE model, for the present work two mandrel 

geometries have been modelled. A completely cylindrical mandrel and a conical mandrel, both with 

a maximum radius of 3.305 mm. The 3.305 mm radius generated a radial interference of 4%.  

The reaction force was measured at the reference point of each mandrel FE model, the reference point 

(RP) can be appreciated on Figure 36. The reaction force was measured at every step of the 
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simulations, i.e. once by every prescribed displacement of the mandrel through the center-hole-plate 

model. The reaction force of the FE models was measured to observe the effect of the mandrel 

geometry on the reaction force and to compare such results against the experimental data reported on 

the literature by Cuevas [43].  Figure 74 shows the normal component (Y) of the reaction force on 

the mandrel as function of the displacement. 

 

 

  

 

 

 

 

 

 

Figure 74. Reaction normal force component (Y) as function of the mandrel’s displacement through 
the central-hole-plate model, numerical and experimental results comparative 

 

As it can be appreciated on Figure 74, the behavior of both modelled expanders is similar, 

nevertheless the reaction force is sensible to the expander geometry despite both provoked a 4% of 

radial interference.  

The maximum force reached by the cylindrical mandrel was around 4 kN, then such force is 

maintained as the expander go through the center-hole-plate model and starts to decrease as the 

mandrel leaves the center-hole-plate model. For the conical mandrel the maximum force reached was 

around 8 kN and, like the cylindrical expander, the maximum force is maintained while the conical 

mandrel goes through the central-hole-plate model and then decreases as the conical mandrel leaves 

the central-hole-plate model.  

The numerical results for the normal component of the reaction force within the mandrels are 

compared against the experimental data reported by Cuevas [43]. The reaction force on the cylindrical 

expander resembles to the experimental force approximately within the first 4 mm of the mandrel 
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displacement, however, the maximum force reached by the simulation with cylindrical expander was 

approximately the half of the experimental reaction force.  

On the other hand, the reaction force captured during the simulation with the conical mandrel 

resembles to the experimental reaction force along the whole mandrel travel through the center-hole-

plate model, furthermore the maximum force reached by the simulation with conical mandrel and 

experimentally are both around 8 kN. 

The aim of the cold hole expansion process is the induction of a residual stress (RS) field around the 

expanded hole. A comparison between the predicted RS field generated by the simulation with 

cylindrical and conical expander is shown in the following Figure 75, moreover a comparison 

between the RS field captured by the different FE densities presented on the three-level sub modelling 

technique is also presented. The RS predictions are focused on the normal component (Y) of the RS, 

since it is the most relevant component due to the loading mode within the fatigue simulations was 

the mode I (see Figure 2).  

Figure 75(a)-(b) shows a comparison between the normal component in the Y-axis of the RS generated 

by cold hole expansion with cylindrical and conical mandrel. The 1D RS distribution shown on 

Figure 75(a)-(b) was captured by the intermediate sub model (I-SM). Moreover, the RS normal 

component has been measured radially from the hole edge and through the thickness of the center-

hole-plate model (Entrance face, mid-plane and exit face). 

 

 

 

 

 

 

 

 

Figure 75. Normal component (Y) of the residual stress field within a center-hole-plate model 
expanded by a) Cylindrical mandrel and b) Conical mandrel 

a)  b)  
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Figure 75(a) presents the RS distribution for the entrance face, mid-plane and exit face in the central-

hole-plate obtained from the FE simulation with the cylindrical mandrel. The entrance face presented 

a region of increasing-decreasing tensile RS from the hole’s edge up to approximately 1 mm, follow 

by a region of decreasing-increasing compressive RS from 1 mm up to 3 mm. Afterwards, the RS 

remained at almost a cero value. The mid-plane presented the larger compressive RS at the hole’s 

edge, with a value of approximately 300 MPa. The compressive RS decreased from the 300 MPa 

value at 1 mm from the hole’s edge up to a cero value at 2.5 mm, where the RS change to an increasing 

tensile condition. The larger positive RS value was of approximately 80 MPa at 3.5 mm, afterwards 

the RS decreased to a cero value at 10 mm-distance. The exit face presented a positive RS value of 

approximately 90 MPa at the hole’s edge. The RS distribution decreased to a value of negative 300 

MPa as a function of the distance from the hole’s edge at 2 mm, where the RS distribution increased 

up to a value of positive 60 MPa at 5 mm. Afterwards, the RS distribution decreased to a cero value 

at approximately 10 mm and remained at the cero value.  

Figure 75(b) shows the results for the RS distribution obtained from the FE simulation with the 

conical mandrel. The entrance face presented a region of increasing compressive RS from the hole’s 

edge up to approximately 2.5 mm, followed by a region of decreasing compressive RS up to 5 mm 

where the RS changed to an increasing tensile condition up to 6 mm, afterwards the RS decreased to 

a cero value at an approximate distance of 10 mm. The maximum compressive RS for the entrance 

face was at 2.5 mm and it was 200 MPa. The mid-plane presented an increasing RD from the hole 

edge up to 0.5 mm, followed by a decreasing compressive RS up to 3.5 mm where the RS changed 

to an increasing tensile condition up to 4.5 mm, afterwards the RS decreased to an approximate cero 

value at 10 mm. The mid-plane presented the most compressive and tensile RS, the most compressive 

RS was reached at 0.5 with a magnitude of 340 MPa while the most tensile RS was reached at 4.5 

mm with a magnitude of 110 MPa. The behavior of the RS at the exit face was similar to the RS on 

the entrance face, an increasing compressive RS is presented from the hole edge up to 1.5 mm, 

followed by a decreasing compressive RS up to 5 mm where the RS changed to an increasing tensile 

condition up to 6.5 mm, finally, the RS decreased to an approximate cero value at 10 mm. The 

maximum compressive RS for the exit face was at 1.5 mm with a magnitude of 310 MPa.  

The results indicated that the effect of the cold hole expansion, either with the cylindrical or conical 

mandrel, are present radially from the hole’s edge up to approximately 10 mm. For larger than a 10 

mm-distance from the hole’s edge, the effect of the cold hole expansion is negligible. However, by 

comparing Figure 75(a)-(b) it has been exposed that, as the reaction force, the RS field is sensible to 

the mandrel geometry. The RS at the hole edge generated by the cylindrical mandrel, are on a tensile 
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condition for the entrance and exit faces and compressive for the mid-plane. The tensile RS within 

the entrance and exit faces is associated with the material drag out-of-plane on the hole edge due to 

the contact interaction between the mandrel and the center-hole-plate model. The RS are 

superimposed with the external applied loads, thus, the regions with tensile RS results in critically 

stressed regions. The nucleation and growth process of fatigue cracks are more favorable in these 

critically stressed regions. 

Contrary, the RS at the hole edge generated by the cold hole expansion with conical mandrel, are on 

a compressive condition for the three planes studied (entrance face, mid-plane and exit face). The 

radial interference between the maximum radius of the conical mandrel, and the center-hole-plate 

model is reached gradually, and no material drag out-of-plane is presented for the cold hole expansion 

with the conical mandrel. Figure 76(a)-(d) shows the comparative of the results for the displacements 

within the center-hole-plate model due to the cold hole expansion with the cylindrical and conical 

mandrels. 
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Figure 76. Displacements within the center-hole-plate model due to cold hole expansion a) 
Expansion with cylindrical mandrel isometric view b) Expansion with cylindrical mandrel cross 

section c) Expansion with conical mandrel isometric view b) Expansion with conical mandrel cross 
section 

Figure 76(a)-(b) shows the displacements results for the cold hole expansion with the cylindrical 

mandrel. The material drag out-of-plane can be appreciated on Figure 76(b) at the entrance and exit 

faces of the central-hole-plate model. Figure 76(c)-(d) shows the displacements results for the cold 

hole expansion with the conical mandrel, but contrary to the cold hole expansion with the cylindrical 

mandrel, minimal material drag out-of-plane is present, as shown on the isometric and cross section 

views. 

As mentioned on section Residual stress considerations on fatigue design, the tensile RS damage the 

mechanical components accelerating the fatigue crack growth while the compressive RS delay the 

a)  b)  

c)  d)  

Entrance face  

Entrance face  

Exit face  

Exit face  
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crack initiation and propagation. Considering that the RS predicted by the cold hole expansion with 

the cylindrical mandrel, which are shown on Figure 75(a), are primary tensile due to the material drag 

out-of-plane, such as can be appreciated on Figure 76(b), the simulations of cold hole expansion with 

cylindrical mandrel and therefore their corresponding fatigue simulations were discarded for further 

analysis.  

In different circumstances, since minimal material drag out-of-plane is present on the cold hole 

expansion with conical mandrel, the predicted RS shown on Figure 75 (b) are compressive within the 

whole center-hole-plate model, thus, according to the information reported on the literature [3], [4], 

it is expected an enhancement of the center-hole-plate fatigue life. Additionally the reaction force 

results from the conical mandrel model are in agreement with the experimental data reported by 

Cuevas [43], hence, only the cold hole expansion with conical mandrel and its corresponding fatigue 

simulations were considered for further analysis.  

Despite the RS fields generated by the cold hole expansion with cylindrical and conical expander 

varies significantly from one another, the common characteristic of both expansions is that the 

entrance face remained as the region with less favorable RS condition. Therefore, the nucleation and 

growth process of fatigue cracks are more favorable in such critically regions and from here on the 

analysis will be focused on the entrance face. 

4.4.2 Cold hole expansion sub models 

Figure 77 shows the normal component of the RS generated at the entrance face by the cold hole 

expansion with conical mandrel. Moreover, Figure 77 shows the comparative between the RS field 

captured by the different FE mesh densities of the three-level sub modelling technique (Global Model 

GM, Intermediate Sub Model I-SM and Fine Sub Model F-SM).  
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Figure 77. Normal component of the residual stress generated by the cold hole expansion with 
conical mandrel 

 

Figure 77 shows that the RS captured at the hole edge by the GM, the I-SM and the F-SM, exhibits 

significant discrepancies within the first 3 mm, while for the other distance from the hole edge 

remained identical. The compressive RS captured at the hole edge (x=0) by the GM, I-SM and F-SM 

are 165, 145 and 100 MPa. The three-level FE models shows an increasing compressive RS region 

from the hole edge up to 2.5 mm, followed by a decreasing compressive RS up to 5 mm where the 

RS changed to an increasing tensile condition up to 6 mm, afterwards the RS decreased to a negligible 

value after approximately 10 mm. The maximum compressive RS value for the three-level sub models 

was around 205 MPa at 2.5 mm while the maximum tensile RS for the three-level sub models was 

approximately 60 MPa at 6 mm. The differences between the RS captured by the three-level sub 

models are located within the first 5 mm radially measured from the hole edge, afterwards the RS 

fields captured by the three-level sub models are superimposed i.e. the transition between the three-

level sub modelling technique is adequate, however the most affected zone by the cold hole expansion 

is the region within the first 5 mm.  

As it can be appreciated on Figure 77, the results captured by the F-SM are not continuous along the 

whole distance from the hole edge as the F-SM were used only at the specific lengths. The model 

geometry for the F-SM spans over a small region from the hole edge. This region corresponded to a 
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distance from the hole’s edge to ~2 mm. The FCG simulation was conducted for larger fatigue cracks 

(up to ~19 mm), thus, several F-SM for different fatigue crack lengths were developed. Figure 78 

shows an overlay plot of the normal component of the RS captured by the three-level sub modelling 

technique. 

 

 

Figure 78. Three-level sub modelling technique overlay plot for the normal component of the 
residual stress generated within the center-hole-plate model due to the cold hole expansion with 

conical mandrel 

 

The RS differences for the first ~2.5 mm between the GM, the I-SM and the F-SM are very significant 

as the K-values, and therefore the fatigue life predictions, are very sensible to slight changes on the 

predicted RS field. Table 10 shows the differences of calculating the ΔK-values on a 4 mm cracked 

center-hole-plate model for the three-level different models. Moreover, Table 10 shows the 

corresponding fatigue crack growth rates da/dN for the ΔK-values and the number of cycles required 

for a crack length increment of 0.5 mm. The corresponding da/dN-values were estimated through the 

Paris-Erdogan empirical relation (Eq. 7).  

 

 



113 

 

Table 10. Three-level sub modelling technique results comparative for a 4 mm cracked center-hole-
plate model  

FE model ∆� V^_9√�W U9
U� V ��

*c*�lW Cycles (for a 0.5 

mm crack 

increment ) 

Global model (GM) 10.956 1.1231e-04 4452 

Intermediate sub model (I-SM) 5.6519 1.2476e-05 40077 

Fine sub model (F-SM) 3.1457 1.7832e-06 280395 

 

According to the information presented on Table 10, the da/dN-values differ from one another, 

depending on the FE model level, by a magnitude order. The most conservative da/dN-value was 

estimated by the GM, as it was the fastest fatigue crack growth rate. The GM estimated the smaller 

amount of cycles needed for a 0.5 mm crack length increment (4452). Contrary, the less conservative 

da/dN-value was predicted by the F-SM, as it was the slowest fatigue crack growth rate estimated. 

The F-SM estimated the higher amount of cycles needed for a 0.5 mm crack length increment 

(280395). The GM resulted in a number of cycles which is lower by 63 times regarding the F-SM, 

while the I-SM is lower by 7 times. 

Within a full fatigue crack growth study, i.e. an analysis from the crack initiation up to the fracture, 

the GM underestimation would be accumulated at every crack length increment and therefore a very 

conservative fatigue life prediction would be given. The extremely conservative fatigue life 

estimations can lead to inefficiency and/or unnecessary costs when used for mechanical components 

within a system. 

 

4.4.3 Fatigue crack growth simulations 

With the elastic-plastic material behavior implementation, the cyclic loading simulations study and 

the cold hole expansion simulations (initial RS condition), the center-hole-plate model is considered 

parametrized for the fatigue simulations. As shown on Figure 47, once the center-hole-plate model 

was parametrized, the fatigue simulations were performed following the order of the three-level sub 

modelling technique (GM, I-SM and F-SM) and then, the K-values were computed within the F-SM.  

At the beginning of chapter 4, two methods to compute the K-values  within the linear-elastic models 

were studied, the contour integral method and the displacement correlation method. The results if 

such study resulted in discarding contour integral method and the displacement correlation method 
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was defined for the rest of the present work, however in the case of the elastic-plastic material model, 

it was necessary to define whether the previously method (displacement correlation) can be used or 

if it was required to make other considerations so, prior the fatigue simulations, a study to define the 

most convenient method to compute the K-values was necessary. The evaluated methods to compute 

the K-values were the contour integral, the displacements correlation and the stress correlation 

methods.  

Regarding the contour integral method, it is mostly used within linear-elastic material behavior due 

to the integral’s values within linear-elastic analysis are path-independent. The use of the contour 

integral on elastic-plastic analyses is possible, nevertheless the contour integral values become path-

dependent. To avoid the path-dependence, the domain of the contour integral must be large enough 

to surround the plasticity zone though, the plasticity generated by the cold hole expansion in the 

present work embraces the whole F-SM’s and therefore the use of the contour integral method was 

not possible to compute the K-values. A 2D central-hole-plate model was developed to conduct a 

study about the path dependence of the contour integral values. The loading mode I was simulated 

within the 2D central-hole-plate model by prescribing a 165 MPa stress on the far end of the plate. 

Moreover, a 10.5 mm crack was simulated on the 2D model. The contour integral values were 

calculated following two different alternatives, first by defining a total of 30 contours for the domain 

of the contour integral method, and second by defining a total of 120 contours for the domain of the 

method. Figure 79(a)-(b)shows the results for the values of the contour integrals (J-integral) as 

function of the contour number in both cases, with the 35 contours and the 120 contours domain.  
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Figure 79. Contour integral values for minimum and maximum load within a 10.5 mm cracked 
central-hole-plate model as function of the  contour number (domain) 

 

As it can be appreciated on Figure 79(a), when the minimum load is prescribed to the model and only 

30 contours are defined, the contour integral values as function of the contour number behaves stable 

but different from the case when 120 contours were defined. On the other hand, when the maximum 

load is prescribed to the model, the contour integral values behave in the same way for both domains 

definition (30 and 120 contours). The differences between the behavior of the contour integral values 

at the minimum a maximum load are likely attributed to the crack closer phenomenon, though such 

phenomenon has not been part of the scope of the present work. Besides, the variation of the contour 

integral values at minimum load affects the K-values at minimum load and therefore the ΔK-values. 

The path dependence of the contour integral values showed on Figure 79(a)-(b) can also be 

appreciated on Figure 80(a)-(b).  

 

 

 

 

 

a) 

b) 
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Figure 80.  Domain defined within a 10.5 mm cracked central-hole-plate FE model for the contour 
integral method with a)  30 contours and b) 120 contours 

 

Figure 80(a) shows the domain (30 contours) for the 10.5 mm cracked central-hole-plate specimen, 

and as it can be appreciated the domain did not surrounded the plasticity region, thus the values of 

the contour integrals that differ from the wider domain (120 contours) shown on Figure 80(b) can be 

explained. 

Regarding the displacement correlation method, the previously presented results on sections 4.2.1 

and 4.4.1 showed that the displacement correlation method was not a valid method to compute the K-

values within the center-hole-plate model due to an inadequate capturing of the hole boundary 

condition (non-linear behavior). To evaluate once more the displacements correlation method, and 

avoid the non-linear behavior, a new consideration has been done for the K-values extrapolation for 

a) 

b) 
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r = 0 (crack tip). The new consideration was done as follows: The K-values that exhibited the non-

linear behavior were located far from the crack tip, therefore all the K-values farther than the half of 

the crack length were discarded (due to the hole boundary condition proximity) and the K-values near 

the crack tip, as usual, were also discarded. By doing the new consideration to the displacement 

correlation method, only the values of the central part of the r-K curve were extrapolated to find the 

most approximate solution for K at the crack tip (r = 0).    

Moreover, the displacement correlation method, with the alternative method for the K-values 

extrapolation, has been compared against the stress correlation method. The displacements and stress 

correlation methods are equivalent methods derived from the Hooke’s law, therefore very similar K-

values should be found by one or the other method. The displacements and stress correlation methods 

comparative has been done for a 4, 7- and 9.5-mm crack lengths in the center-hole-plate model 

remotely loaded by a load of 49 kN and with elastic-plastic material model for the aluminum alloy 

6061-T6. 

Figure 81(a)-(c) shows the K(r) graphs corresponding to the comparative between the displacements 

and stress correlation methods. As previously explained, the displacement correlation used nodal 

solutions from the back nodes to the crack tip, and the stress correlation method used nodal solutions 

from the front nodes to the crack tip. Also, the results from the comparative study between the 

displacement and correlation methods is presented on Table 11 below. 

Table 11. Displacement and stress correlation methods comparative. K-values results for a center-
hole-plate cracked model.  

Center-hole-plate model crack 

length V��W 
Displacement correlation 

method V^_9√�W 
Stress correlation method 

V^_9√�W 
4 11.471 11.963 

7 14.122 15.07 

9.5 16.096 16.813 
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Figure 81. Displacement and stress correlation methods comparative within a center-hole-plate 
model cracked a) 4 mm b) 7 mm c) 9.5 mm 

a)  

b)  

c)  
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As shown on Figure 81(a)-(c), the consideration of only the central K-values within the K(r) curve 

obtained by the displacement correlation method, exhibited a linear behavior and therefore the 

extrapolation for r =0 was defined. On the other hand, when using the stress correlation method, and 

after discarding nodal results close to the crack tip, the rest of the K-values exhibited a linear behavior. 

The non-linearity was not present within the stress correlation method since the nodal stress 

measurements were done ahead the crack tip so, the hole boundary condition had no influence on the 

method.  

According to the results shown on Table 11 and Figure 81(a)-(c) the differences between the 

extrapolated K-values by the displacement and stress correlation methods differ from one another by 

approximately 5%. To sum up, the displacement and stress correlation method equivalency was 

proved by three different crack lengths within a center-hole-plate model. Therefore, since the stress 

correlation method is not sensible to the hole boundary condition, the use of such method to compute 

the K-values was picked out for the fatigue simulations, which results will be shown on the following. 

The approximate time required for the cold hole expansion simulation at the GM, the I-SM and F-

SM, the crack generation and one loading cycle is approximately 54 hours plus the implementation 

user time. Moreover, the memory required to for a single cold hole expansion F-SM with its 

corresponding crack and loading cycle is around 6 Gb. The FE densities of the GM, I-SM and F-SM 

were previously reported in Table 6. In view of the afore mentioned conditions, only six crack lengths 

have been chosen for which the ΔK-values were computed. The crack lengths a selected were 4, 6, 8, 

12, 16 and 19 mm, moreover the selection of such crack lengths is based on the plane fracture 

toughness for the aluminum alloy 6061-T6. 

For the FE fatigue simulations, the experimental conditions reported on the literature by Cuevas [43] 

were replicated, i.e. a maximum force of 36 kN were imposed to the far end of the center-hole-plate 

specimen with a load ratio R of 0.1, Cuevas [43] reported an enhancement of the fatigue life of 1.5 to 

3 times for the cold hole expanded center-hole-plate specimens regarding the specimens without an 

initial RS field. 

The fatigue test experimental conditions were replicated so the computational model for fatigue crack 

growth could be validated against the experimental data. Within the FE center-hole-plate model and 

the fatigue simulations, the effective K-values at maximum and minimum load were computed for 

the above-mentioned crack lengths by the stress correlation method, and therefore the corresponding 

ΔK-values. The effective K values incorporated the plastic strain history, thus, original and 

redistributed residual stresses and strains produced by the cold hole expansion are incorporated into 
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the effective K calculation. Besides, the fatigue crack growth rates da/dN were also estimated through 

the Paris-Erdogan empirical relation and the material coefficients reported on the literature by Ambriz 

[40]. 

 

Figure 82 shows the da/dN-values determined by the computational model for fatigue crack growth, 

moreover,  Figure 82 shows the experimental results for the da/dN-values measured on the left and 

right sides of the entrance face of the center-hole-plate specimen. 

 

 

 

 

 

 

 

 

 

 

Figure 82. Fatigue crack growth rates da/dN as function of the crack lengths a for the entrance face 

of a cold hole expanded center-hole-plate specimen 

 

Figure 82 shows that the experimental da/dN-values on the right side were slightly higher than the 

da/dN-values on the left side. The discrepancy between the experimental velocities captured in both 

sides of the center-hole-plate specimen can be attributed to the local variations near the hole, such as 

non-symmetric RS field, local material flaws or a combination of both [44].  

The numerically determined da/dN-values, shown on Figure 82, follow the same trend than the 

experimental da/dN-values along the whole crack growth. Nevertheless, the da/dN numerical value 

for the 6 mm crack length turned out to be out of the general trend. The computational model 
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overestimated the 6 mm da/dN-value regarding the experimental results. Moreover, despite is within 

the general trend, the da/dN-value for the 10 mm crack was also overestimated by the computational 

model. Overestimation of the da/dN-values can lead to a conservative fatigue life estimation.  

The overestimation of the numerical out-of-trend value at 6 mm, is attributed to the fact that within 

the region where the 6 mm crack is located, there are a particularity in the initial RS field for the 

fatigue simulation. As it can be appreciated on Figure 77, the normal component of the captured RS 

shows a change on the slope, i.e. Exhibits an increasing compressive trend, then reach the maximum 

compressive value and afterwards the trend change to a decreasing compressive RS condition.  

The change on the RS field, generated by the cold hole expansion, cause the stress correlation method 

to turn unstable, that is to say, the K-values as function of the radial distance from the crack tip r, do 

not shows a linear behavior and therefore the extrapolation for the K-value at the crack tip (r = 0) is 

not clear. 

Figure 83(a)-(b) shows the behavior of the stress on the FE central-hole-plate model within the region 

near to two different crack lengths, 4- and 6-mm. Figure 83(a)-(b) shows four different cases, the 

stress for the uncracked specimen (RS due to the cold hole expansion), the stress redistribution for 

the cracked specimen without load, the stress redistribution generated due to the minimum load and 

the stress redistribution generated due to the maximum load (Max load equal to 36 kN and R =0.1). 
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Figure 83. Stress captured by the F-SM near the crack tip for a) 4 mm cracked central-hole-plate FE 
model and b) 6 mm cracked central-hole-plate FE model. 

 

The comparative between the stress behavior within the 4 mm and the 6 mm cracked F-SMs, can 

also be appreciated in Figure 84.  

a) 

b) 
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Figure 84. Stress redistribution for a cracked central-hole-plate F-SM. 

 

Figure 85 shows the instability of the stress correlation method for maximum and minimum load for 

the 6 mm crack length due to the afore mentioned redistribution of the stress on the vicinity of the 

crack tip 
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Figure 85. Stress intensity factor values as function of the radial distance from the crack tip for a 6 
mm cracked center-hole-plate model subjected to a cold hole expansion process. 

 

As it can be appreciated on Figure 85 the K-values either at maximum load or at minimum load, do 

not show a linear behavior and therefore deeper analysis to define the K-values for cracks of around 

6 mm length should be done. However, for the present work only the stress correlation method has 

been used to compute the K-values, and the specific study of the influence of the increasing-

decreasing compressive RS field behavior on the K-values will be part of the future work.  
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CONCLUSIONS 
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Within the present work different finite element models were proposed. Among them can be found 

the central-hole-plate 2D and 3D base models, for which only linear-elastic material behavior was 

studied. Also, parametrized central-hole-plate 2D and 3D models were proposed, for which elastic-

plastic material behavior, cyclic loading and residual stress conditions were considered. Additional 

to the central-hole-plate models a compact tension specimen model (CT-specimen model) was 

developed for the 2D and 3D cases and linear-elastic material model. The finite element models were 

developed to estimate the stress intensity factors K within the different specimens and thus, perform 

the corresponding fatigue crack growth analyses.  

For the linear-elastic central-hole-plate model the K-values were estimated by the displacement 

correlation method and by the contour integral method. The results were compared against the closed 

form solution reported in the literature. The displacement correlation method exhibited a non-linear 

behavior of K as function of r the distance behind the crack tip, which has not been reported in the 

literature. The non-linear behavior was attributed to the central-hole boundary condition; thus, the 

displacement correlation method is considered as not an appropriate method to estimate the K-values 

within the central-hole-plate FE model. On the other hand, the K-values calculation with the contour 

integral method exhibited only slight variations regarding the closed-form solution values (~3.4%). 

Ergo, the contour integral method performance exhibited accurate results with a relatively coarse FE 

mesh (~0.317 mm FE size), consequently it is considered an adequate method for the K-values 

estimation within the linear elastic central-hole-plate model.  

A linear-elastic CT-specimen FE model was developed to further explore the non-linear behavior of 

the displacement correlation method that was presented in the linear-elastic central-hole-plate model. 

The performance to estimate the K-values by the displacement correlation method as well as the 

contour integral method were evaluated. Like in the central-hole-plate model, a convergence analysis 

demonstrated that the contour integral method provides accurate results with coarser FE mesh than 

the displacement correlation method. However, within the convergence analysis both methods 

converged at approximately the same value for specific crack lengths, which presented an 

approximate difference of 6% regarding the closed-form solution. Thus, according to the presented 

results both methods turned out to be appropriate for the K-values estimation within the linear-elastic 

CT-specimen model.  

The ΔK-values were also computed for several fatigue crack lengths of the linear-elastic CT-specimen 

model, i.e. A fatigue crack growth analysis was performed. The Paris-Erdogan empirical relation was 

used to correlate the FCG rates da/dN with the ΔK-values. Material coefficients required by the Paris-

Erdogan relationship for the Al6061-T6 reported in the literature were used. However, a notorious 
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sub estimation of the fatigue life was predicted by the computational model regarding experimental 

data reported in the literature, the numerical simulations predicted approximately one third of the 

experimental fatigue life. An alternative fatigue life estimation for the CT-specimen model was done 

by considering another adjustment to the material coefficients. The adjustment considered also the 

experimental ΔK-da/N curve reported in the literature, but a point-to-point adjustment known as table 

look-up scheme was used. By the application of the table look-up scheme, reliable fatigue life 

estimations can be achieved. The numerical fatigue life predictions for the linear-elastic CT-specimen 

FE model were of up to 91% of accuracy regarding the experimental fatigue life. 

The study conducted for the linear-elastic CT-specimen FE model revealed that the non-linear 

behavior of the displacement correlation method can be attributed to the central-hole boundary 

condition. 

For the parametrized FE central-hole-plate specimen, the elastic-plastic material model, cyclic 

loading and residual stress (RS) conditions were considered. Besides, the displacement correlation 

method, the contour integral method and the stress correlation method were studied. The parametrized 

central-hole-plate model was performed through a three-level FE sub modelling technique (Global 

model GM, Intermediate sub model I-SM and Fine sub model F-SM). Within the results of the 

predicted RS it has been found that the RS field is sensible to the expander geometry. A cylindrical 

tool generated tension residual stress at the entrance and exit faces of the specimen while the conical 

expander generated only compressive RS field within the expanded specimen. The predicted RS field 

that was captured for the F-SM differed from the RS field captured by the I-GM and GM within the 

first 5 mm from the hole edge. When performing effective K-values within the parametrized central-

hole-plate model the contour integral, displacement and stress correlation methods were studied.  

The usage of the contour integral method for the effective K-values calculation exhibited a path 

dependence behavior. The path dependence of the contour integral method could not be avoided due 

to the large plastic deformations presented in the F-SM. Thus, the utilization of such method is not 

recommended for the three-level sub modelling technique reported on the present work.  

Regarding the usage of the displacement correlation method within the parametrized central-hole-

plate model, the non-linear behavior previously reported for the linear-elastic central-hole-plate 

model was present again. Thus, it was confirmed that the method turned out to be sensible to the 

central-hole boundary condition regardless of the consideration of linear-elastic or elastic-plastic 

material model. Therefore, the usage of the displacement correlation method within the parametrized 

central-hole-plate model was not recommended. 
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On the other hand, the effective K-values estimated by the stress correlation method as function of 

the radial distance from the crack tip exhibited a linear behavior after discarding nodal points near to 

the crack tip. Thus, the extrapolation of the effective K-value for the crack tip was achieved 

successfully and such method has been considered as adequate for the effective K-values estimation 

within the three-level finite element sub modelling technique reported on the present work.  

A fatigue crack growth (FCG) study within the three-level FE sub modelling technique was conducted 

and compared against experimental results reported on the literature. A notorious overestimation of 

the FCG rates da/dN predicted by the GM was observed while the most accurate da/dN-values 

estimation was achieved by the most FE dense model, which was the F-SM. However, the three level 

sub models exhibited overlapped results fin the RS field for regions farther than 10 mm from the hole 

edge, where the effect of the cold hole expansion was minimal.   
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