

Universidad Autónoma de San Luis Potosí
Facultad de Ingeniería

Centro de Investigación y Estudios de Posgrado

Parallelization of the Honeybee Search Algorithm for Video

Tracking

T E S I S

Que para obtener el grado de:

Maestro en Ingeniería de la Computación

Presenta:

Oscar Ernesto Pérez Cham

Asesor:

Dr. Cesar Augusto Puente Montejano

 San Luis Potosí, S. L. P. Agosto de 2017

Dedicado a mis padres.

i

Acknowledgments

Thanks to Dr. Cesar Augusto Puente Montejano for his constant guidance,

interest and collaboration during the development this work.

To Raymundo Antonio González Grimaldo and Dr. Juan Carlos Cuevas

Tello for sharing their knowledge about Parallel Computing.

To CONACYT (Consejo Nacional de Ciencia y Tecnoloǵıa) Ciencia Básica

for supporting this work through scholarship (Project No. 177041).

To my family and friends for all their help and concern.

ii

Resumen

El seguimiento de objetos en video es uno de los muchos problemas en el

campo de la Visión Computacional; es un componente básico para muchos

y más complejos sistemas de visión que son útiles en varias aplicaciones del

mundo real en áreas como investigación médica, vigilancia, robótica, tele-

colaboración, etc. Un algoritmo de seguimiento de objetos en video intenta

rastrear un objeto de interés a través de los cuadros de cierta secuencia de

video. Esta tesis estudia los efectos de llevar a cabo el seguimiento de objetos

en video con la ayuda del Algoritmo de Búsqueda de las Abejas, un algoritmo

de Inteligencia de Enjambre inspirado en la búsqueda de fuentes de alimento

que realizan las abejas; y Unidades de Procesamiento Gráfico, que son un

ejemplo de una tecnoloǵıa de Computo Paralelo diseñada espećıficamente

para operaciones de renderización gráfica. Los resultados prueban que es

posible paralelizar el Algoritmo de Búsqueda de las Abejas y usarlo para el

seguimiento de objetos en video. En comparación con una versión paralela del

mismo algoritmo de seguimiento de objetos en video, la adición del Algoritmo

de Búsqueda de las Abejas ayuda a proveer un tiempo más estable para

entregar resultados, haciéndolos menos dependientes del tamaño del video, y

sin causar efectos negativos notables en la precisión de los resultados.

iii

Abstract

Video tracking is one of the many problems in the field of Computer Vision;

it is a basic component for many and more complex vision systems that are

useful for several real world applications in the areas of medical research,

surveillance, robotics, tele-collaboration, etc. A video tracking algorithm tries

to follow an object of interest trough the frames of a given video sequence.

This thesis studies the effects of performing video tracking aided by the

Honeybee Search Algorithm, a Swarm Intelligence (SI) algorithm that is

inspired in the foraging behavior of honeybees; and Graphics Processing Units

(GPUs), which are an example of a Parallel Computing technology designed

specifically for graphic rendering operations. The results prove that it is

possible to parallelize the Honeybee Search Algorithm and use it for video

tracking. In comparison with a parallel version of the same video tracking

algorithm, the addition of the Honeybee Search Algorithm helps to provide

a more stable time to deliver results, making them less dependent on the

size of the specific video, and without causing notable negative effects in the

accuracy of the results.

iv

Contenidos

Introducción 1

1 Trabajo Previo en Algoritmos Inspirados en Abejas y Segui-
miento de Objetos en Video 7
1.1 Seguimiento de Objetos en Video 8

1.1.1 Algoritmos de Seguimiento de Objetos en Video 11
1.1.1.1 Correlación Cruzada Normalizada con Media

Cero . 15
1.1.1.2 Filtro de Sobel 18

1.2 Algoritmos Inspirados en Abejas 22
1.2.1 Optimización Basada en Población 23

1.2.1.1 Algoritmos Evolutivos 24
1.2.2 El Comportamiento Natural de las Abejas 28
1.2.3 Revisión de Algoritmos Inspirados en Abejas 32

1.2.3.1 El Algoritmo de Búsqueda de las Abejas . . . 36

2 Marco Teórico sobre la Paralelización de Algoritmos de In-
teligencia de Enjambre 40
2.1 Cómputo Paralelo . 41

2.1.1 Unidades de Procesamiento Gráfico 43
2.1.2 Reducción Paralela de Sumatorias 45

2.2 Paralelizacin de Algoritmos de Inteligencia de Enjambre con
Unidades de Procesamiento Gráfico 47

3 Seguimiento de Objetos en Video Usando el Algoritmo de
Búsqueda de las Abejas Paralelo 51

v

3.1 Análisis del Filtro de Sobel y la Correlación Cruzada Nor-
malizada con Media Cero para el Seguimiento de Objetos en
Video . 52

3.2 Implementación Paralela de la Correlación Cruzada Normal-
izada con Media Cero y el Filtro de Sobel 54
3.2.1 Paralelización del Filtro de Sobel y la Correlación Cruza-

da Normalizada con Media Cero 55
3.2.2 Implementación Paralela del Filtro de Sobel y la Co-

rrelación Cruzada Normalizada con Media Cero en una
Unidad de Procesamiento Gráfico 59

3.3 Análisis del Algoritmo de Búsqueda de las Abejas para el
Seguimiento de Objetos en Video 62

3.4 Implementación Paralela del Algoritmo de Búsqueda de las
Abejas . 64

3.5 Descripción del Puntaje-F como una Métrica para la Eva-
luación de Algoritmos de Seguimiento de Objetos en Video . . 70

4 Experimentos Utilizando una Unidad de Procesamiento Grá-
fico 74
4.1 Descripción del Equipo . 75
4.2 La Libreŕıa de Videos Ordinarios de Ámsterdam 77
4.3 Parámetros de Configuracin Usados en los Experimentos . . . 82
4.4 Resultados Experimentales . 85

Conclusiones 91

Referencias 96

vi

Contents

Introduction 1

1 Previous Work on Algorithms Inspired by Honeybees and
Video Tracking 7
1.1 Video Tracking . 8

1.1.1 Video Tracking Algorithms 11
1.1.1.1 Zero Mean Normalized Cross-Correlation . . . 15
1.1.1.2 Sobel Filter 18

1.2 Algorithms Inspired in Honeybees 22
1.2.1 Population Based Optimization 23

1.2.1.1 Evolutionary Algorithms 24
1.2.2 The Natural Behavior of Honeybees 28
1.2.3 Overview of Honeybee-Inspired Algorithms 32

1.2.3.1 The Honeybee Search Algorithm 36

2 Framework about the Parallelization of Swarm Intelligence
Algorithms 40
2.1 Parallel Computing . 41

2.1.1 Graphics Processing Units 43
2.1.2 Parallel Reduction of Summations 45

2.2 Parallelization of Swarm Intelligence Algorithms with Graphics
Processing Units . 47

3 Video Tracking Using the Parallel Honeybee Search Algo-
rithm 51
3.1 Analysis of the Sobel Filter and Zero Mean Normalized Cross-

Correlation for Video Tracking 52

vii

3.2 Parallel Implementation of the Sobel Filter and Zero Mean
Normalized Cross-Correlation 54
3.2.1 Parallelization of the Sobel Filter and Zero Mean Nor-

malized Cross-Correlation 55
3.2.2 Parallel Implementation of the Sobel Filter and Zero

Mean Normalized Cross-Correlation with a Graphics
Processing Unit . 59

3.3 Analysis of the Honeybee Search Algorithm for Video Tracking 62
3.4 Parallel Implementation of the Honeybee Search Algorithm . . 64
3.5 Description of the F-Score as an Evaluation Metric for Video

Tracking Algorithms . 70

4 Experiments Using a Graphics Processing Unit 74
4.1 Description of the Hardware 75
4.2 The Amsterdam Library of Ordinary Videos 77
4.3 Configuration Parameters used in the Experiments 82
4.4 Experimental Results . 85

Conclusions 91

References 96

viii

List of Figures

1.1 The object is already located in the initial frame 9
1.2 Template t can be contained in frame I 16
1.3 Sobel filter applied on an image of a marble 19
1.4 Pixel (x, y) has 8 neighbors. 20
1.5 Binary crossover of parents a and b 26
1.6 Honeybees are divided in castes 29
1.7 Explorer bees communicate their findings 31
1.8 The Honeybee Search Algorithm has 3 phases 37
1.9 Pseudocode for the exploration phase. 37
1.10 Pseudocode for the harvest phase. 39

2.1 Parallel computing divides the problem 42
2.2 Pseudocode for sequential summation 45
2.3 Parallel reduction . 46

3.1 The division of work depends on |Ω| and p 56
3.2 Each task has an identifier xi 56
3.3 The p computational resources are divided in teams of size q . 58
3.4 Pseudocode to compute γG(u, v) in parallel. 58
3.5 The images are reduced using the constant max window 61
3.6 The work-items of a GPU are arranged in work-groups 62
3.7 The search region is reduced during the recruitment phase . . 64
3.8 Each individual is made of a number of GPU processors. . . . 65
3.9 Some activities only require one processor per bee. 66
3.10 The fitness values are sorted using merge-sort 68
3.11 Pseudocode of the Parallel Honeybee Search Algorithm 69
3.12 The F-score survival curve of 19 video tracking algorithms . . 72
3.13 T i (truth) and GT i (ground truth) may intersect 73

ix

4.1 The processors of the GPU are arranged in Compute Units . . 76
4.2 Example of the ground truth file structure 80
4.3 Example of the ground truth bounding box 80
4.4 Comparison of F-score between BEE and NO BEE 86
4.5 Comparison of time per frame between BEE and NO BEE . . 88
4.6 F-score survival curves of BEE and other 19 algorithms 90

x

List of Tables

3.1 Summary of the characteristics of each implementation 59
3.2 Labels for video tracking algorithms 71

4.1 Summary of the characteristics of the hardware 77
4.2 Summary of the configuration parameters used in the tests . . 84
4.3 Comparison of F-score between BEE and NO BEE 85
4.4 Comparison of time per frame between BEE and NO BEE . . 87
4.5 Video tracking algorithms ordered by average F-score 89

xi

Introduction

Since the beginnings of computer science there has always been interest in

allowing the computer to think and display some kind of intelligent behavior, if

such thing is possible (Turing, 1950). Decades later, the problems of Artificial

Intelligence remain unsolved, but research of this topic has produced many

breakthroughs that have become pervasive in daily life. This can be verified

by simply listing some of the applications of Computer Vision, a smaller

division of Artificial Intelligence that deals specifically with the problem of

allowing the computer to see and understand what it sees (Bradski & Kaehler,

2008). Thanks to Computer Vision, cameras can automatically calibrate

(Li & Lavest, 1996), there is automatized surveillance (Tian et al., 2008),

humans can communicate with computers using body gestures (Zhang, 2012),

production lines can be inspected by computers (Ntuen, Park, & Kim, 1989),

there are even vehicles that can drive themselves (Nothdurft et al., 2011).

One of the problems that Computer Vision faces is the problem of following

certain object that is captured in video, this problem is commonly known to

researchers as video tracking (Trucco & Plakas, 2006). The mentioned problem

is only a basic step, generally useful for many of the specific applications

of Computer Vision. Many different approaches have been suggested in an

1

attempt to solve the problem of video tracking but no definitive answer has

been found. Moreover, there is also the problem of making video tracking

faster but reliable for it to be useful in applications where real-time is the

most relevant requirement (Galoogahi, Fagg, Huang, Ramanan, & Lucey,

2017).

Computer Vision is not left alone suffering with variables such as speed

and time, its a fairly generalized problem for all the fields of computer science

(Crescenzi & Kann, 1997). This is why Parallel Computing technologies

were born and continue to thrive as useful tools whenever heavy volumes

of data have to be analyzed (Foster, 1995). Artificial Intelligence has also

found inspiration in how biological beings provide time efficient solutions

to the same problems, giving foundations for areas such as Evolutionary

Computing and Swarm Intelligence (Bitam, Batouche, & Talbi, 2010). The

efforts to adopt those tools and use them for Computer Vision and many

other problems of computer science have already started and proven to be a

productive research topic (Tan & Ding, 2016).

The Matching Problem

Digital images that can be displayed by computers provide data in a very

crude format. These images are made by pixels, small units that could be seen

as composed of two discrete pieces of data: position and color. A computer

can only perceive an object in a specific image as a group of pixels, but

that same object is a different set of pixels in another image. It is expected

that there is some similarity between those groups of pixels, especially if

2

both images come from the same camera at different but close points in

time. Trying to establish that the first group of pixels represents the same

object as the second group of pixels is commonly known as the matching

problem (Smeulders et al., 2014; Trucco & Plakas, 2006). Video tracking can

be reduced to trying to solve the matching problem many times, once per

image.

Zero Mean Normalized Cross-Correlation, for example, measures the

similarity of each pixel in the first group against a given pixel in the second

group (Di Stefano, Mattoccia, & Tombari, 2005). Once the similarity of every

pair of pixels is measured, the overall similarity is calculated by statistical

methods. Needless to say, comparing each pair of pixels and then going

through the results to summarize them statistically is a heavy task involving

a big number of operations. And that has to be done once for every suspicious

spot in the image. The matching problem can then be seen as a search

problem, where many options have to be reviewed in search for the correct

answer.

Population Based Optimization

Since the matching problem (the basis of video tracking) can be seen as a

search problem, it is possible to use Population Based Optimization approaches

such as Evolutionary Algorithms and Swarm Intelligence to optimize the way

in which the search is performed. Both Evolutionary Algorithms and Swarm

Intelligence are based on the idea of performing smart searches that do not

review every single possible option. Only a small portion of the possible

3

answers are actually evaluated, depending on where the best solutions are

found, the search process pays more attention to answers that are close to

those spots.

One of the algorithms that have emerged from this trend is the Honeybee

Search Algorithm, which is based on how honeybees search for food (Olague

& Puente, 2006a). First a quick search with few resources is performed to get

information about the general location of the best solutions. That information

is later used to assign search resources for a second more extensive search that

pays more attention to the places where the best solutions were previously

found.

There have been several attempts to parallelize Swarm Intelligence al-

gorithms. Since these algorithms are commonly based on the coordination

procedures of many individuals, it is only natural to try to emulate how those

individuals perform their work simultaneously.

Parallel Computing for Swarm Intelligence

Finding the best way to implement parallel versions of Swarm Intelligence

Algorithms is currently drawing much attention from researchers. More

specifically, Graphic Processing Units have been of great interest to parallelize

Swarm Intelligence algorithms because of their availability in comparison

with other technologies such as clusters and grids (Tan & Ding, 2016). This

is because Graphic Processing Units have evolved to be available commodity

hardware. Clusters and grids, on the other hand, can be more expensive as

several common computers and networking supplies are needed to assemble

4

them; the difference between both of them is that while clusters have a rigid

centralized coordination approach; grids are built to work as collaborating

peers (Prabhu, 2008). Chapter 2 provides more information on the subject

of how to implement parallel Swarm Intelligence algorithms with Graphics

Processing Units.

Objectives of This Thesis

The general objective of this thesis is:

To design and implement a methodology to parallelize the Honeybee

Search Algorithm and apply it to the problem of video tracking

using a Graphics Processing Unit.

The specific objectives are listed below:

• To understand and define video tracking and different methods that

have been proposed to tackle this problem.

• To know the way in which Evolutionary Computing and Swarm Intelli-

gence have been used to deal with similar problems.

• To review how the Honeybee Search Algorithm works and how it could

be used for video tracking.

• To research the different Parallel Computing tools that are available.

• To investigate how Graphics Processing Units are used and how these

could be used to develop a parallel version of the Honeybee Search

Algorithm.

5

• To implement a computer program that performs video tracking and

uses the Parallel Honeybee Search Algorithm running in a Graphics

Processing Unit.

• To evaluate and compare the computer program that is developed

against other algorithms of the state-of-the-art and against the parallel

version of the same video tracking method that is selected.

Organization of This Thesis

Chapter 1 will define the problem of video tracking and provide an overview

of different methods that have already been proposed with the intention of

solving it. The same chapter will also introduce the concepts of Evolutionary

Computing and Swarm Intelligence. The approaches that are based on the be-

havior of honeybees will be discussed with greater detail. Parallel Computing

technologies will be discussed in Chapter 2; the chapter is also concerned with

proving a framework to adapt Swarm Intelligence for Parallel Computing.

Graphics Processing Units are introduced as a promising alternative to deal

with problems that deal with images. To continue, Chapter 3 will describe

the methodology that was used to adapt a video tracking function, along with

certain algorithm that uses certain Swarm Intelligence, for Parallel Computing.

The experiments and evaluation of the program that is implemented will be

narrated in Chapter 4.

6

Chapter 1

Previous Work on Algorithms

Inspired by Honeybees and

Video Tracking

The present chapter serves as a theoretical background that exposes the basics

to understand following chapters, where the actual contributions of this thesis

are described in detail. This theoretical background is mainly concerned with

two broad subjects: the problem of video tracking, and algorithms that are

inspired by honeybees.

The part of this chapter that discusses video tracking (section 1.1) will

provide a definition of the problem itself, and explain different types of

algorithms that have been proposed in an attempt to solve it, at least to

certain degree. There are two algorithms of special interest for this thesis:

Zero Mean Normalized Cross-Correlation (ZNCC) and the Sobel filter. As

will be described in following chapters, both methods were used in the

experiments and methodology of this thesis; this is why these will receive a

7

greater attention.

The other part of this chapter (section 1.2) will discuss how and why

computer science takes inspiration from biological subjects such as evolution,

and the behavior of honeybees and other social insects. Introductions will also

be provided for relevant concepts such as Swarm Intelligence (SI), Evolutionary

Algorithms (EAs), and other important points. This part of the chapter will

also describe the Honeybee Search Algorithm, which is one of the main pillars

of this thesis.

1.1 Video Tracking

Video tracking is one of the many problems in the field of Computer Vision,

how to solve this problem in definitive remains an open question for computer

scientists. As any problem of Computer Vision, video tracking is an attempt

to obtain information from raw visual data in order to make complex decisions

based on it (Patnaik & Yang, 2012). This visual data usually proceeds from

still two-dimensional images; video itself is simply a sequence of these images

that can be helpful when variables such as time and movement are also of

interest (Trucco & Verri, 1998). The following section provides a definition for

video tracking and talks about its importance for real world applications; it

also presents a categorization for several video tracking algorithms; later two

techniques of Computer Vision that are of special interest for this research

are described in detail: Zero Mean Normalized Cross-Correlation (ZNCC)

and the Sobel filter, it is also justified why these techniques were selected.

As defined by Mohanapriya and Mahesh (2017), video tracking is the

8

problem of finding an object of interest in the image frames of some video

sequence. It is important to note that the object in question is already located

and marked on the initial frame, meaning that the location of that object has

to be provided as input (Figure 1.1). Video tracking is not concerned with

how or why that object of interest was initially marked; it is only interested in

following it even when the objects of interest change their physical appearance

between frames (Smeulders et al., 2014; Trucco & Plakas, 2006).

video sequence . . .

initial frame next frame

located object ?

Figure 1.1: In video tracking, the object is already located in the initial frame.
The problem is to find it in other consecutive frames despite changes in shape,
light, or other variables

The reason why the video tracking problem gets attention is because a

lot of complex computer vision systems need it as a basic component. The

real world applications of video tracking are too many to list, but Maggio

and Cavallaro (2011) have proposed a number of broad categories for the

classification of said applications. A specific application of video tracking

could belong to one or more of the following categories:

• Medical applications and biological research: an example is

9

breast cancer location and detection with digital image elasto-tomography

(Hii, Hann, Chase, & Van Houten, 2006; Van Houten, Kershaw, Lotz,

& Chase, 2012); also the analysis of how a person walks to evaluate the

condition of bones and joints (Kaufman, Hughes, Morrey, Morrey, &

An, 2001); and the automatized observation of Escherichia coli bacteria

(Xie, Khan, & Shah, 2008).

• Surveillance and business intelligence: applications such as de-

tecting forest fires (Rao, Rao, Duvvuru, Bendalam, & Gemechu, 2016);

complex event-based surveillance systems for airport environments (Tian

et al., 2008); and obtaining interesting data for retailers such as customer

count and effectiveness of merchandising (Senior et al., 2007).

• Robotics and unmanned vehicles: an specific case are cars that

drive themselves in urban environments (Nothdurft et al., 2011); another

one is robots used for automation of industrial manufacturing (Malamas,

Petrakis, Zervakis, Petit, & Legat, 2003); and also humanoid robots

that assist in people in their homes (Castillo, 2016).

• Media production and augmented reality: face motion capture

for computer animation, for instance (Maurer, Elagin, Nocera, Steffens,

& Neven, 2001); automatic video stabilization (Litvin, Konrad, & Karl,

2003); even adding computer-generated objects in video sequences,

either after or during video capture (Hoshino, Yamamoto, & Saito,

2001).

• Tele-collaboration and interactive gaming: for example, interac-

tion with games using full body gestures in a natural way (Zhang,

10

2012); following the gaze of the expositor in a conference to simulate

eye contact is also possible (Gemmell, Toyama, Zitnick, Kang, & Seitz,

2000).

• Art installations and performances: Sensetable, which is a wireless

object tracking platform for tangible user interfaces, can be considered

in this category (Patten, Ishii, Hines, & Pangaro, 2001); SwarmArt,

that uses tracking of the movements of participants to interact with

projected images and illumination installations, can be considered too

(Boyd, Hushlak, & Jacob, 2004).

Many of the actual applications of video tracking that were just introduced

need results to be provided in real-time, or in other words, almost as fast as

cameras are able to generate images. This can be problematic, cameras are

capable of producing images very fast, traditionally a common video would

have around 30 frames per second, but recently speeds of 240 frames per

second are becoming more and more common (Galoogahi et al., 2017). This is

why there is a great interest to improve the speed of video tracking algorithms,

but not sacrificing the accuracy that has already been obtained. In any case,

a video tracking algorithm should be selected based on the requirements, for

example, real-time is a must for unmanned vehicles but timely response could

be less important for art installations.

1.1.1 Video Tracking Algorithms

Smeulders et al. (2014) makes an important distinction when talking about

video tracking algorithms, these can be divided in online trackers and offline

11

trackers. Offline trackers are the ones that provide results only after analyzing

the whole video sequence, which allows them to go through it several times

and even backwards if necessary. Online trackers are the opposite, these

deliver results one frame at a time which can harm the accuracy. Ultimately,

online trackers are the ones that are actually adequate for most applications,

because decisions have to be made based on the results as soon as each frame

is ready. It should be noted that online trackers do not necessarily deliver

results in real-time. A useful classification for online trackers can also be

found in Smeulders et al. (2014), which also provides examples of algorithms

that fit into each category.

The first category includes the most straight forward video trackers, the

ones that simply try to match the object of interest with its pair in the

next frame without recurring to any other techniques. Matching itself is the

basis of all video tracking; it requires to establish a method to evaluate how

similar two images are. The algorithms that are provided as representative

of this category are: Normalized Cross-Correlation (Briechle & Hanebeck,

2001), Lucas-Kanade Tracker (Baker & Matthews, 2004), Kalman Appearance

Tracker (Nguyen & Smeulders, 2004), Fragments-based Robust Tracking

(Adam, Rivlin, & Shimshoni, 2006), Mean Shift Tracking (Comaniciu, Ramesh,

& Meer, 2000), and Locally Orderless Tracking (Oron, Bar-Hillel, Levi, &

Avidan, 2015).

The next category goes one step further, it contains trackers that use

matching and also generate an extended appearance model. These algorithms

try to learn from the object as time goes on and more frames are processed.

This previous results help to create an extended model that helps to predict

12

certain behaviors of the object and improve the tracking results. This extended

model is usually based on identifying certain features and how these behave

in the overall composition of the object. Examples are: Incremental Visual

Tracking (Ross, Lim, Lin, & Yang, 2008), Tracking on the Affine Group

(Kwon, Lee, & Park, 2009) and Tracking by Sampling Trackers (Maggio &

Cavallaro, 2011).

There are also trackers that are based on matching, but also try to use

sparse optimization techniques to generate dynamic constraints that describe

an sparse representation of the object. Sparse optimization is intended to

provide approximations to the real solutions of certain function, this is achieved

by finding the variables that have a greater effect on the result and gradually

ignoring the ones of little impact. In this category one may find: Tracking by

Monte Carlo sampling (Kwon & Lee, 2009), Adaptive Coupled-layer Tracking

(Čehovin, Kristan, & Leonardis, 2011), `1-minimization Tracker (Mei & Ling,

2009) and `1 Tracker with Occlusion detection (Mei, Ling, Wu, Blasch, & Bai,

2011).

Another category contains the trackers that use discriminative classifica-

tion by establishing the difference between tracked objects and background.

Since the object has to be located previously, there is some implicit information

regarding the background from the beginning. The background information

can be used to search something that looks like the object of interest but

also something that is different from the background. Some trackers that

fit the description are: Foreground-Background Tracker (Nguyen & Smeul-

ders, 2006), Hough-Based Tracking (Godec, Roth, & Bischof, 2013), Super

Pixel tracking (Wang, Lu, Yang, & Yang, 2011), Multiple Instance learning

13

Tracking (Babenko, Yang, & Belongie, 2009), and “Tracking, Learning and

Detection” (Kalal, Matas, & Mikolajczyk, 2010).

The last category is the one of trackers that mixes discriminative classifi-

cation of background and constraints generated by sparse optimization, all

done to improve the matching process. The only example provided is Struck,

also known as Structured output tracking with kernels (Hare et al., 2016).

There are many video tracking algorithms that will not be mentioned,

for further information on other video trackers and how each one works it is

recommended to read: Trucco and Plakas (2006); Maggio and Cavallaro (2011);

Smeulders et al. (2014); and Galoogahi et al. (2017). The only techniques

that will be described in detail in following sections are the Sobel filter and

the Zero Mean Normalized Cross-Correlation, these two were selected from

the different tools for video tracking for the following reasons:

• These techniques are very simple in comparison with other techniques

(Smeulders et al., 2014; Sobel & Feldman, 1968). Zero Mean Normalized

Cross-Correlation is very similar to Normalized Cross-Correlation, this

means that both belong to the simplest category of video tracking

algorithms: the ones that only perform matching. The Sobel filter, on

the other hand, can be considered a method to process the image before

any actual operation.

• As it will be shown in section 3.5, Zero Mean Normalized Cross-

Correlation is competitive against other video trackers in precision

of the results (Smeulders et al., 2014). There are still better algorithms

but those are increasingly complex in comparison.

14

• Since the objective of this thesis is to use Graphics Processing Units

(section 2.1.1), the selected video tracker should be easy to parallelize.

Zero Mean Normalized Cross-Correlation has the advantage of being

based on summations and this type of operations are considered ideal

for parallelization (Catanzaro, 2010).

• The selected video tracker is used along with the Honeybee Search

Algorithm (section 1.2.3.1), this makes it a priority to select a video

tracker that can be treated as an optimization problem (section 1.2.1).

Zero Mean Normalized Cross-Correlation has the property of being

mostly defined as an optimization problem (Bätz et al., 2014).

• Online video trackers are more interesting for this thesis. Zero Mean

Normalized Cross-Correlation (just as Normalized Cross-Correlation)

falls in this category.

1.1.1.1 Zero Mean Normalized Cross-Correlation

Zero Mean Normalized Cross-Correlation (ZNCC) is the name of a specific

variation of Normalized Cross-Correlation (NCC), there is little difference

between them. In fact, sometimes their names are even interchanged by

researchers. As expected, ZNCC belongs to the first category that was

mentioned in section 1.1.1, the simplest kind of algorithms that only try

to match the object of interest with its pair. Even though it is one of the

simplest approaches, it still has merit and can be compared to other more

resent proposals in accuracy of results (Smeulders et al., 2014).

ZNCC is used to measure the correlation between two image templates.

15

In other words, ZNCC quantifies how similar these image templates are (Bätz

et al., 2014; Di Stefano et al., 2005; Lewis, 1995). The grade of similarity

is obtained as a scalar number, the greater it is, the more correlated these

images are. Usually, the aim of using ZNCC is to find the point (u, v) where

certain template t is located within certain image frame I (illustrated in

Figure 1.2). In order to find the optimal (u, v), every suitable point (u, v)

in I must be checked using ZNCC. The range of possible values for (u, v) is

limited by the dimensions w × h of I as well as the dimensions m× n of t.

The range of u extends from 0 to w −m while the range of v goes from 0 to

h− n.

n

m

w

v

u

(u, v)
h

t

I

Figure 1.2: Template t can be contained in frame I in a rectangle of size
m× n which has point (u, v) as top left corner.

The formula used to compute ZNCC for any given (u, v) is based on the

squared Euclidean distance. Equation 1.1 shows how the squared Euclidean

distance d2I,t(u, v) may be obtained. The term I(x, y) refers to the value

used to describe the gray level of pixel located at point (x, y) within frame I.

Similarly, t(x−u, y−v) is the value of gray assigned to the pixel (x−u, y−v)

of template t. Note (x, y) is any point contained by the rectangular window

16

that has point (u, v) as the top left corner and (u+m, v+ n) as bottom right

corner, meaning u ≤ x ≤ u + m and v ≤ y ≤ v + n. The aforementioned

inequalities ensure the top left corner of template t will always be (0, 0), and,

as expected, the bottom right corner will always be (m,n).

d2I,t(u, v) =
∑
x,y

[I(x, y)− t(x− u, y − v)]2 (1.1)

d2I,t(u, v) =
∑
x,y

I2(x, y)− 2I(x, y)t(x− u, y − v) + t2(x− u, y − v) (1.2)

The expression used to obtain d2I,t(u, v) may be expanded, as in equation

1.2. This manipulation reveals the result depends on 3 terms. The term∑
x,y t

2(x−u, y−v), which remains constant, is ignored since it does not change

for two different points (u, v). On the other hand, the term
∑

x,y I
2(x, y) does

change for different values (u, v), but this change reflects the fact that the

selected point is different rather than measuring the similarity between pixels

I(x, y) and t(x− u, y− v). Only the term
∑

x,y I(x, y)t(x− u, y− v) is useful

to get the cross-correlation c(u, v) (equation 1.3) and thus it is established as

a starting point for ZNCC.

c(u, v) =
∑
x,y

I(x, y)t(x− u, y − v) (1.3)

ZNCC presents an improvement over c(u, v), since the first provides

resistance to changes across the frames of a video sequence. For example,

a difference in the illumination of the targeted object that occurs between

frames of the video. Another common problem that occurs when using c(u, v)

17

is that bright spots in the image or template can cause confusion by provoking

greater correlation values than actual features of the targeted object. In

order to give ZNCC a greater resistance to the mentioned errors, c(u, v) is

altered by normalizing the image and feature vectors to the unit length (this

is reflected in equation 1.4). The mean of all the pixels (x, y) in the region

were u ≤ x ≤ u + m and v ≤ y ≤ v + n is denoted as Īu,v and found using

equation 1.5. The term t̄ is the mean of the pixels contained in t and requires

equation 1.6 to be evaluated.

γ(u, v) =

∑
x,y [I(x, y)− Īu,v][t(x− u, y − v)− t̄]√∑

x,y [I(x, y)− Īu,v]2
∑

x,y [t(x− u, y − v)− t̄]2
(1.4)

Īu,v =

∑
x,y I(x, y)

m× n (1.5)

t̄ =

∑
x,y t(x− u, y − v)

m× n (1.6)

The value γ(u, v), called ZNCC, ranges between −1 and 1 (Bätz et al.,

2014). As the value approaches 1, the certainty of finding t in point (u, v)

with great robustness is greater. However, ZNCC is not capable of detecting

certain transformations such as rotation and scale changes in the targeted

object.

1.1.1.2 Sobel Filter

The Sobel filter or Sobel operator is used to detect the edges that are present

on images, helping find points of special interest that characterize the picture

in question. Edges can be described as boundaries that separate different

18

textures in the same image. These edges are found when there is an abrupt

change from one pixel to another (Juneja & Sandhu, 2009; Patnaik & Yang,

2012; Shrivakshan, Chandrasekar, et al., 2012; Sobel & Feldman, 1968). When

the Sobel filter is applied on an image, a second image is generated as output

(see Figure 1.3). This second picture has brighter values on pixels that show

greater contrast with their vicinity. These brighter pixels define features

that help distinguish objects from one another. This filter was not initially

proposed for video tracking, but can be used to emphasize the important

characteristics of objects of interest.

Figure 1.3: Sobel filter applied on an image of a marble. Original image
obtained from the ALOV++ dataset (Smeulders et al., 2014)

The Sobel filter is different from other edge detectors because it is based on

the numerical analysis of 3×3 sized pixel neighborhoods and is used to detect

changes in both horizontal and vertical directions (Juneja & Sandhu, 2009;

Patnaik & Yang, 2012; Sobel & Feldman, 1968). Certain vicinity is centered

on certain pixel (x, y) within an image I. The central pixel is surrounded by

8 neighbors, as shown in Figure 1.4. In order to apply the Sobel filter to pixel

(x, y), a 3 × 3 matrix is composed using the values from the neighborhood

and then convoluted with two different special matrices called kernels.

19

(x, y)

x

y

h

w

(x− 1, y − 1) (x, y − 1)I (x+ 1, y − 1)

(x− 1, y) (x, y) (x+ 1, y)

(x− 1, y + 1) (x, y + 1) (x+ 1, y + 1)

Figure 1.4: Pixel (x, y) has 8 neighbors.

Convolution consists in performing a special kind of matrix multiplication

expressed as h = I ∗ g, where h is the result of applying the kernel g of size

k × k on the 2D signal I. In order to find the corresponding h(x, y) for any

given I(x, y), equation 1.7 should be evaluated which results in obtaining a

sum of the neighbors of (x, y) with certain ponderation effect caused by the

weights defined by kernel g.

h(x, y) =

k/2∑
i=−k/2

k/2∑
j=−k/2

I(x+ i, y + j)g(i, j) (1.7)

As mentioned earlier, in the special case of the Sobel filter k = 3 and the

kernels are already defined and called Sx (equation 1.8) and Sy (equation

1.9). Since there are two different kernels, there are also two convolution

operations that result in the gradients ∇x = I ∗ Sx and ∇y = I ∗ Sy, that are

computed using equations 1.10 and 1.11 respectively.

20

Sx =


−1 0 1

−2 0 2

−1 0 1

 (1.8)

Sy =


1 2 1

0 0 0

−1 −2 −1

 (1.9)

∇x(x, y) =
1∑

i=−1

1∑
j=−1

I(x+ i, y + j)Sx(i, j) (1.10)

∇y(x, y) =
1∑

i=−1

1∑
j=−1

I(x+ i, y + j)Sy(i, j) (1.11)

Since the kernels are relatively small (3× 3), it is common to see the fully

expanded sum forms to obtain ∇x(x, y) and ∇y(x, y), as shown in equation

1.12 and equation 1.13.

∇x(x, y) = I(x+ 1, y − 1) + 2I(x+ 1, y) + I(x+ 1, y + 1)

−[I(x− 1, y − 1) + 2I(x− 1, y) + I(x− 1, y + 1)]
(1.12)

∇y(x, y) = I(x− 1, y − 1) + 2I(x, y − 1) + I(x+ 1, y − 1)

−[I(x− 1, y + 1) + 2I(x, y + 1) + I(x+ 1, y + 1)]
(1.13)

The absolute value of each gradient gives an estimate of the derivative

of I(x, y), but only on a horizontal (∇x) or vertical (∇y) direction. Consid-

ering this, both gradients can be combined to obtain the overall gradient

21

measurement applying equation 1.14.

∇(x, y) =
√
∇2
x(x, y) +∇2

y(x, y) (1.14)

1.2 Algorithms Inspired in Honeybees

The honeybee (Apis mellifera) is one of the social insects of most interest

for Swarm Intelligence (SI) researchers; this derives from the high level

of organization that is observed in a honeybee swarm (Bitam et al., 2010;

Karaboga & Akay, 2009).

Similar social conducts can be observed mainly on other insect species of

the Hymenoptera order such as ants and wasps (also interesting for SI). There

are complex altruistic relations between these individuals that produce what

can be described as intelligent collective behavior, almost as if they were a

unique superorganism (Nowak, Tarnita, & Wilson, 2010; Wilson, 1975). The

described behavior is commonly known to biologists as eusociality, one of

the most complex social structures in the animal kingdom (Crespi & Yanega,

1995).

The level of organization that was described is present in many of the

activities of eusocial beings, and many of these activities can be seen as

general optimization problems that computer science needs to solve. The

clever ways in which these optimization problems are solved naturally serve

as inspiration for many algorithms that wish to solve the same generalized

situations.

22

The following section will provide an introduction to Swarm Intelligence

and Evolutionary Computing, a description of the behavior of honeybees,

an overview of the algorithms that have taken inspiration from them, and

then a detailed description of the Honeybee Search Algorithm and why it was

selected for this thesis.

1.2.1 Population Based Optimization

Both Swarm Intelligence (SI) and Evolutionary Algorithms (EAs) belong to

a broader category: population based meta-heuristics (Bitam et al., 2010).

One thing in common that all these different algorithms share is that they

are all based on optimization problems.

The common optimization problem depends on certain function f : Rn →
R, called the objective function (Luenberger, Ye, et al., 1984). An optimization

problem also defines constraints as functions g : Rn → Rp and h : Rn → Rm.

Any value in the domain of f , g or h is called x. Function g provides

inequality constraints, since only the values of x that satisfy g(x) ≤ 0 are

acceptable. Similarly, h provides equality constraints as x should satisfy

h(x) = 0. A value for x is called feasible if it meets the constraints. The

set Ω = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} that contains all feasible solutions is

called the feasible region.

The general optimization problem, as defined earlier, may be summarized

in one small statement as follows:

23

Minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

The answer to this optimization problem should be some value x∗ such

that x∗ is feasible and f(x∗) ≤ f(x) holds for any x. This value x∗ is called an

optimal value. The definition of an optimization problem does not restrict the

objective function in many ways. Meaning f does not have to be differentiable

or have any other property that helps to find the optimal value x∗. As a

last resort, a common approach to find the optimal value is to compute all

the values in the feasible region one at a time. The described approach

can generate heavy temporal computational costs, and this is the reason

why population based meta-heuristics have gained popularity. These meta-

heuristics present alternative and intelligent methods to search for x∗ without

having to cover the whole feasible region.

1.2.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are based on concepts taken from biological

evolution. In this context, a specific value for x ∈ Ω is called an individual

and the objective function f is called the fitness function. A population is

a group of individuals and a generation is the state of this population on a

specific iteration of the EA. In each iteration, the population is evaluated

(using the fitness function) and modified with the help of the genetic operators:

mutation, crossover, and selection. The best individuals survive and generate

offspring until a stop condition is met. This procedure explores the feasible

24

region with special emphasis on the best found solutions (Deb, 2001; Goldberg,

1989).

The purpose of the selection operator is to give the best individuals a

greater chance to generate offspring for the next generation. This means

selection is mainly concerned with evaluating the individuals using the fitness

function. One of the most common and simple selection operators is the

tournament selection. In tournament selection, two individuals are selected

randomly from the population. This two individuals are compared using

the fitness function and the best one gets to be part of the list for crossover

(or the next generation in some cases). The number of tournament matches

depends on how many individuals need to be selected; this depends on the

type of EA.

Mutation and crossover operators depend on the type of EA. There are

many different kinds of EAs, but the following paragraphs will only describe

Genetic Algorithms and Evolution Strategies because of their importance in

order to describe how the Honeybee Search Algorithm works.

Genetic Algorithms Genetic Algorithms (GAs) differ from other EAs

mainly in their binary representation of individuals (Deb, 2001; Goldberg,

1989). Each individual is represented by an array of bits and each bit is called

a gene. Binary representation is attractive because it simplifies mutation and

cross-over operators. Mutation can be accomplished by randomly selecting a

gene and negating its value. Binary crossover usually receives two individuals

as input (called parents) and outputs two new individuals (called children).

The most common binary crossover is one-point crossover where both parents

25

are split at a random point. The pieces of both parents are then reassembled

to create the children as illustrated in Figure 1.5.

parents:

children:

a :

b :

a1

b1

c :

d :

a1

b1

a2

b2

a2

b2

a3

b3

a3

b3

a4

b4

b4

a4

a5

b5

b5

a5

a6

b6

b6

a6

a7

b7

b7

a7

Figure 1.5: Binary crossover of parents a and b, generating children c and d.

Evolution Strategies Evolution Strategies (ESs) are another type of EAs.

In this case, individuals are represented as n-dimensional vectors composed of

real valued components to resemble the actual solutions of the optimization

problem. ESs do not commonly use crossover, mutation is the biggest source

of change between generations.

The mutation operator can be easily applied by adding normally dis-

tributed random values to the individual x (see equation 1.15). The normal

distribution N used by mutation has median 0 and standard deviation σ. In

this context, σ is called mutation strength, since increasing this value allows

greater mutations to the individuals.

yi = xi +N(0, σ) (1.15)

There are other mutation operators that can be used with ESs. For

26

example, Polynomial Mutation can be achieved using equations 1.16 and

1.17. There has to be a random number u ∈ [0, 1) and values xUi and xLi

have to be defined using the upper and lower boundaries of the individual’s

i-th component xi (Khare, Yao, & Deb, 2003). The mutated individual y is

expected to be close to x, but how often depends on the constant parameter

ηm.

δ̄i =

 (2ui)
1

ηm+1 − 1 if ui < 0.5

1− [2(1− ui)]
1

ηm+1 otherwise
(1.16)

yi = xi + (xUi − xLi)δ̄i (1.17)

As mentioned earlier, ESs do not commonly use crossover but it also is

possible to implement. For example, the Simulated Binary Crossover (SBX)

operator is designed to have similar properties to the crossover performed in

Genetic Algorithms but using real valued variables x ∈ R (Deb, 2001; Deb

& Beyer, 1999; Khare et al., 2003). A random value βq is used to obtain

children c1 and c2 from parents x1 and x2 using equations 1.18 and 1.19.

c1 = 0.5[(1 + βq)x1 + (1− βq)x2] (1.18)

c2 = 0.5[(1− βq)x1 + (1 + βq)x2] (1.19)

In order to select an specific βq using equation 1.20, a random number u

that ranges from 0 to 1 is selected. This same procedure can be applied by

each component of the parent individuals. There is also a constant ηc that

27

helps to modify the frequency of having children that are near to parents.

βq =

 (2u)
1

ηc+1 if u ≤ 0.5[
1

2(1−u)

] 1
ηc+1

otherwise
(1.20)

Another thing that distinguishes ESs is that the population has a constant

size of µ individuals across generations. As each generation passes, a new

population of λ individuals is generated as offspring. The next generation can

be selected from both the µ and λ populations or only from the λ population.

The constitution of the next generation depends on the kind of ES, some

examples of ES types are:

• (µ+ λ)-ES: The next generation is conformed by the best individuals

from both the µ and λ populations, this means parents compete with

the offspring (this is called elitism).

• (µ, λ)-ES: The next generation is conformed by the best individuals

from the λ population exclusively.

1.2.2 The Natural Behavior of Honeybees

Since honeybees are called eusocial beings, they share very specific character-

istics with other eusocial species. According to Crespi and Yanega (1995),

said characteristics are:

• for an animal species to be eusocial, adult individuals of the species have

to cooperate to take care of the younger individuals in the community;

28

• there has to be a division of work based on reproduction, meaning there

is a royal or reproductive caste and a worker caste that is partially or

totally sterile;

• several generations have to live together in the same colony and con-

tribute to fulfill their common needs.

As illustrated in Figure 1.6, the royal caste of honeybees is composed

by all the male bees and the only female capable of laying eggs, the queen

bee (Von Frisch, 2014). In contrast, the worker caste is conformed by all

the remaining female bees. The differences between female bees of different

castes are not only social but also physical. Since their early life, queen bees

get special treatment. They are fed royal jelly which helps them increase

their body size and fully develop their ovaries thanks to the presence of a

special protein called royalactin (Kamakura, 2011). This quicker and greater

development distinguishes them from other female bees, which suffer from

malnourishment during their larval stage.

royal worker

Figure 1.6: Honeybees are divided in castes: the royal or reproductive caste
and the worker caste. All the males and the queen honeybee belong to the
royal caste and all the other female honeybees belong to the worker caste.

The queen bee has other functions in the hive besides reproduction. For

29

instance, it is in charge of coordinating the activities of the worker bees

through the regulated production of special pheromones that cause changes in

the conduct and labors of all the bees that live in the hive (Slessor, Winston,

& Le Conte, 2005). The queen bee is also in charge of keeping the balance

in the population, since it is capable of deciding the sex of offspring. This

is possible because, in honeybees, the unfertilized eggs become male bees

through parthenogenesis1 while the fertilized ones always become female bees

(Tucker, 1957; Von Frisch, 1955).

The other members of the royal caste, the males, are also called the drones

because of their clumsy and lazy nature. Their main and only task in the

hive is to mate with queen, in order to increase the population of worker

bees. It is common that drones mate with the queen from other hives and

even are welcome to join those other hives (Von Frisch, 1955). Most of their

distinguishable traits are developed primarily for the purpose of mating, which

occurs during flight and outside of the hive. They have larger eyes and more

olfactory sensors on their antennae to be able to track down the flying queen

(Schlüns, Koeniger, Koeniger, & Moritz, 2004). The mating process is always

fatal to them, and if they happen to survive long enough, they are expelled

from the hive during autumn when their task has been fulfilled.

Worker bees earn their name because they are in charge of most of the

maintenance tasks in the hive such as nursing larvae, guarding the hive

entrance, honey production, foraging, etc. Their main labor depends on

their age and development. They begin their adult stage by cleaning and

taking care of larvae. As they begin to learn how to fly and develop certain

1Parthenogenesis: a kind of asexual reproduction, it happens when the female produces
eggs that develop without ever being fertilized (Tucker, 1957).

30

special organs their tasks become more specialized, from honey and royal

jelly production to protecting the entrance to their home with their stings.

The oldest worker bees are ones who leave the hive in search for food and

resources, this work is so harsh and dangerous that all of them will die (at

most) some weeks later (Von Frisch, 1955).

The specific task of searching for and collecting nectar, pollen and other

resources is performed by worker bees that take two different roles: explorers

and foragers. Explorers leave the hive when they perceive there is need to

search for new food sources and return when they have located one. Forager

bees are then recruited by explorers to harvest certain food sources. The

information brought by explorers is used to make decisions regarding resource

allocation. The better a food source is, the more foragers will be recruited to

exploit it (see Figure 1.7).

Figure 1.7: Explorer bees communicate their findings using their dance
language. The best food sources get proportionately more recruits.

Explorers can tell foragers about the location, quality and quantity of the

food they have found with great detail through their dance language. There

31

is a distinction between two types of dances: the round dance and the waggle

dance (Crist, 2004). The round dance is used when the resources are close

enough and only the direction needs to be communicated. On the other hand,

the waggle dance is used for longer distances, and the speed of the dance is

related to the distance that has to be traveled, a faster dance means a closer

distance. The direction that must be taken during the flight can be acquired

from the angle of the dancing bee, which relates to the angle between the sun

and the food source. The possible recruits can also confirm the quality of the

source by smelling samples brought by the explorer. And finally, the quantity

of food is related to the liveliness of the dance.

1.2.3 Overview of Honeybee-Inspired Algorithms

As explained earlier in this chapter, the organization that honeybees show

in their daily activities has inspired many researchers to propose different

algorithms for several problems that originate from computer science. This

section provides small introductions to some notable proposals that have

this common source of inspiration. Bitam et al. (2010) initially proposed to

categorize several different algorithms based on what specific activity of the

honeybee hive is emulated. The categories that were proposed are:

1. algorithms inspired in the search for food sources of honeybees

2. algorithms inspired in the search for a new nest site of honeybees

3. algorithms inspired in the marriage behavior of honeybees

The first two models are similar, since honeybees perform the same search

process (described in section 1.2.2) in both cases, where the communication

32

and coordination trough their dance language is vital. The main difference

between this two models is that when honeybees search for food sources more

than one sources need to be found to sustain the hive; when honeybees wish

to find a new nesting site, there has to be an overall consensus, the discussion

goes on until only one option is left because the efforts to build a new hive

cannot be started until then. This means that the first model is used when the

optimization problem of interest can or must have several different answers,

while the second approach is used when the problem requires only a unique

optimal solution.

The marriage behavior model has certain similarities with Evolutionary

Algorithms, because it is based on how the individuals that show a greater

fitness for their environment are the ones that get to produce offspring. As

mentioned in section 1.2.2, the queen honeybee is the only female capable of

reproduction and has many potential mates. These mates have to show their

fitness by competing with all other male honeybees in the hive, characteristics

that help them to overcome their test are greater vision and flying speed to

be able to track down and reach the queen during mating flights.

The first category is the most populated, distinguished examples are:

• Bee System (Lucic & Teodorovic, 2001) which was initially tested with

several instances of the Traveling Salesman Problem (combinatorial

optimization), and several benchmarking problems.

• Bee Colony Optimization (Teodorovic & Dell’Orco, 2005) is an im-

provement of the original Bee System. The main difference is that this

algorithm was capable of dealing with uncertainty in combinatorial

optimization problems, by using fuzzy logic.

33

• Honey Bee Algorithm (Nakrani & Tovey, 2003) emulates how honeybees

self-organize in order to dynamically allocate internet services in a highly

unpredictable environment (like the real Internet).

• BeeHive (Wedde, Farooq, & Zhang, 2004) also applies the model to the

problems of networking. In this case it is applied to perform routing in

wired networks.

• BeeAdhoc (Wedde et al., 2005) could be seen as another version of

BeeHive, but focused on energy efficient routing for mobile ad hoc

networks.

• Artificial Bee Colony (Karaboga, 2005) was initially proposed for multi-

dimensional and multi-modal optimization problems, but can be adapted

to be used for combinatorial optimization.

• Virtual Bee Algorithm (Yang, 2005) can be used to solve numerical

optimization problems. It is specialized in continuous functions and

was tested with De Jong’s test function (single-peaked) and the Keanes

multipeaked bumpy function.

• Bee Algorithm (Pham et al., 2011) is also used for combinatorial and

numerical optimization. It was used to train Learning Vector Quanti-

zation networks to recognize patterns in control charts with problems

that had 2,160 parameters.

• The Honeybee Search Algorithm (Olague & Puente, 2006a, 2006b)

which was used to solve the problem of three-dimensional reconstruction

34

from a stereo pair of images. It will be described in detail in section

1.2.3.1 because it is used in the experiments.

• OptBees (Maia, de Castro, & Caminhas, 2012) is characterized by

maintaining the diversity of population to obtain and evaluate many

local optima. This algorithm was tested with 5 of 20 problems proposed

by the Optimization Competition of Real Parameters of the CEC 2005

Special Session on Real-Parameter Optimization.

• Mutable Smart Bee Algorithm (Mozaffari, Gorji-Bandpy, & Gorji, 2012)

uses “Mutable Smart Bees” instead of common honeybees. These indi-

viduals are capable of remembering the history of the visited locations

and quality of food sources; they also have a small chance of mutation

as individuals in Evolutionary Algorithms.

The second category has a lower number of examples; food search based

algorithms are much more popular in the literature. An example of the second

model can be found in Quijano and Passino (2010), their main interest was

to solve resource allocation problems as a numerical optimization. They were

able propose ideal free distribution and globally optimal allocation strategies.

The third model also has a lesser number of examples. One specific example

is the Bees Mating Optimization algorithm (Abbass, 2001) that was initially

used to solve the famous NP-complete problem of three-satisfiability (3-SAT).

The next section will describe the specific algorithm that is used in this

work, the Honeybee Search Algorithm. This algorithm was selected because

it has already been successfully used for Computer Vision, as mentioned

earlier (Olague & Puente, 2006a). Other interesting qualities of the algorithm

35

are that: it combines concepts from Evolutionary Algorithms and Swarm

Intelligence; it belongs to the most popular category of honeybee-inspired

algorithms, the ones based on the search for food; and it is not used specifically

for combinatorial optimization problems, giving a greater freedom to define the

fitness function and search space. Another important factor that influenced

the decision was the availability of an older implementation of the Honeybee

Search Algorithm, used for reference.

1.2.3.1 The Honeybee Search Algorithm

The Honeybee Search Algorithm was initially proposed by Olague and Puente

(2006a, 2006b), it can be defined as a meta-heuristic that combines Evolu-

tionary Algorithms and Swarm Intelligence with individuals that emulate the

behavior of foraging honeybees. It is inspired in the search process performed

by explorer and forager honeybees that was described in section 1.2.2. There

are three main phases: exploration, recruiting and harvest, as displayed in

Figure 1.8. The exploration phase consists in sending search agents called

explorers to random points of the fitness function, these points or possible

solutions are called food sources. The next phase, recruiting, is where the

explorers return to the hive and try to convince other bees to follow them

and exploit the food source they have found. In the last phase, harvest, a

massive search is executed where the surroundings of the best food sources

are given a greater attention since more bees are attracted by them.

The exploration stage (Figure 1.9) can be described with greater detail

as a modified ES of the type µ + λ (more information about (µ + λ)-ESs

available in section 1.2.1.1). This kind of Evolutionary Algorithm is commonly

36

Begin Explore Recruit Harvest End

Figure 1.8: The Honeybee Search Algorithm has 3 phases: exploration,
recruitment and harvest.

distinguished by the importance of mutation as the main source of change

between generations (instead of crossover). But, in this case, the λe sons

are generated by 3 different methods: αe sons are generated by Polynomial

Mutation, βe sons are generated by crossover using SBX and γe sons are

generated randomly. It should be noted that αe + βe + γe = λe.

Exploration(µe, λe)
1 Initialize(µe)
2 Evaluate(µe)
3 while stop condition = false
4 Generate(λe)
5 Evaluate(λe)
6 Sharing(µe, λe)
7 Select µe best(µe, λe)

Figure 1.9: Pseudocode for the exploration phase.

Another important difference between the common ES and the one used

in this algorithm is that a sharing operator is also used to penalize individuals

that concentrate in a small space by reducing the individual’s fitness value.

This thesis does not use the sharing operator, so no further details are provided.

For a formal explanation of this operator, the lecture of Olague and Puente

37

(2006a) is recommended.

The recruiting phase is simpler; the total number λ of forager agents is

divided into groups. Just as illustrated in Figure 1.7, the size ri of those

groups is relative to the fitness value of each of the individuals that were

selected from the exploration phase, as seen in equation 1.22. In order to find

ri, a proportion pi is computed using equation 1.21, dividing the corresponding

fitness value fiti by the sum of all fitness values obtained in the exploration

phase (µe in total).

pi =
fiti∑µe
j=1 fitj

(1.21)

ri = pi × λ (1.22)

The harvest phase (Figure 1.10) is also a (µ+λ)-ES where the offspring is

generated in the exact same way as in the exploration phase (λh = αh + βh +

γh). The differences are that, instead of beginning with random points, the

starting points are the results from the exploration phase; and the number of

generations and individuals may change. This means the algorithm performs

an ES search for every good food source found during exploration.

38

Harvest(µh, λh, µe)
1 for each individual ∈ µe
2 Initialize(µh)
3 Evaluate(µh)
4 while stop condition = false
5 Generate(λh)
6 Evaluate(λh)
7 Sharing(µh, λh)
8 Select µh best(µh, λh)

Figure 1.10: Pseudocode for the harvest phase.

39

Chapter 2

Framework about

the Parallelization of

Swarm Intelligence Algorithms

The following chapter will provide an introduction to the concept of Parallel

Computing, along with relevant concepts such as Graphics Processing Units

(GPUs). This will be done to provide a framework, or a set of tools, that

can be used to parallelize Swarm Intelligence (SI) algorithms such as the

Honeybee Search Algorithm.

Section 2.1 will be mainly focused on the description of parallel computing

technologies. GPUs will get more attention than other parallel computing

technologies, as the experiments to be described in Chapter 4 are performed

using this specific type of technology.

The next section, section 2.2, is where the general difficulties of implement-

ing SI algorithms in GPUs will be discussed, along with several approaches

that have been used in the literature with similar purposes to the ones of this

40

thesis.

2.1 Parallel Computing

The definition of Parallel Computing is the usage of some set of processors

that work in collaboration to solve a single computational problem (Foster,

1995). It is an opposite notion to sequential computing. Traditionally, a

computational problem is solved by breaking it down into smaller trivial

problems such as addition, multiplication, logical operations, etc., these are

executed in order one at a time until an answer is obtained. In parallel

computing, a problem is also broken down, but some instructions can be

executed simultaneously by different processors and the results are later

combined by a coordination mechanism (Figure 2.1). The reason why Parallel

Computing has gained popularity in recent years is the ever increasing size of

computational problems that require solution, while time to deliver results is

always required to decrease.

Different technologies have emerged from this trend such as Graphics

Processing Units (GPUs), clusters, grids, Field Programmable Gate Arrays

(FPGAs), etc. clusters and grids are similar, they are both based on the

idea of using common computational resources interconnected by networking

technologies (Hwang, Dongarra, & Fox, 2013). GPUs take a different approach;

their computational resources are embedded in a single hardware for very

specific applications. FPGAs loosely fit the definition of Parallel Computing

technologies because it is possible to implement highly complex logic circuits

with them, these might as well take the form of parallel computing resources

41

problem

problem

solution solution

solutions
partial

coordinate

sequential parallel

Figure 2.1: Parallel computing divides the problem in smaller problems that
are solved by many computational resources; partial solutions are generated
and later combined.

(Draper, Beveridge, Bohm, Ross, & Chawathe, 2003). Since there are so

many different kinds of parallel computers, a simple classification system was

proposed by Flynn (1972). which is commonly known as Flynn’s taxonomy.

This taxonomy has 4 different classifications for parallel computers which are

based on how they perform instructions over data:

• Single-instruction stream – single-data stream (SISD): This category is

used to describe common computers, only one instruction is performed

once over certain data.

• Single-instruction stream – multiple-data stream (SIMD): Includes par-

allel computers that perform several operations at a time over different

42

input data, but all the operations have to execute the same instruction.

This is especially useful for graphic processing applications where matrix

operations are required. Depending on the architecture, GPUs can be

included in this category or at least their main components.

• Multiple-instruction stream – single-data stream (MISD): This is a very

specialized approach that can be found mainly on hardware specifically

designed for signal processing. Different operations are performed in

parallel over the same input data.

• Multiple-Instruction stream – multiple-data stream (MIMD): Clusters

fall in this category. Each processor is capable of performing different

instructions on different input data, achieving full parallelism for general

purpose. If FPGAs are used for parallel computing, they commonly fit

here (Dhaussy, Filloque, Pottier, & Rubini, 1994; Raimbault, Lavenier,

Rubini, & Pottier, 1993).

2.1.1 Graphics Processing Units

A Graphics Processing Unit (GPU) can be seen as an array of hundreds of

processing units that are designed for quick performance on graphics rendering,

mainly three-dimensional graphics (Owens et al., 2008). However, as soon

as tools for programming were made available by vendors, the scientific

community started to use GPUs for general purpose and research. There are

several Application Programming Interfaces (APIs) such as CUDA (Compute

Unified Device Architecture), which is only for NVIDIA products (Tan &

Ding, 2016); and the Open Computing Language abbreviated as OpenCL

43

(Owaida, Bellas, Daloukas, & Antonopoulos, 2011). These APIs allow the

implementation of programs for GPUs, but the decision of which to use is

most influenced by the manufacturer of the specific product. The interest

in using this technology for research has had an effect on the evolution of

the GPU; today’s products are built with different architectures that allow

general purpose applications (Mantor, 2012; Owens et al., 2008).

As mentioned earlier, GPUs can either be considered SIMD devices or be

made of SIMD components, depending on the specific model. The instructions

can be performed by different SIMD components, sometimes called vector

units. How data is handled in GPUs is another characteristic, commonly

there is a global memory that can be read or written by any processing

units (Owens et al., 2008). There is also local memory that is only available

to certain processing units; this is added because using global memory can

become a bottle neck when many different processing units require access to

the same data at the same time.

The main coordination mechanisms that are observed in GPUs are per-

formed by the common CPU. Since the main purpose of GPUs is to help in

image rendering, these are connected to a common CPU so that normal oper-

ations of the computer are performed by it. The GPU is not usually required

to have an internal synchronization or coordination mechanism because the

CPU is the ‘leader’ that takes these responsibilities. This can be problematic

if the program that is implemented in a GPU has data dependencies between

different phases (Tan & Ding, 2016).

44

∑
xi∈X xi(X,N)

1 Σ = 0
2 for i = 0 to N − 1
3 Σ = Σ + xi

Figure 2.2: Pseudocode for sequential summation. Σ retains the result of the
summation.

2.1.2 Parallel Reduction of Summations

As mentioned by Nickolls, Buck, Garland, and Skadron (2008), there are

certain problems based on having a sequence of N numeric values that have

to be combined by some operation. These problems are called reduction

problems, and have properties that allow them to be easily parallelized. A

classic example is the summation of the N elements of certain vector X;

if this problem is solved sequentially the program would be similar to the

pseudocode of Figure 2.2, where xi is i-th element of vector X. It does not

matter how fast the processor that uses the sequential procedure is, it will

always take around N steps to get a result.

The specific problem of summation is nicely behaved, because addition has

the properties of associativity and commutativity (Catanzaro, 2010; Chandra,

2001). Said properties allow the distribution of the operations in an inherently

parallel manner. If two computational resources were available, the problem

could be treated as two different summation problems a =
∑N/2−1

i=0 xi and

b =
∑N−1

i=N/2 xi. Both of those summations give a partial answer to the full

problem of obtaining the sum c =
∑N−1

i=0 xi and are called partial sums. The

reduction process is quite simple a+ b = c but the time reduction is evident,

45

while the original sequential algorithm takes N steps, the parallel reduction

with two computational resources should take N/2 steps.

Using only two computational resources could not be enough in most cases,

but the idea can be generalized to use any number p of different computational

resources and solve the problem in almost N/p steps. The general idea of

reduction is having many different pieces of data and reducing them into a

single result, but parallel reduction does this by dividing the load of work, as

illustrated in Figure 2.3. Each computational resource performs the reduction

operations in its own section of the set, then each of the individual results are

reduced into one single result; in the case of summation, the total of adding

all the numbers in X.

Figure 2.3: Parallel reduction consists in performing operations on many
pieces of data by dividing them in groups, once those groups of data are
reduced to single pieces of data; these are reduced into a unique result.

Generally speaking, parallel reduction can be used whenever certain

problem requires a large number of operations, but not any kind of operation.

As clarified by Solihin (2015), some operations that can take advantage

of parallel reduction are sum, product, maximum, minimum, and logical

46

operations (and, or, xor). A good example of a problem that can use this

parallel reduction is ZNCC; note equation 1.4 is mostly based on summations.

Section 3.2 will use this paradigm to parallellize the computation of said

function.

2.2 Parallelization of Swarm Intelligence Al-

gorithms with Graphics Processing Units

Since one of the objectives of this thesis is to parallelize a Swarm Intelligence

(SI) algorithm, the Honey bee Search Algorithm, it is useful to analyze how

some of these algorithms have been parallelized in the past and described in

the literature. It is even more useful to analyze how common SI algorithms

have been parallelized using GPUs, the selected parallel computing technology

to be used by this thesis. Tan and Ding (2016) have proposed a list of models

that have been identified by observing several parallel implementations of

SI algorithms specifically with the technology of interest. According to

the mentioned work, when a SI algorithm is parallelized using a Graphics

Processing Unit (GPU), said implementation has to fall in one of the following

4 categories:

1. naive parallel model

2. multiphase parallel model

3. all-GPU parallel model

4. multiswarm parallel model

47

This list can be seen as a progression, rather than mutually exclusive

categories. Multiphase parallel model does what the naive parallel model

does but goes one step further, the same is true for the next categories. Each

step tries to solve the problems that the previous model faces until the best

possible parallelization approach is achieved.

The naive parallel model is the simplest approach when trying to parallelize

a SI; it treats the fitness functions as black boxes. The common SI simply

needs to provide individuals as input to the black box and it only has to deliver

the corresponding fitness values. The process performed by the black box

is not really of importance, as long as fitness values are correctly computed.

If the problem can be seen this way, the fitness function itself can be easily

parallelized, since it is already an optimization problem with a given function

f(x). Each process that is executed in parallel can be in charge of computing

f(x) for certain x. An attractive characteristic of this model is that it is

completely independent from the type of SI, and even can be used when

several SIs want to be tested with the same fitness function. Examples are:

the Particle Swarm Optimization (PSO) implementation from Kalivarapu and

Winer (2008); PSO implementation by Cardenas-Montes, Vega-Rodriguez,

Rodriguez-Vazquez, and Gomez-Iglesias (2011); the PSO-based tool of Hsieh

and Chu (2011); and the Cellular Automata (CA) urban model through

cooperative coevolutionary Particle Swarms proposed by Blecic, Cecchini,

and Trunfio (2014).

When the naive model is not enough to improve the time costs of certain

SI algorithm, further parallelization can be implemented with the multiphase

parallel model. It consists in parallelizing other tasks that are commonly

48

required such as: sorting, finding minimal or maximal values, performing

large sums, roulette-wheel selection, etc. Even though many activities of the

SI are performed in the GPU, the CPU still is in charge of keeping track of the

current state of the SI algorithm and sending the GPU the data to perform

these very specific tasks. This could be a problem, because communication

between the CPU and GPU is relatively slow and can be considered a bottle

neck that should be avoided. There is another factor that affects the time cost

when using this model, each time the GPU is instructed to execute certain

program the CPU has to send the full source code and the GPU has to compile

it. If many different routines are performed, this will inefficiently perform the

compilation process every time the routine changes. Some implementations

that use this model are: the Ant Colony Optimization (ACO) with tabu

search from Tsutsui and Fujimoto (2011); the Bees Algorithm implementation

from Luo, Huang, Chang, and Yuan (2014); and the PSO implementation

from Zhou and Tan (2009).

All-GPU parallel model is the next step to take when the parallelization of

the multiphase model is not enough. Every single SI operation is done in the

GPU, in a way that only initial data is transferred from the CPU to the GPU

and the final results are delivered to the CPU, which becomes only a bridge

between the user and the GPU. When there is code that cannot be parallelized

it is preferable to simply perform it in one of the computational resources that

are available rather than waiting for the CPU–GPU communication. There

is a common problem with this approach: when synchronization is needed

for certain activities it cannot be achieved because hardware is simply not

designed to do so. Synchronization in GPUs is only possible between groups

49

of processes, that belong to the same block. This means only a fraction of the

available resources can be used with this model. Mussi, Nashed, and Cagnoni

(2011) proposed a PSO that fits this model; also Calazan, Nedjah, and de

Macedo Mourelle (2013) describes a similar approach, also using PSO.

Finally, the multiswarm parallel model is an answer to the synchronization

problem of the all-GPU parallel model, but it cannot be solved completely.

There is a way to use all the resources of the GPU: each block of processes

can behave as an independent SI instance. This means, multiple all-GPUs

happen simultaneously and once all of them are done, the CPU is in charge

of searching in the results for the actual optimal results. There are many

examples, some are: Swarm grid (Calazan, Nedjah, & de Macedo Mourelle,

2012) which is based on PSO; The PSO implementation proposed by Zhao,

Wang, Pedrycz, and Tian (2012); and Cooperative Evolutionary Multi-Swarm

Optimization Algorithm (Souza, Teixeira, Monteiro, & de Oliveira, 2012).

As can be noticed in the following chapters, the approach that was taken

for the parallelization of the Honeybee Search Algorithm is the all-GPU

parallel model. This is done as a first step to implement the multiswarm

parallel model in future work.

50

Chapter 3

Video Tracking Using the

Parallel Honeybee Search

Algorithm

The following chapter describes the methodology used to track a targeted

object across the various frames of the same video sequence by using the

Parallel Honeybee Search Algorithm. The Parallel Honeybee Search Algo-

rithm, as other Swarm Intelligence (SI) algorithms, can change its application

with relative ease by presenting certain problem as an optimization problem

which depends on certain objective function. In the specific case of video

tracking, there are many candidate functions that can be treated as an opti-

mization problem for this purpose. The selected objective function for this

research is a combination of the Sobel filter and the Zero mean Normalized

Cross-Correlation (ZNCC), both popular tools in the field of computer vision.

Commonly, as mentioned by Tan and Ding (2016), the evaluation of the

objective function is one of the most time consuming tasks for SI algorithms

51

and some parallelization efforts are centered specifically on the adaptation of

the objective function for parallel computing.

With that in mind, the methodology is divided in five stages. The first

two stages (sections 3.1 and 3.2) will help to understand how the Sobel filter

and ZNCC were combined and justify the approach taken for parallelization.

The Parallel version of ZNCC combined with the Sobel filter will also serve

as a control group that will be useful to detect any effect caused by the usage

of the Parallel Honeybee Search Algorithm over the brute force (or extensive

search) approach. The third and fourth stages (sections 3.3 and 3.4) provide

an explanation of how the Honeybee Search Algorithm was adapted for video

tracking and provide the details of the Parallel Honeybee Search Algorithm

implementation to allow any future reproduction. The fifth stage (section

3.5) will describe the F-score and how it helps to evaluate the accuracy of

the results given by any video tracking algorithm. This metric will be useful

to show if there is an important difference in accuracy caused by the usage of

the Parallel Honeybee Search Algorithm.

3.1 Analysis of the Sobel Filter and Zero Mean

Normalized Cross-Correlation for Video

Tracking

The Sobel filter and Zero mean Normalized Cross-Correlation (ZNCC) are

both common tools in the field of computer vision. The two of them are

also related by their common inspiration on concepts which are used widely

52

for signal processing and pattern recognition in several fields such as cross-

correlation and convolution (Kapinchev, Bradu, Barnes, & Podoleanu, 2015;

Ratha, Jain, & Rover, 1995). This section provides further details on how

both are used in combination for this research’s purposes.

The overall idea is to replace the original image frame I and template t

with new images generated by applying the Sobel filter on I and t respectively.

The new pictures would emphasize important detectable features which are

potentially useful for video tracking. ZNCC may take advantage of the

information provided by the Sobel filter by being used to find the level of

correlation between the filtered template and the filtered image frame.

Both, ZNCC and the Sobel filter, are designed to be used with greyscale

images, but occasionally useful information about the features can be obtained

from color. A common way to adapt these tools to be used with digital color

images is to repeat the process for each color channel and combine them

following certain criteria. The majority of digital pictures have 3 color

channels: red, green and blue. In the case of the Sobel filter, this research

chooses to simply combine the 3 separate results by sum (equation 3.1).

The total gradient GI(u, v) helps detect edges on picture I at pixel (u, v),

by combining the gradients ∇Ir(u, v), ∇Ig(u, v) and ∇Ib(u, v), each being

obtained as indicated by equation 1.14 using the corresponding color channel

of image I.

GI(u, v) = ∇Ir(u, v) +∇Ig(u, v) +∇Ib(u, v) (3.1)

Having established how to obtain GI(u, v), the same procedure could

be used to get Gt(u, v) by replacing the input image with template t. By

53

modifying equation 1.4 to find the correlation between the gradients rather

than I and t one obtains equation 3.2. Also note that the averages GI and

Gt need to be found previously using equations 3.3 and 3.4.

γG(u, v) =

∑
x,y [GI(x, y)−GI][Gt(x− u, y − v)−Gt]√∑

x,y [GI(x, y)−GI]2
∑

x,y [Gt(x− u, y − v)−Gt]2
(3.2)

GI =

∑
x,y GI(x, y)

m× n (3.3)

Gt =

∑
x,y Gt(x− u, y − v)

m× n (3.4)

3.2 Parallel Implementation of the Sobel Fil-

ter and Zero Mean Normalized Cross-Cor-

relation

The following section serves as a description of the approach used to paralellize

the computation of the fitness function used for video tracking in this research.

Said fitness function is the combination of ZNCC and Sobel filter γG(u, v) as

defined in equation 3.2. The description of the parallelization begins with an

abstract theoretical explanation in section 3.2.1. It is followed by section 3.2.2,

which provides details specific to the implementation used with a Graphics

Processing Unit (GPU).

54

3.2.1 Parallelization of the Sobel Filter and Zero Mean

Normalized Cross-Correlation

First, a distinction must be made between two different cases when the

parallelization is attempted. The main difference of both cases is based on

their prior knowledge of the total number of values for (u, v) to be checked

and how its magnitude compares to the number of computational resources

available.

As suggested in section 1.1.1.1, the number of possible values for (u, v)

depends on the dimensions w × h of I as well as the dimensions m× n of t.

The feasible region Ω can be defined as {(u, v) ∈ Z2 : 0 ≤ u ≤ w −m, 0 ≤
v ≤ h− n} and has cardinality |Ω| = (w −m)× (h− n).

If the number of available computational resources p is expected to be

significantly lesser than |Ω|, a reasonable approach for parallelization is to

divide the workload by assigning each computational resource the evaluation

of γG(u, v) for certain section of Ω (see Figure 3.1). On the other hand, if p is

expected to be significantly greater than |Ω|, or just a limited subregion of Ω is

of interest, then several computational resources should work in coordination

to compute γG(u, v) for an specific value of (u, v).

A useful generalization for both approaches is to consider how an specific

γG(u, v) is computed by q computational resources working in coordination.

The first logical step is to evaluate GI and Gt using equations 3.3 and 3.4. In

said equations, sums are the most time consuming operations. For example, to

evaluate the sum
∑

x,y GI(x, y) using only one computational resource, m×n
terms are obtained and then added one by one. But having q computational

55

p� |Ω| p� |Ω|

Figure 3.1: The division of work depends on |Ω| and p. If the number of tasks
|Ω| is greater than the number p of computational resources, then each one is
in charge of many tasks. If there are fewer tasks than computational resources,
then each task is performed by several of these. Each square represents a
task.

resources at disposal partial sums can be evaluated simultaneously and then

reduced to a single result. Said partial sums would be the result of adding

only (m × n)/q terms. This is illustrated in Figure 3.2, where each square

represents a task and has an identifier xi and each computational resource

(labeled with identifier qi) is in charge of (n×m)/q tasks.

m× n = 4× 4 = 16

16/q = 16/5 = 3

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0

3

6

9

12

1

4

7

10

13

2

5

8

11

14

0

1

2

3

4

Figure 3.2: Each task (square) has an identifier xi. Each computational
resource is in charge of (m × n)/q tasks. Note the task with id 15 is not
assigned; it should be the responsibility of the first or last computational
resource.

If each of the q computational resources are assigned an integer identifier

56

qi in the interval [0, q− 1] the partial sum of the qi-th computational resource

is obtained using equation 3.6. An integer xi used to identify each pixel to

be used by the qi-th computational resource can be found using equation 3.5.

Observe u+ xi(k) mod m is the corresponding x, while v + xi(k)÷m is the

corresponding y of the given pixel (x, y) for which GI(x, y) is being computed

and accumulated. Finally, once all partial sums have been evaluated, a single

computational resource may obtain
∑

x,y GI(x, y) by adding q terms. Ideally,

that single computational resource should be prepared to take any remaining

workload that was not been taken care of.

xi(k) = k + qi
mn

q
(3.5)

(mn/q)−1∑
k=0

GI [u+ xi(k) mod m, v + xi(k)÷m] (3.6)

The described procedure may be repeated to parallelize the evaluation of

the sum used to get Gt and the rest of sums required to compute γG(u, v) with

small modifications. The overall procedure goes as shown in the pseudocode of

Figure 3.4; where instructions outside the if statement use all q computational

resources as described, and instructions inside the if statement use only one

of the computational resources while the rest wait. Said procedure would only

obtain γG(u, v) for certain (u, v). In order to evaluate several values for (u, v)

simultaneously, p (the total number of computational resources) should be a

multiple of q. That relation would allow the evaluation of γG(u, v) for p/q

different pixels at the same time by p/q different ‘teams’ of q computational

resources each as shown in Figure 3.3.

57

p

q q q q

Figure 3.3: The p computational resources are divided in teams of size q to
evaluate γG(u, v) for p/q different pixels simultaneously.

Parallel γG(u, v, qi)
1 Compute partial sum of

∑
x,y GI(x, y)

2 Compute partial sum of
∑

x,y Gt(x− u, y − v)

3 if qi = 0
4 Compute

∑
x,y GI(x, y)

5 Compute
∑

x,y Gt(x− u, y − v)

6 Compute GI

7 Compute Gt

8 else
9 Wait

10 Compute partial sum of
∑

x,y [GI(x, y)−GI][Gt(x− u, y − v)−Gt]

11 Compute partial sum of
∑

x,y [GI(x, y)−GI]
2

12 Compute partial sum of
∑

x,y [Gt(x− u, y − v)−Gt]
2

13 if qi = 0
14 Compute

∑
x,y [GI(x, y)−GI][Gt(x− u, y − v)−Gt]

15 Compute
∑

x,y [GI(x, y)−GI]
2

16 Compute
∑

x,y [Gt(x− u, y − v)−Gt]
2

17 Compute γG(u, v)
18 else
19 Wait

Figure 3.4: Pseudocode to compute γG(u, v) in parallel. This algorithm
is executed by several GPU processes, each identified by the id qi. The
instructions inside if statements are executed only by certain GPU processes.
The rest wait for that process to finish and then keep going.

58

3.2.2 Parallel Implementation of the Sobel Filter and

Zero Mean Normalized Cross-Correlation with a

Graphics Processing Unit

Two different parallelized programs that obtain the combination of Sobel

filter and ZNCC have been implemented to be used in this research. The

first one obtains γG(u, v) for all the feasible region Ω, while the second one

only finds γG(u, v) for a given list of values for (u, v). Since the feasible

region Ω is commonly of a greater size than the number of processes p that

the GPU can execute, the first program assumes q = 1, so that only one

process is used to compute γG(u, v). In contrast, the second program uses

q > 1 and requires coordination between processes. The reason the second

program was developed is to serve as a component of the Parallel Honeybee

Search Algorithm. Table 3.1 provides a summary of the characteristics of

both implementations.

Table 3.1: Summary of the characteristics of each implementation

Version Size of teams Type of Search Coordination
1 (NO BEE) q = 1 Full feasible region None
2 (BEE) q > 1 Honeybee Search Required

Both versions were implemented using the C++ programming language

and OpenCL (Open Computing Language), an open source industry standard

for parallel computing programming to be used with CPUs, GPUs, DSPs,

etc. (Stone, Gohara, & Shi, 2010). The implementations also use OpenCV

(Open Computer Vision) an open source computer vision library (Bradski &

59

Kaehler, 2008).

The usage of a GPU comes with certain advantages, as well as some

difficulties. For instance, the shared memory architecture of the common

GPU allows all processes to have access to the information of any pixel in

the stored image data, simplifying the process of deciding which data should

be sent and where it should be sent. On the other side, GPUs have several

restraints regarding memory, mainly the restrictive size of global memory, in

addition to the limited number and size of variables that can be declared. Said

restraints had an impact on the implementation, since some of the evaluated

video sequences had remarkably heavy file sizes.

To deal with the memory size problem, the image frames had to be reduced

in size using the CPU before being sent to the GPU for further processing.

This was implemented using OpenCV’s function cv::resize, used to change

the size of a picture to fit a new width and height. In order to ensure a certain

level of detail the reduction of the size of the image is dependent on the size

of the template to be searched rather than the size of the full image. As

illustrated in Figure 3.5, the new size of the image depends on a previously

established constant called max window. If the width of the template (m) is

greater than its height (n) then the image is reduced so that m = max window,

in the opposite case the new size should be such that n = max window.

Another problem that arose from the decision of using a GPU along with

OpenCL was related to the need of coordination in the second version of the

program. The processes in a GPU are performed in a relatively asynchronous

manner. When using OpenCL, it is not possible to synchronize all the

processes (called work-items) that are available to the GPU because there

60

40

60

250

190

max window = 30

30

20

95

125

Figure 3.5: The images are reduced using the constant max window. In this
case, the height n is greater than the width so the new height is equal to
max window.

is no warranty these are working at the same time. It is only possible to

synchronize the work-items that belong to the same work-group (Owaida

et al., 2011). This means full synchronization is only possible when using a

small number of work-items which is the maximum size of a work-group (this

number depends on the specific GPU model). This type of synchronization

uses a special instruction called barrier. When a barrier instruction is added

to an OpenCL program all work-items have to stop and wait until every

member of the work-group has executed the barrier instruction.

In summary, both versions of the parallel program need to reduce the

size of the image before the GPU actually starts working. The problem of

coordination that limits the number of processes that can be used is unique

to the second version, since the first version does not require any kind of

synchronization. These details could have potentially unfavorable effects on

the results but, given the technology requirements, these solutions had to be

implemented.

61

work-item

work-group

Figure 3.6: The work-items of a GPU are arranged in work-groups. Coordi-
nation is only possible for the work-items (processes) that belong to the same
work-group.

3.3 Analysis of the Honeybee Search Algo-

rithm for Video Tracking

The simplest and most evident change made to the Honeybee Search Algorithm

so it can be used for video tracking is to use function γG(u, v) as described

in equation 3.2 to evaluate fitness of individuals. This means the respective

optimization problem shall be defined as follows:

Maximize γG(u, v)

subject to 0 ≤ u ≤ w −m

0 ≤ v ≤ h− n

Where each individual (u, v) must belong to the feasible region Ω =

{(u, v) ∈ R2 : 0 ≤ u ≤ w−m, 0 ≤ v ≤ h−n}. The individual (u, v) may also

be interpreted as the pixel (u, v) that marks the beginning of the rectangular

window suspicious of containing template t in image frame I, an illustration

62

can be found in Figure 1.2.

The exploration phase of the algorithm is left almost intact as the pseu-

docode shown in Figure 1.9, except for the sharing operator. The original

Honeybee Search Algorithm was applied with a different goal, the three-

dimensional reconstruction of a scene based on a pair of stereo images (Olague

& Puente, 2006a). In said application the desired result was a cloud of three-

dimensional points rather than a unique individual. As a consequence, the

sharing operator was of great help to ensure the variety of solutions suggested

by the algorithm giving a greater number of usable points to the resulting

3D model. But in the case of video tracking, the expected result is a unique

individual (u, v) that indicates the most probable location of a given object.

With this in mind, the sharing operator was excluded.

To continue, the recruitment phase was modified to limit the section of the

feasible region to be searched in a different fashion. Originally, small search

spaces were defined around each food source found during the exploration

phase (as in the left part of Figure 3.7). Then, the recruited foragers would

search on their corresponding search space which was defined by the final

location of their specific recruiter. But this was changed so that a unique

subsection of the feasible region is defined. This single sub-region (as shown

in the right part of Figure 3.7) is defined so that all explorers can be contained

within it. This does not affect the starting point for forager bees, the better a

food source is the more forager bees are recruited by the explorer that found

it. The number of forager bees that start in that location is still found using

equation 1.22.

Finally, the harvest phase was also affected by the exclusion of the sharing

63

Ω Ω

Figure 3.7: The search region is reduced during the recruitment phase. The
left image shows how the original Honeybee Search Algorithm defined a
smaller search region around each recruiter. The right image shows how the
current implementation defines a unique region that contains the recruiters.

operator, just as the exploration phase was. Except for that, the harvest

phase is almost identical to the pseudocode that can be found in Figure 1.10.

3.4 Parallel Implementation of the Honeybee

Search Algorithm

The usage of a GPU and OpenCL brought some limitations to the imple-

mentation of the Honeybee Search Algorithm. Some of those problems and

the respective solutions are discussed in section 3.2.2. But one last problem

that had a negative effect on the implementation of the Honeybee Search

Algorithm directly is discussed in this section.

While it is true that a GPU has many processors in comparison with a

common CPU, it is also true that these processors have a reduced function

set. This presents certain difficulties such as the lack of native support for

random number generation. This could not be ignored, since the Honeybee

64

Search Algorithm requires random numbers for several vital activities such as:

Polynomial Mutation, SBX, tournament selection and random search. The

solution that was implemented was to pre-generate random number arrays

of different distributions with the CPU and send them along with the frame

image data to the GPU. Four arrays are generated: 1) uniformly distributed

integers (using OpenCV’s cvRandInt), 2) uniformly distributed real numbers

(using OpenCV’s cvRandReal), 3) beta distribution (equation 1.20) and 4)

delta distribution (equation 1.16).

Moving on to the description of the actual implementation, several changes

had to be done in order achieve parallelization. The parallel evaluation of the

fitness function works as described in section 3.2 of this same chapter. Since

a number q of processors is used to find a specific value of γG(u, v), from

now on this will be seen as each individual bee being composed of q GPU

processors (Figure 3.8).

Figure 3.8: Each individual is made of a number of GPU processors.

The maximum number of individuals that can work simultaneously is p/q.

To take advantage of these p/q individuals, all must be used at once, there is

no benefit in using any less and using more would cause a dramatic increase

in time cost. With this in mind, the size of populations µe, λe, µh and λh

were all set to the same size so that µe = λe = µh = λh = p/q. This is a

65

notable difference with the original sequential algorithm, where commonly

µe < λe and µe < µh with the intention of correctly emulating the behavior of

honeybees, where the resources for initial exploration are significantly lesser

than the ones for harvest.

When evaluating the fitness function, all processors that belong to certain

bee have work to do. But this is not the case all the time, there are activities

in the Honeybee Search Algorithm that require a lower level of parallelization

and only use one processor per bee (Figure 3.9). The list of activities that

fall in this category are:

• generation of the initial random µe population for the exploration phase

• generation of λ populations using mutation, crossover and random

exploration

• merge µ and λ populations

• selection of the µ best from µ+ λ populations

Figure 3.9: Some activities only require one processor per bee.

When the λ population is generated, each bee is in charge of the generation

of one specific son. The type of son generated by each bee depends on its

global id. The first α bees generate their respective offspring using Polynomial

66

Mutation. The next β bees are generated by crossover using SBX and γ sons

are generated randomly, but respecting the search space constraints.

Before the selection of the µ best from the µ+λ population, said population

has to be sorted by fitness value. The sorting algorithm that was used in the

described implementation is a parallelized merge-sort, that uses 1 processor

per bee. The described sorting algorithm is very similar to the one used in

Davidson, Tarjan, Garland, and Owens (2012), except that the one used by

them has a flexible number of elements for each sublist. An example of how

this parallel merge-sort works can be seen in Figure 3.10. Since each bee

behaves both as µ and λ bees, the representative processor of each bee is

in charge of sorting its local list, but this is a trivial case since said list has

only two elements. Once local lists are sorted, two lists are merged by one

processor. Only half of the active processors are required to merge lists so

half of the processors are sent to rest. As the sorting process continues the

number of active processors is divided by 2, while the merged lists grow twice

in size. This goes on until there are only two lists to merge and only a single

processor is required sort them.

The only phase that was not parallelized at all is the recruitment phase.

One processor keeps working while the rest remain idle. This processor alone

assigns how many foragers will be recruited by each explorer bee and define

the new search space as described in the last section (3.3). The harvest phase

is very similar to the exploration phase except for three main changes: The

number of generations in the harvest phase is only half of the number used in

the exploration phase because the search space is already reduced significantly;

while the initial population for the exploration phase is random, the initial

67

9

7

2

2

7

9

5

3

5

2

7

4

2

5

9

5

8

6

3

6

6

8

4

7

4

3

6

8

3

4

8

9

Figure 3.10: The fitness values are sorted using merge-sort, initially each
processor is in charge of sorting two elements. Lists grow twice in size while
half of the processors are set to rest in each step.

population for the harvest phase is located on the food locations found during

the exploration phase with greater density on the best ones; and the search

space is only a fraction of Ω, as established during the recruitment phase.

The overall algorithm follows the pseudocode shown in Figure 3.11, where qi

is the identifier of the processor and bi is the identifier of the individual.

68

Parallel Honeybee Search Algorithm(qi, bi)
1 if qi = 0 18 if qi = 0 ∧ bi = 0
2 Initialize(µe) 19 Assign recruits(µe, µh)
3 else 20 Reduce search space(µe)
4 Wait 21 else
5 while stop condition = false 22 Wait
6 Evaluate(µe) 23 while stop condition = false
7 if qi = 0 24 Evaluate(µh)
8 Generate(λe) 25 if qi = 0
9 else 26 Generate(λh)

10 Wait 27 else
11 Evaluate(λe) 28 Wait
12 if qi = 0 29 Evaluate(λh)
13 Merge(µe, λe) 30 if qi = 0
14 Sort(µe, λe) 31 Merge(µh, λh)
15 Select µe best(µe, λe) 32 Sort(µh, λh)
16 else 33 Select µh best(µh, λh)
17 Wait 34 else

35 Wait

Figure 3.11: Pseudocode of the Parallel Honeybee Search Algorithm. The
exploration phase goes from line 1 to 17. Recruitment from 18 to 22. Harvest
from 23 to 35. The if statements are used to limit the number of GPU
processors that work on certain task.

69

3.5 Description of the F-Score as an Eval-

uation Metric for Video Tracking Algo-

rithms

The F-score metric is of interest for this research since it enables to measure

how accurate a certain video tracking algorithm is and helps to compare it

against others. Figure 3.12 shows how this metric has been used to compare

various trackers that were previously described in in section 1.1.1, these 19

algorithms are labeled as shown in Table 3.2 to avoid writing the full names

every time they are mentioned. These different algorithms were tested using

the 314 videos provided by the Amsterdam Library of Ordinary Videos also

known as ALOV++ (Smeulders et al., 2014). This type of graph is called a

survival curve, it shows the results sorted in descending order and is more

common on the field of medicine to compare how different treatments behave

on patients (Collett, 2015; Lawless, 2011). The curves that are closer to the

horizontal line that is labeled as 1 can be considered the most accurate.

The test videos that were used to evaluate all the algorithms shown in

Figure 3.12 are freely available and were used by this research to evaluate the

parallel implementation of the function γG(u, v) and the Parallel Honeybee

Search Algorithm against each other, and against the algorithms already

evaluated. To do that, the F-score F must be evaluated using equation 3.7

and 3.8. The first equation (3.7) is known as the PASCAL criterion and helps

to identify false positives and true positives. The criterion depends on how

the rectangular window T i that is given as result for certain frame (also called

70

Table 3.2: Labels for video tracking algorithms

Algorithm Label
Normalized Cross-Correlation NCC
Lucas-Kanade Tracker LKT
Kalman Appearance Tracker KAT
Fragments-based Robust Tracking FRT
Mean Shift Tracking MST
Locally Orderless Tracking LOT
Incremental Visual Tracking IVT
Tracking on the Affine Group TAG
Tracking by Sampling Trackers TST
Tracking by Monte Carlo TMC
Adaptive Coupled-layer Tracking ACT
`1-minimization Tracker L1T
`1 Tracker with Occlusion detection L1O
Foreground-Background Tracker FBT
Hough-Based Tracking HBT
Super Pixel tracking SPT
Multiple Instance learning Tracking MIT
Tracking, Learning and Detection TLD
Struck: Structured output tracking with kernels STR

truth) intersects with the ground truth GT i and how this area compares to

the union of both as illustrated in Figure 3.13. The ground truth data was

also provided as part of the ALOV++ dataset to allow faster testing and

measurement of new algorithms.

|T i ∩GT i|
|T i ∪GT i| ≥ 0.5 (3.7)

The number of false positives nfp increases when the PASCAL criterion

is not met; the number of true positives ntp increases on the opposite case;

and the number of false negatives nfn increases when the object is present on

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201 226 251 276 301

F
-s

co
re

Video

F-score survival curves of 19 algorithms

TMC ACT TAG MST KAT LKT SPT HBT FRT LOT

IVT L1T L1O NCC MIT TLD TST FBT STR

Figure 3.12: The F-score survival curve of 19 video tracking algorithms. This
information was obtained from the Amsterdam Library of Ordinary Videos
(ALOV++) provided by Smeulders et al. (2014).

the frame according to the ground truth, but the tested algorithm determines

the object was not detected.

precision =
ntp

ntp + nfp

recall =
ntp

ntp + nfn

F = 2 · precision · recall
precision+ recall

(3.8)

Note F only has non negative values lesser or equal to 1 and the PASCAL

72

T i

GT i

T i ∩GT i

Figure 3.13: T i (truth) and GT i (ground truth) may intersect. The PASCAL
criterion helps to quantify how similar T i and GT i are, based on this.

criterion measures not only that the result is in the correct place but also

that it reflects the current correct size of the tracked object. The change in

size is not considered at all by ZNCC, so this a weakness of the algorithm.

Still, observe how NCC was able to keep a relatively good score in Figure

3.12 even though it is (also) not concerned with detecting the scaling of the

object.

73

Chapter 4

Experiments Using a Graphics

Processing Unit

The present chapter deals with further information about the implementation

and testing of The Parallel Honeybee Search Algorithm applied for video

tracking using the methodology that was discussed with detail in Chapter

3. It also provides specifics about the specific hardware that was used in

this research; mainly the Graphics Processing Unit (GPU) that was used to

implement the Parallel Honeybee Search Algorithm; and the CPU model used

for preprocessing and displaying data. Other concerns of this chapter include

the description of the folder and file structures of the Amsterdam Library

of Ordinary Videos for tracking (ALOV++ dataset); and the configuration

parameters that were used to perform the experiments with the Parallel

Honeybee Search Algorithm implementation. The results of the described

experiments are also presented.

For this purpose, the current chapter’s content is divided in four parts.

The first part, section 4.1 will document the important features of the hard-

74

ware that was used to perform the experiments, a brief explanation of the

architecture of the GPU is also given. To continue, section 4.2 gives the

introduction to the peculiarities of the ALOV++ dataset and how it was

used to test and evaluate the accuracy and time cost of the Parallel Honeybee

Search Algorithm for video tracking. Finally, sections 4.3 and 4.4 cover the

experiments themselves, how these were performed and what results were

yielded by them, in that order.

4.1 Description of the Hardware

A summary of the properties of the hardware that is described can be found

in Table 4.1. The Graphics Processing Unit (GPU) that was used in the

experiments that are about to be described is an AMD Radeon R9 270. It can

be used for development through DirectX, Mantle, OpenGL, and OpenCL.

The clock speed of this GPU is of 925 MHz and the communication with the

CPU is made through a PCI Express x16 slot that transmits about 16 GB/s.

The AMD Radeon R9 270 is based on the Graphics Core Next (GCN)

Architecture. As illustrated in Figure 4.1, said architecture divides the GPU

in a number of Computing Units (CUs). These CUs are the building blocks of

GPUs and are composed of four vector units and a single scheduler (Mantor,

2012). Every vector unit is an arrangement of 16 Arithmetic Logic Units

(ALUs). This means, the CU has 64 ALUs in total. The AMD Radeon R9

270 has 20 CUs, which give a total of 1,280 ALUs.

The number of ALUs that are contained in the CU is not the same

as the maximum size of the work-group (described in section 3.2.2), but

75

ALU vector unit CU

Figure 4.1: The processors of the GPU are arranged in Compute Units (CUs).
Each CU has 4 vector units and each vector unit has 16 ALUs. There are 20
CUs in the AMD Radeon R9 270 (1,280 ALUs).

both concepts are related. In this specific GPU, the query of the property

CL DEVICE MAX WORK GROUP SIZE indicates the maximum size of the work-

group is of 256 work-items. As noted by Gaster, Howes, Kaeli, Mistry, and

Schaa (2012), the CU would need at least 192 work-items (3 per ALU) to

use the full capabilities of the hardware, but the maximum of 256 cannot be

exceeded in any GPU with the GCN architecture.

The version of OpenCL that was installed in the AMD Radeon R9 270 is

known as OpenCL 1.1 Mesa 12.0.6, which allows the usage of double precision

floating point variables with the inclusion of the cl khr fp64 extension. The

global memory can be read and written from any CU and has a size of 1 GiB,

this is according to the CL DEVICE GLOBAL MEM SIZE property query. The full

size of global memory is usable, but the maximum size of a single variable is

of 0.25 GiB (according to the CL DEVICE MAX MEM ALLOC SIZE property).

The CPU that was used to provide instructions to the GPU, image pre-

processing (explained in section 3.2.2), random number generation (explained

in section 3.4) and displaying results is a DELL XPS 8700 with an Intel

76

Core i7-4790. The base frequency of the processor is of 3.60 GHz. As men-

tioned in section 3.2.2, OpenCV (Open Computer Vision) is used for image

manipulation, version 3.2 was installed in the CPU.

Table 4.1: Summary of the characteristics of the hardware

GPU

Model AMD Radeon R9 270
Clock speed 925 MHz
ALUs 1,280
Max work-group 256 work-items
Global memory 1GiB

CPU

Model Intel Core i7-4790
Clock speed 3.60 GHz

4.2 The Amsterdam Library of Ordinary Videos

The Amsterdam Library of Ordinary Videos, also called ALOV++ dataset,

was initially proposed by Smeulders et al. (2014) to be able to test several video

tracking algorithms with an experimental approach. The video sequences

and ground truth data of the ALOV++ dataset are available to be used

for research, as an example, these were used by Held, Thrun, and Savarese

(2016) to train deep regression networks for video tracking. The efforts of

the creators of the dataset resulted in a useful comparison of the accuracy

of 19 video tracking algorithms (see Figure 3.12). Their main focus was the

accuracy of different online trackers, other important information such as

77

the time taken to process each frame were not reported. This was achieved

by gathering a considerable number of video sequences that present certain

circumstances that obstruct the ability of many tracking algorithms to deliver

trustworthy results. In total, 314 videos were gathered and organized in 14

categories. Each category presents an specific challenging situation for video

tracking algorithms. These categories are:

1. Light: 33 videos that have sudden and intense changes on the main

source of light or how the tracked object is illuminated by it.

2. Surface Cover: 15 videos where the tracked object changes its surface

cover, but this cover adopts the form of the object it covers.

3. Specularity: 18 videos with shiny objects that reflect light and produce

specularities.

4. Transparency: 20 videos where the tracked object is transparent and

easily confused with the background.

5. Shape: 24 videos in which the tracked object changes its shape in a

drastic manner.

6. Motion Smoothness: 22 videos that show an object that moves so

slowly that no movement is detected at all.

7. Motion Coherence: 12 videos where the tracked object does not

follow a predictable route of movement.

8. Clutter: 15 videos with tracked objects that display similar patterns

to the ones observed in the background.

78

9. Confusion: 37 videos that show objects that are very similar to the

object of interest, causing confusion.

10. Low Contrast: 23 videos in which the tracked object shows little

contrast with the background or other objects.

11. Occlusion: 34 videos where the object of interest is occluded by other

objects or is not in the field of vision at all at certain point.

12. Moving Camera: 22 videos that are affected by the sudden movements

of the camera.

13. Zooming Camera: 29 videos where the zoom of the camera changes

the displayed size of the object.

14. Long Duration: 10 videos that have greater durations, between one

and two minutes.

The files are organized in folders named as their respective categories.

Each frame of the video sequence is provided as an individual image file. The

ground truth data is also provided in a separate folder that is also organized

by category. These files contain plain text that can be easily interpreted. See

Figure 4.2 for an example; note each line has an integer number followed

by 8 floating point numbers. The first number indicates the frame, and the

following numbers are 4 points a = (ax, ay), b = (bx, by), c = (cx, cy) and

d = (dx, dy). These points are the vertexes of a rectangle that encloses the

object of interest.

In the case of the first line that is show in Figure 4.2, a = (226.67, 58.571),

b = (139.52, 58.571), c = (139.52, 148.57) and d = (226.67, 148.57). See Figure

79

1 226.67 58.571 139.52 58.571 139.52 148.57 226.67 148.57

6 257.64 46.803 170.49 46.803 170.49 136.8 257.64 136.8

11 206.85 74.674 120.32 74.674 120.32 163.43 206.85 163.43

Figure 4.2: Example of the ground truth file structure of the ALOV++
dataset. Only the first three lines of the file 01-Light video00023.ann are
shown.

4.3 to visualize how this points limit the bounding box that contains the

object of interest. This information can be easily translated to the notation

used by the fitness function γG(u, v) (from equation 3.2). The template t that

is going to be searched in the next frame has size m = ax− bx and n = cy− by
and begins at the point (u, v) = (bx, by). The point (u, v) is also useful as an

indicator of where the Parallel Honeybee Search Algorithm should start the

quest for the best match in the next frame.

480

360

ab

c d

Figure 4.3: Example of the ground truth bounding box. This image is the
first frame of the 23th video sequence of the Light category. Points a, b, c
and d are obtained reading the file displayed in Figure 4.2.

80

The experiments done by this research use the information taken from

the first line of every ground truth file to initialize the algorithm, so the

first frame is not taken into account when the F-score is calculated. Note

that the example file of Figure 4.2 takes a long step from frame 1 to frame

6, and later to frame 11. The size of this step also changes between video

sequences, but there is no video that has ground truth information for every

frame. In the case where the object is not visible, the file simply does not

provide any information of the given frame. Remembering the concepts of

false positive (nfp), true positive (ntp) and false negative (nfn) that were

introduced in section 3.5; these can only be detected on certain frame when

there is information about the ground truth on said frame. The false positive

(nfp) detection could be problematic if it is supposed to be detected when the

video tracking algorithm ‘finds’ the object of interest in a frame where it is

not actually visible according the ground truth, this was not considered since

the step from one frame to another in the ground truth data is not always

constant.

The implementation of the Parallel Honeybee Search Algorithm used in

the experiments looks for the object in every frame, even if there is no ground

truth data of said image frame. It’s also important to note that the algorithm

has no mechanism to detect the absence of the object of interest in the current

frame; this means that a false negative (nfn) is not possible.

81

4.3 Configuration Parameters used in the Ex-

periments

Two different programs where developed to be used in the experiments.

This was first mentioned in section 3.2.2 and Table 3.1 summarizes the

characteristics of each program. The first program, which is called NO BEE

for short, performs an extensive search in the full feasible region of function

γG(u, v) (equation 3.2) and uses the full capacity of the GPU (described in

section 4.1) by using as much work-items as necessary. The second program,

called BEE, is the implementation of the Parallel Honeybee Search Algorithm

(more details in section 3.4) using function γG(u, v) as fitness function; the

number of work-items used in BEE is bounded by the maximum size of the

work-group: 256 work-items. As detailed in section 3.4, the Parallel Honeybee

Search Algorithm requires synchronization between work-items to perform

effectively, and this is only possible when using a single CU (Compute Unit),

this is why only one work-group of the mentioned size is possible.

Program BEE has to define a value for q to divide the p = 256 work-

items available in groups that represent each individual. The selected size

of these groups is q = 4, meaning only 64 individuals are available to work

simultaneously. This also means that the configuration parameters for the

size of populations are all µe = µh = λe = λh = 64. The number 4 was

selected since most of the objects of interest have a square shape (rather than

a rectangle) and dividing a square in 4 pieces allows the even distribution of

the work load.

The number of generations for the exploration phase was set to be 6. The

82

number of generations was selected during initial trials; more generations did

not produce individuals with greater fitness. The same parameter for the

harvest phase is set to be half of the number used for exploration because of the

search space reduction (explained in section 3.3), in this case, 3 generations.

Other parameters for BEE are set using the values that gave good results

in the experiments performed by Olague and Puente (2006a) in the original

proposal of the sequential version of the algorithm. Those parameters are

mainly related to the generation of offspring in the exploration and harvest

phases. The values used for Polynomial Mutation and SBX are ηm = 25 and

ηc = 2, respectively. The sizes of the subdivisions of offspring (λ) populations

are expressed as percentages rather than static numbers. The proportions of

sons generated through mutation are αe/λe = 0.6 and αr/λr = 0.6. The sons

generated using crossover are βe/λe = 0.1 and βr/λr = 0.3. And the random

offspring proportions are γe/λe = 0.3 and γr/λr = 0.1.

Both, BEE and NO BEE require the parameter max window to be defined

in order to reduce the size of images (as illustrated in Figure 3.5). This is

done to avoid hitting the global memory size limit of the GPU, it also has

the effect of reducing the size of the feasible region and thus the time cost of

exploring it. The selected default value was set as max window = 24, which

was used for most of the tests, except for 3 specific video sequences where the

size reduction was not enough. The image size of these 3 videos was too big,

even when reduced, because the object of interest was small in comparison

with the full frame:

1. The 14th video of the Motion Smoothness category (max window of 12).

2. The 22th video of the Moving Camera category (max window of 12).

83

3. The 2nd video of the Long Duration category (max window of 8).

The data that is transmitted from the CPU to the GPU includes 3 image

frames, the one where the image template t is already located, the preceding

frame where t should also be located, and the one to be searched (f). Two

image templates are used to improve the chances of finding the object of

interest after a sudden change that is reversed in the next frame. The CPU

also sends arrays of random numbers, video sequence specific values for m, n,

u, v, w, h and all the configuration parameters that have been discussed in

previous paragraphs (which can also be reviewed in Table 4.2).

Table 4.2: Summary of the configuration parameters used in the tests

Parameter BEE NO BEE
max window 24 (most) 24 (most)
p (work-items) 256 –
q (work-items per bee) 4 –
µe (size of all populations) 64 –
Number of generations 6 –
ηm (parameter for mutation) 25 –
ηc (parameter for crossover) 2 –
αe/λe (mutation sons, exploration) 60% –
βe/λe (crossover sons, exploration) 10% –
γe/λe (random sons, exploration) 30% –
αr/λr (mutation sons, harvest) 60% –
βr/λr (crossover sons, harvest) 30% –
γr/λr (random sons, harvest) 10% –

84

4.4 Experimental Results

Two variables were measured in the experiments, time per frame and F-score

for each video sequence. The description of the F-score metric can be found

in section 3.5. Time was measured by registering the current time of the

internal CPU clock when each frame processing began and finished. The

time that was measured includes the time that was used to generate random

numbers in the CPU and the time taken to send data from the CPU to the

GPU.

The results show that there is not an important difference in the accuracy

of the results between BEE and NO BEE, meaning the Parallel Honeybee

Search Algorithm was able to find good results without exploring the whole

feasible region. The survival curves for both versions of the algorithm can be

seen in the upper section of Figure 4.4. The mean and standard deviation of

the F-score for both programs is shown in Table 4.3, the same data is shown

graphically in the bottom part of Figure 4.4. The difference between the

means of BEE and NO BEE is of 0.011229303, this is equivalent to 3.66%

of the standard deviation of both categories and thus is considered a trivial

difference.

Table 4.3: Comparison of F-score between BEE and NO BEE
F-score

Mean Standard deviation
NO BEE 0.470193252 0.310460954
BEE 0.481422554 0.303214638
BEE and NO BEE 0.475807903 0.306665869

85

0

0.25

0.5

0.75

1

1 51 101 151 201 251 301

F
-s

co
re

Video

F-score survival curves
BEE vs. NO BEE

NO BEE
BEE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NO BEE BEE BEE and NO
BEE

F
-s

co
re

Mean F-score BEE vs. NO BEE

Figure 4.4: Comparison of F-score between BEE and NO BEE. Top plot
shows comparison of F-score survival curves, bottom plot shows comparison
of mean and standard deviation. There is not a significant difference between
BEE and NO BEE in accuracy.

A more noticeable difference was detected by measuring the time taken

by both programs to process each frame. BEE provides a more stable time,

since it is not affected by the variability of the size of the search space. It is

86

also surprising that the version that implements the Parallel Honeybee Search

Algorithm was able to be faster in average, even though less work-items are

used (as explained in section 3.2.2). This difference in time can be observed

in the top part of Figure 4.5, which shows the average time per frame of

each video in the dataset for both versions. The averages are also shown in

the figure, version NO BEE has an average of 0.179133 seconds per frame

while version BEE has an average of 0.107322545 seconds per frame. The

overall averages and standard deviations for time per frame when using each

program can be found in Table 4.4, the same data is shown in the bottom

part of Figure 4.5. The difference in the average time per frame between

BEE and NO BEE is of 0.071810455 seconds, this is 38.06% of the standard

deviation of both BEE and NO BEE. The difference in the average time may

not be so noticeable between both groups; but the difference of the standard

deviation between them is notable. The standard deviation of NO BEE is 7

times greater than the standard deviation of BEE.

Table 4.4: Comparison of time per frame between BEE and NO BEE
Time per frame

Mean Standard deviation
NO BEE 0.179133 0.259507849
BEE 0.107322545 0.036998953
BEE and NO BEE 0.143227772 0.188661255

The accuracy of BEE and NO BEE can be compared with the available

data of other algorithms that were tested with the ALOV++ dataset. Figure

4.6 shows how BEE compares in accuracy against other 19 video tracking

algorithms, see section 1.1.1 for brief mentions of the algorithms. Since

87

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 51 101 151 201 251 301

T
im

e
p
er

 f
ra

m
e

in
 s

ec
on

d
s

Video

Average time per frame
BEE vs. NO BEE

NO BEE BEE NO BEE AVG BEE AVG

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

NO BEE BEE BEE and NO
BEET

im
e

p
er

 f
ra

m
e

in
 s

ec
on

d
s

Mean time per frame
BEE vs. NO BEE

Figure 4.5: Comparison of time per frame between BEE and NO BEE. Top
plot shows comparison of time per frame for each video, bottom plot shows
comparison of mean and standard deviation. There is a significant difference
between BEE and NO BEE in time per frame.

the illustration shows too much data and can be hard to read, NO BEE is

excluded and assumed to behave very similarly to BEE (as can be seen in

Figure 4.4). If these 21 algorithms are ordered by average F-score, BEE falls

88

in the 13th place and NO BEE in the 14th (see Table 4.5).

Table 4.5: Video tracking algorithms ordered by average F-score. The labels
used for every algorithm can be found in Table 3.2.

Avg. F-score Algorithm Avg. F-score Algorithm
1 0.655044788 STR 11 0.515131077 FRT
2 0.646832576 FBT 12 0.48655316 HBT
3 0.6209639 TST 13 0.481422554 BEE
4 0.607268742 TLD 14 0.470193252 NO BEE
5 0.558174956 MIT 15 0.466671402 SPT
6 0.557619335 NCC 16 0.4570484 LKT
7 0.548627419 L1O 17 0.418726 KAT
8 0.548396965 L1T 18 0.353297697 MST
9 0.522182931 IVT 19 0.336014071 TAG

10 0.516015278 LOT 20 0.269204852 ACT
21 0.147033336 TMC

It is surprising that BEE and NCC (6th place) are so far in the rank, since

BEE is based on a similar algorithm (ZNCC). The fact that BEE is worse in

accuracy can be attributed to the loss of information caused by the resizing

of the image (procedure is described in section 3.2.2) and the combination

of Sobel filter and ZNCC for fitness function. In any case, this cannot be

attributed the Parallel Honeybee Search Algorithm, since the F-score results

are almost identical to NO BEE, which does not use the Parallel Honeybee

Search Algorithm but does resize the image frame due to the restraints in

global memory size of the GPU (see section 4.1) and use the same fitness

function.

89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201 226 251 276 301

F
-s

co
re

Video

F-score survival curves BEE vs. 19 algorithms

TMC ACT TAG MST KAT LKT SPT BEE HBT FRT

LOT IVT L1T L1O NCC MIT TLD TST FBT STR

Figure 4.6: F-score survival curves of BEE and other 19 algorithms. Infor-
mation obtained from Smeulders et al. (2014). The labels used for every
algorithm can be found in Table 3.2.

90

Conclusions

The main objective of the present thesis was to analyze, design and implement

a parallel version of the Honeybee Search Algorithm to be used for video

tracking; and to be tested with a Graphics Processing Unit (GPU). The main

contribution is the development of said implementation and the demonstration

that the Parallel Honeybee Search Algorithm can successfully be used to

improve the time cost of a video tracking algorithm in given situations, with

little effect on the accuracy of the results.

To do this, a combination of the Zero Mean Normalized Cross-Correlation

(ZNCC) and the Sobel filter was developed and parallelized to serve as base

video tracking component (labeled as NO BEE for short). Then, the Honeybee

Search Algorithm was adapted for parallelization and implemented using the

same base function (labeled BEE for short). Later, the accuracy of BEE and

NO BEE was tested and compared against each other and other algorithms.

The most important conclusions that can be drawn of this thesis are the

following:

• The Parallel Honeybee Search Algorithm can be used to noticeably

decrease the time taken by a given video tracking algorithm to find an

object in a given image frame of considerable size (section 4.4). As the

91

size of the images in the video sequence increases, a given video tracking

algorithm has to perform a broader search to provide results, but if the

Parallel Honeybee Search Algorithm is used to conduct the exploration

of the possible answers, time becomes less dependent on the size of the

image frame and stabilizes because a smaller number of possibilities

are reviewed. This conclusion was drawn from the experiments where

programs BEE (using the Parallel Honeybee Search Algorithm) and

NO BEE (not using the Parallel Honeybee Search Algorithm) were

compared (more details in section 4.4).

• The Parallel Honeybee Search Algorithm can be used together with

a given video tracking algorithm and preserve its accuracy to find an

object in a given image frame (Section 4.4). Even though the Parallel

Honeybee Search Algorithm checks a lesser amount of the possible

answers that can be given as final result for a certain video tracking

algorithm, it converges to the actual optimal solution and in most

cases delivers results as accurate as the ones obtained by an extensive

search. The experiments described in section 4.4 provide evidence for

this conclusion, based on the comparison of programs BEE and NO

BEE.

• Reducing the size of the image frame before it is sent from the CPU

to the GPU produces an unfavorable effect on the accuracy of a given

video tracking algorithm. Although this kind of preprocessing helps to

avoid memory limitations of common GPUs and decreases the time of

communication, it should be avoided due to the strong negative effects

92

in the overall accuracy of the video tracking algorithm in question. The

results of the experiments in section 4.4 shows the effects, the accuracy

of BEE and NO BEE was compared against the accuracy of other 19

algorithms used for video tracking. Specifically, the comparison against

the video tracking algorithm NCC, which is very similar to the base

video tracking algorithm of BEE and NO BEE, shows that the accuracy

is reduced as described.

Future Work

• If the objective is to improve accuracy:

– Use other video tracking algorithms. ZNCC and the Sobel

filter were selected for their simplicity and straight forward ap-

proach, in comparison with other video trackers (section 1.1.1).

Still, the number of video tracking algorithms in the literature

provides many alternatives that could be used in conjunction with

The Parallel Honeybee Search Algorithm. Further experiments

could be made to compare how the Parallel Honeybee Search Algo-

rithm behaves with different video tracking functions. As explained

in section 1.2.1, the Parallel Honeybee Search Algorithm has the

advantage of being based on Population Based Optimization, this

allows the flexibility to use practically any video tracking algorithm

by simply using it as fitness function.

• If the objective is to improve time:

– Use other parallel computing technologies. The roots of

93

the GPU are deeply related with image processing and it is one

of the most commonly available parallel computing technologies,

these are the reasons why it was selected for this research. But, it

would be beneficial to observe the possibility of implementing the

Parallel Honeybee Search Algorithm for video tracking using other

technologies such as clusters and FPGAs (Field Programmable

Gate Array). As explained in sections 3.4 and 3.2.2, The usage

of the GPU in this research came with several limitations: tested

image frames had to be reduced due to memory restraints, and

there was a limit to the number of work-items that could be used if

synchronization was needed. This limited the size of the population

that was used in the experiments to 64 individuals (see section

4.3).

– Use more than one video tracking algorithm. The Parallel

Honeybee Search Algorithm has two main phases that require an

evaluation tool for each of the possible answers to the problem

(section 1.2.3.1). This evaluation tools could be two different video

tracking algorithms; one for the exploration phase that is less

reliable but quicker could help to get a general vision of the search

space; and a second one for the harvest phase that is more reliable.

Once the behavior of the Parallel Honeybee Search Algorithm with

different video tracking algorithms could be established, the options

could be evaluated and later implemented for experimentation.

– Experiments with the multiswarm parallel model. When

using a GPU to parallelize Swarm Intelligence algorithms, such as

94

the Honeybee Search Algorithm, there are several parallel models

to be considered (described in section 2.2). The parallel model

used in the experiments of this thesis is the all-GPU parallel model,

since all the Swarm Intelligence operations are performed in the

GPU. Synchronization is a big issue in GPUs (as described in

section 4.1), CUs (Computing Units) in a GPU have no contact

with each other, but since coordination is possible between their

own work-items it is possible to implement one swarm per CU

(multiswarm). Further experiments with the described model may

allow the usage of the full capabilities of the GPU with relatively

small modifications to the Parallel Honeybee Search Algorithm.

– Benchmarking against real-time video tracking. The com-

parisons that were performed in section 4.4 against other algo-

rithms were mainly concerned about accuracy. This is because

the ALOV++ dataset (Smeulders et al., 2014) does not provide

information about the time per frame of each algorithm that was

tested. Since time is not reported and there is no mention about

parallel computing, the implementations are assumed to be se-

quential and not concerned with real-time video tracking. Other

benchmarking tools focused on real-time video tracking should be

found and evaluated using the Parallel Honeybee Search Algorithm

in search for more significant results.

95

References

Abbass, H. A. (2001). A single queen single worker honey–bees approach

to 3-SAT. In Proceedings of the 3rd annual conference on genetic and

evolutionary computation (pp. 807–814).

Adam, A., Rivlin, E., & Shimshoni, I. (2006). Robust fragments-based

tracking using the integral histogram. In Computer vision and pattern

recognition, 2006 IEEE computer society conference on (Vol. 1, pp.

798–805).

Babenko, B., Yang, M.-H., & Belongie, S. (2009). Visual tracking with online

multiple instance learning. In Computer vision and pattern recognition,

2009. CVPR 2009. IEEE conference on (pp. 983–990).

Baker, S., & Matthews, I. (2004). Lucas-kanade 20 years on: A unifying

framework. International journal of computer vision, 56 (3), 221–255.

Bätz, M., Richter, T., Garbas, J.-U., Papst, A., Seiler, J., & Kaup, A. (2014).

High dynamic range video reconstruction from a stereo camera setup.

Signal Processing: Image Communication, 29 (2), 191–202.

Bitam, S., Batouche, M., & Talbi, E. (2010). A survey on bee colony algo-

rithms. 2010 IEEE International Symposium on Parallel & Distributed

Processing , 1-8.

96

Blecic, I., Cecchini, A., & Trunfio, G. A. (2014). Fast and accurate opti-

mization of a GPU-accelerated CA urban model through cooperative

coevolutionary particle swarms. Procedia Computer Science, 29 , 1631–

1643.

Boyd, J. E., Hushlak, G., & Jacob, C. J. (2004). SwarmArt: interactive

art from swarm intelligence. In Proceedings of the 12th annual ACM

international conference on multimedia (pp. 628–635).

Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with

the OpenCV library. O’Reilly Media, Inc.

Briechle, K., & Hanebeck, U. D. (2001). Template matching using fast

normalized cross correlation. In Proc. SPIE (Vol. 4387, pp. 95–102).

Calazan, R. M., Nedjah, N., & de Macedo Mourelle, L. (2012). Swarm grid:

a proposal for high performance of parallel particle swarm optimization

using GPGPU. In International conference on computational science

and its applications (pp. 148–160).

Calazan, R. M., Nedjah, N., & de Macedo Mourelle, L. (2013). Three

alternatives for parallel GPU-based implementations of high perfor-

mance particle swarm optimization. In International work-conference

on artificial neural networks (pp. 241–252).

Cardenas-Montes, M., Vega-Rodriguez, M. A., Rodriguez-Vazquez, J. J., &

Gomez-Iglesias, A. (2011). Accelerating particle swarm algorithm with

GPGPU. In Parallel, distributed and network-based processing (PDP),

2011 19th euromicro international conference on (pp. 560–564).

Castillo, R. (2016). Implementación del filtro de función discriminante

sintética para el reconocimiento de objetos en el róbot humanoide nao

97

(Unpublished master’s thesis). Universidad Autónoma de San Luis

Potośı.

Catanzaro, B. (2010). OpenCL optimization case study: Simple reductions.

White Paper .

Čehovin, L., Kristan, M., & Leonardis, A. (2011). An adaptive coupled-layer

visual model for robust visual tracking. In Computer vision (ICCV),

2011 IEEE international conference on (pp. 1363–1370).

Chandra, R. (2001). Parallel programming in openmp. Morgan kaufmann.

Collett, D. (2015). Modelling survival data in medical research. CRC press.

Comaniciu, D., Ramesh, V., & Meer, P. (2000). Real-time tracking of non-rigid

objects using mean shift. In Computer vision and pattern recognition,

2000. proceedings. IEEE conference on (Vol. 2, pp. 142–149).

Crescenzi, P., & Kann, V. (1997). Approximation on the web: A com-

pendium of NP optimization problems. In International workshop on

randomization and approximation techniques in computer science (pp.

111–118).

Crespi, B. J., & Yanega, D. (1995). The definition of eusociality. Behavioral

Ecology , 6 (1), 109–115.

Crist, E. (2004). Can an insect speak? the case of the honeybee dance

language. Social Studies of Science, 34 (1), 7–43.

Davidson, A., Tarjan, D., Garland, M., & Owens, J. D. (2012). Efficient

parallel merge sort for fixed and variable length keys. In Innovative

parallel computing (InPar), 2012 (pp. 1–9).

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms.

John Wiley & Sons.

98

Deb, K., & Beyer, H. (1999). Self-adaptive genetic algorithms with simulated

binary crossover (first ed.). Secretary of the SFB 531.

Dhaussy, P., Filloque, J.-M., Pottier, B., & Rubini, S. (1994). Global control

synthesis for an mimd/fpga machine. In Fpgas for custom computing

machines, 1994. proceedings. ieee workshop on (pp. 72–81).

Di Stefano, L., Mattoccia, S., & Tombari, F. (2005). ZNCC-based template

matching using bounded partial correlation. Pattern recognition letters ,

26 (14), 2129–2134.

Draper, B. A., Beveridge, J. R., Bohm, A. W., Ross, C., & Chawathe, M.

(2003). Accelerated image processing on FPGAs. IEEE transactions on

image processing , 12 (12), 1543–1551.

Flynn, M. J. (1972). Some computer organizations and their effectiveness.

IEEE transactions on computers , 100 (9), 948–960.

Foster, I. (1995). Designing and building parallel programs (Vol. 78). Addison

Wesley Publishing Company Boston.

Galoogahi, H. K., Fagg, A., Huang, C., Ramanan, D., & Lucey, S. (2017).

Need for speed: A benchmark for higher frame rate object tracking.

arXiv preprint arXiv:1703.05884 .

Gaster, B., Howes, L., Kaeli, D. R., Mistry, P., & Schaa, D. (2012). Heteroge-

neous computing with OpenCL: Revised OpenCL 1. Newnes.

Gemmell, J., Toyama, K., Zitnick, C. L., Kang, T., & Seitz, S. (2000).

Gaze awareness for video-conferencing: A software approach. IEEE

MultiMedia, 7 (4), 26–35.

Godec, M., Roth, P. M., & Bischof, H. (2013). Hough-based tracking of

non-rigid objects. Computer Vision and Image Understanding , 117 (10),

99

1245–1256.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and

machine learning, 1989. Reading: Addison-Wesley .

Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S. L., &

Torr, P. H. (2016). Struck: Structured output tracking with kernels.

IEEE transactions on pattern analysis and machine intelligence, 38 (10),

2096–2109.

Held, D., Thrun, S., & Savarese, S. (2016). Learning to track at 100 FPS

with deep regression networks. In European conference computer vision

(ECCV).

Hii, A., Hann, C. E., Chase, J. G., & Van Houten, E. E. (2006). Fast

normalized cross correlation for motion tracking using basis functions.

Computer methods and programs in biomedicine, 82 (2), 144–156.

Hoshino, J., Yamamoto, M., & Saito, H. (2001). A match moving technique

for merging cg cloth and human movie sequences. Computer Animation

and Virtual Worlds , 12 (1), 23–29.

Hsieh, H.-T., & Chu, C.-H. (2011). Particle swarm optimisation (PSO)-

based tool path planning for 5-axis flank milling accelerated by graphics

processing unit (GPU). International Journal of Computer Integrated

Manufacturing , 24 (7), 676–687.

Hwang, K., Dongarra, J., & Fox, G. C. (2013). Distributed and cloud

computing: from parallel processing to the internet of things. Morgan

Kaufmann.

Juneja, M., & Sandhu, P. S. (2009). Performance evaluation of edge detec-

tion techniques for images in spatial domain. international journal of

100

computer theory and Engineering , 1 (5), 614.

Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). PN learning: Bootstrapping

binary classifiers by structural constraints. In Computer vision and

pattern recognition (cvpr), 2010 IEEE conference on (pp. 49–56).

Kalivarapu, V., & Winer, E. (2008). Implementation of digital pheromones

in PSO accelerated by commodity graphics hardware. In 12th

AIAA/ISSMO multidisciplinary analysis and optimization conference,

victoria, british columbia.

Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees.

Nature, 473 (7348), 478–483.

Kapinchev, K., Bradu, A., Barnes, F., & Podoleanu, A. (2015). GPU

implementation of cross-correlation for image generation in real time.

In Signal processing and communication systems (icspcs), 2015 9th

international conference on (pp. 1–6).

Karaboga, D. (2005). An idea based on honey bee swarm for numerical

optimization (Tech. Rep.). Technical report-tr06, Erciyes university,

engineering faculty, computer engineering department.

Karaboga, D., & Akay, B. (2009). A survey: Algorithms simulating bee

swarm intelligence. Artificial Intelligence Review , 31 (1-4), 61–85.

Kaufman, K. R., Hughes, C., Morrey, B. F., Morrey, M., & An, K.-N. (2001).

Gait characteristics of patients with knee osteoarthritis. Journal of

biomechanics , 34 (7), 907–915.

Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective

evolutionary algorithms. In Evolutionary multi-criterion optimization

(pp. 72–72).

101

Kwon, J., & Lee, K. M. (2009). Tracking of a non-rigid object via patch-based

dynamic appearance modeling and adaptive basin hopping monte carlo

sampling. In Computer vision and pattern recognition, 2009. cvpr 2009.

IEEE conference on (pp. 1208–1215).

Kwon, J., Lee, K. M., & Park, F. C. (2009). Visual tracking via geometric

particle filtering on the affine group with optimal importance functions.

In Computer vision and pattern recognition, 2009. CVPR 2009. IEEE

conference on (pp. 991–998).

Lawless, J. F. (2011). Statistical models and methods for lifetime data

(Vol. 362). John Wiley & Sons.

Lewis, J. P. (1995). Fast normalized cross-correlation. In Vision interface

(Vol. 10, pp. 120–123).

Li, M., & Lavest, J.-M. (1996). Some aspects of zoom lens camera calibra-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18 (11), 1105–1110.

Litvin, A., Konrad, J., & Karl, W. C. (2003). Probabilistic video stabilization

using kalman filtering and mosaicing. In Proceedings of spie (Vol. 5022,

pp. 663–674).

Lucic, P., & Teodorovic, D. (2001). Bee system: modeling combinatorial

optimization transportation engineering problems by swarm intelligence.

In Preprints of the tristan iv triennial symposium on transportation

analysis (pp. 441–445).

Luenberger, D. G., Ye, Y., et al. (1984). Linear and nonlinear programming

(Vol. 2). Springer.

Luo, G.-H., Huang, S.-K., Chang, Y.-S., & Yuan, S.-M. (2014). A parallel bees

102

algorithm implementation on GPU. Journal of Systems Architecture,

60 (3), 271–279.

Maggio, E., & Cavallaro, A. (2011). Video tracking: theory and practice.

John Wiley & Sons.

Maia, R. D., de Castro, L. N., & Caminhas, W. M. (2012). Bee colonies as

model for multimodal continuous optimization: The OptBees algorithm.

In Evolutionary computation (CEC), 2012 IEEE congress on (pp. 1–8).

Malamas, E. N., Petrakis, E. G., Zervakis, M., Petit, L., & Legat, J.-D. (2003).

A survey on industrial vision systems, applications and tools. Image

and vision computing , 21 (2), 171–188.

Mantor, M. (2012). AMD Radeon HD 7970 with graphics core next (GCN)

architecture. In Hot Chips 24 Symposium (HCS), 2012 IEEE (pp.

1–35).

Maurer, T., Elagin, E. V., Nocera, L. P. A., Steffens, J. B., & Neven, H. (2001,

August 7). Wavelet-based facial motion capture for avatar animation.

Google Patents. (US Patent 6,272,231)

Mei, X., & Ling, H. (2009). Robust visual tracking using `1 minimization.

In Computer vision, 2009 IEEE 12th international conference on (pp.

1436–1443).

Mei, X., Ling, H., Wu, Y., Blasch, E., & Bai, L. (2011). Minimum error

bounded efficient l1 tracker with occlusion detection (preprint) (Tech.

Rep.). AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB

OH.

Mohanapriya, D., & Mahesh, K. (2017). A comparative analysis of video

tracking techniques. extraction, 5 , 8.

103

Mozaffari, A., Gorji-Bandpy, M., & Gorji, T. B. (2012). Optimal design

of constraint engineering systems: application of mutable smart bee

algorithm. International Journal of Bio-Inspired Computation, 4 (3),

167–180.

Mussi, L., Nashed, Y. S., & Cagnoni, S. (2011). GPU-based asynchronous par-

ticle swarm optimization. In Proceedings of the 13th annual conference

on genetic and evolutionary computation (pp. 1555–1562).

Nakrani, S., & Tovey, C. (2003). On honey bees and dynamic allocation in

an internet server colony. In Proceedings of 2nd international workshop

on the mathematics and algorithms of social insects (pp. 1–8).

Nguyen, H. T., & Smeulders, A. W. (2004). Fast occluded object tracking by

a robust appearance filter. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26 (8), 1099–1104.

Nguyen, H. T., & Smeulders, A. W. (2006). Robust tracking using foreground-

background texture discrimination. International Journal of Computer

Vision, 69 (3), 277–293.

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel

programming with cuda. Queue, 6 (2), 40–53.

Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., Reschka, A., &

Böhmer, J. R. (2011). Stadtpilot: First fully autonomous test drives in

urban traffic. In Intelligent transportation systems (ITSC), 2011 14th

international IEEE conference on (pp. 919–924).

Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of

eusociality. Nature, 466 (7310), 1057–1062.

Ntuen, C. A., Park, E. H., & Kim, J. H. (1989). KIMSa knowledge-based

104

computer vision system for production line inspection. Computers &

Industrial Engineering , 16 (4), 491–508.

Olague, G., & Puente, C. (2006a). The honeybee search algorithm for

three-dimensional reconstruction. In Workshops on applications of

evolutionary computation (pp. 427–437).

Olague, G., & Puente, C. (2006b). Parisian evolution with honeybees for

three-dimensional reconstruction. In Proceedings of the 8th annual

conference on genetic and evolutionary computation (pp. 191–198).

Oron, S., Bar-Hillel, A., Levi, D., & Avidan, S. (2015). Locally orderless

tracking. International Journal of Computer Vision, 111 (2), 213–228.

Owaida, M., Bellas, N., Daloukas, K., & Antonopoulos, C. D. (2011). Syn-

thesis of platform architectures from OpenCL programs. In Field-

programmable custom computing machines (FCCM), 2011 IEEE 19th

annual international symposium on (pp. 186–193).

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips,

J. C. (2008). Gpu computing. Proceedings of the IEEE , 96 (5), 879–899.

Patnaik, S., & Yang, Y.-M. (2012). Soft computing techniques in vision

science (Vol. 395). Springer Science & Business Media.

Patten, J., Ishii, H., Hines, J., & Pangaro, G. (2001). Sensetable: a wireless

object tracking platform for tangible user interfaces. In Proceedings of

the SIGCHI conference on human factors in computing systems (pp.

253–260).

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2011).

The bees algorithm-a novel tool for complex optimisation. In Intelligent

production machines and systems-2nd I* PROMS virtual international

105

conference (3-14 july 2006).

Prabhu, C. (2008). Grid and cluster computing. PHI Learning Pvt. Ltd.

Quijano, N., & Passino, K. M. (2010). Honey bee social foraging algorithms for

resource allocation: Theory and application. Engineering Applications

of Artificial Intelligence, 23 (6), 845–861.

Raimbault, F., Lavenier, D., Rubini, S., & Pottier, B. (1993). Fine grain

parallelism on a mimd machine using fpgas. In Fpgas for custom

computing machines, 1993. proceedings. ieee workshop on (pp. 2–8).

Rao, G. N., Rao, P. J., Duvvuru, R., Bendalam, S., & Gemechu, R. (2016).

An enhanced real-time forest fire assessment algorithm based on video

by using texture analysis. Perspectives in Science, 8 , 618–620.

Ratha, N. K., Jain, A. K., & Rover, D. T. (1995). Convolution on SPLASH

2. In FPGAs for custom computing machines, 1995. proceedings. IEEE

symposium on (pp. 204–213).

Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning

for robust visual tracking. International Journal of Computer Vision,

77 (1), 125–141.

Schlüns, H., Koeniger, G., Koeniger, N., & Moritz, R. F. (2004). Sperm

utilization pattern in the honeybee (Apis mellifera). Behavioral Ecology

and Sociobiology , 56 (5), 458–463.

Senior, A. W., Brown, L., Hampapur, A., Shu, C.-F., Zhai, Y., Feris, R. S.,

. . . Carlson, C. (2007). Video analytics for retail. In Advanced video

and signal based surveillance, 2007. AVSS 2007. IEEE conference on

(pp. 423–428).

Shrivakshan, G., Chandrasekar, C., et al. (2012). A comparison of various

106

edge detection techniques used in image processing. IJCSI International

Journal of Computer Science Issues , 9 (5), 272–276.

Slessor, K. N., Winston, M. L., & Le Conte, Y. (2005). Pheromone communi-

cation in the honeybee (Apis mellifera L.). Journal of chemical ecology ,

31 (11), 2731–2745.

Smeulders, A. W., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A.,

& Shah, M. (2014). Visual tracking: An experimental survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36 (7), 1442–

1468.

Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image

processing. a talk at the Stanford Artificial Project in, 271–272.

Solihin, Y. (2015). Fundamentals of parallel multicore architecture. CRC

Press.

Souza, D. L., Teixeira, O. N., Monteiro, D. C., & de Oliveira, R. C. L. (2012).

A new cooperative evolutionary multi-swarm optimizer algorithm based

on cuda parallel architecture applied to solve engineering optimization

problems. In 3rdinternational workshop on combinations of intelligent

methods and applications (CIMA 2012) (p. 49).

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming

standard for heterogeneous computing systems. Computing in science

& engineering , 12 (3), 66–73.

Tan, Y., & Ding, K. (2016). A survey on GPU-based implementation of

swarm intelligence algorithms. IEEE transactions on cybernetics , 46 (9),

2028–2041.

Teodorovic, D., & Dell’Orco, M. (2005). Bee colony optimization–a coopera-

107

tive learning approach to complex transportation problems. Advanced

OR and AI methods in transportation, 51–60.

Tian, Y.-l., Brown, L., Hampapur, A., Lu, M., Senior, A., & Shu, C.-f. (2008).

IBM smart surveillance system (S3): event based video surveillance

system with an open and extensible framework. Machine Vision and

Applications , 19 (5), 315–327.

Trucco, E., & Plakas, K. (2006). Video tracking: a concise survey. IEEE

Journal of Oceanic Engineering , 31 (2), 520–529.

Trucco, E., & Verri, A. (1998). Introductory techniques for 3-D computer

vision (Vol. 201). Prentice Hall Englewood Cliffs.

Tsutsui, S., & Fujimoto, N. (2011). ACO with tabu search on a GPU

for solving QAPs using move-cost adjusted thread assignment. In

Proceedings of the 13th annual conference on genetic and evolutionary

computation (pp. 1547–1554).

Tucker, K. W. (1957). Automictic parthenogenesis in the honey bee, Apis

mellifera L. University of California, Davis.

Turing, A. M. (1950). Computing machinery and intelligence. Mind , 59 (236),

433–460.

Van Houten, E. E., Kershaw, H., Lotz, T., & Chase, J. G. (2012). Localiza-

tion and detection of breast cancer tumors with digital image elasto-

tomography. In Engineering in medicine and biology society (embc),

2012 annual international conference of the ieee (pp. 2635–2638).

Von Frisch, K. (1955). The dancing bees. Harcourt, Brace.

Von Frisch, K. (2014). Bees: their vision, chemical senses, and language.

Cornell University Press.

108

Wang, S., Lu, H., Yang, F., & Yang, M.-H. (2011). Superpixel tracking. In

Computer vision (ICCV), 2011 IEEE international conference on (pp.

1323–1330).

Wedde, H. F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth,

J., & Jeruschkat, R. (2005). BeeAdHoc: an energy efficient routing

algorithm for mobile ad hoc networks inspired by bee behavior. In

Proceedings of the 7th annual conference on genetic and evolutionary

computation (pp. 153–160).

Wedde, H. F., Farooq, M., & Zhang, Y. (2004). BeeHive: An efficient

fault-tolerant routing algorithm inspired by honey bee behavior. Lecture

notes in computer science, 3172 , 83–94.

Wilson, E. (1975). Sociobiology: The new synthesis. The Belknap Press.

Xie, J., Khan, S., & Shah, M. (2008). Automatic tracking of Escherichia coli

bacteria. Medical Image Computing and Computer-Assisted Intervention–

MICCAI 2008 , 824–832.

Yang, X.-S. (2005). Engineering optimizations via nature-inspired virtual bee

algorithms. Artificial Intelligence and Knowledge Engineering Applica-

tions: A Bioinspired Approach, 317–323.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE multimedia,

19 (2), 4–10.

Zhao, J., Wang, W., Pedrycz, W., & Tian, X. (2012). Online parame-

ter optimization-based prediction for converter gas system by parallel

strategies. IEEE Transactions on Control Systems Technology , 20 (3),

835–845.

Zhou, Y., & Tan, Y. (2009). GPU-based parallel particle swarm optimization.

109

In Evolutionary computation, 2009. CEC’09. IEEE congress on (pp.

1493–1500).

110

