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5.10 Current IL and control ũ response, using kp = 0.01, ki = 2 and λ = 0.5. 119
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List of Symbols

∀ Universal quantification which is interpreted as given any or for all.
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C Field of complex numbers.
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j :=
√
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|x| Absolute value x ∈ R.
〈x, y〉 Scalar product of x, y ∈ Cn which is denoted by 〈x, y〉 = yHx,

where yH is the complex conjugate transpose of y.
lcm(a, b) Least common multiple of the pair (a, b) with a, b ∈N.
den

( a
b
)

Denominator of the pair (a, b) with a, b ∈N.
L Linear laplace transformed operator.
L Linear operator.
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D Derivative operator D = d

dt .

‖ x ‖ Euclidean norm of a vector x, with n elements, given by
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k .

I Identity operator.
J0(·) Bessel function.
I0(·) Modified Bessel function.
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Abbreviations

FIR Finite Impulse Response (filter).
IIR Infinite Impulse Response (filter).
SISO Single-Input, Single-Output (system).
LTI Linear Time Invariant (system).
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BP Branch Point.
ILT Inverse Laplace Transform.
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Introduction

Automatic control is a branch of scientific research that deals, amongst other things, with automatons. In our
daily lives, we keep surrounded by automated systems, such as battery chargers, cruise control mechanisms
in cars, automatic pilots for aircrafts and rockets, and so on. These dynamic systems require continuous
control to ensure that their function in question is maintained. Engineers in automatic control work in the
fields of domestic appliances, automobiles, aerospace, chemical process, wastewater management, 3D printers
and so on.

Automatic control implies different problems to solve (see, Fig. 1). In fact automatic control can be seen as
natural conclusion of systems analysis. Nowadays, the study of complex system dynamics theory implies that
we are actually studying simplifications of the real-physical systems and that we need techniques to simplify
the analysis but to improve the accuracy of our models (Bar-Yam, 1997). The diagram shown in Fig. 2 (Based
on a diagram created by Hiroki Sayama, D.Sc., Collective Dynamics of Complex Systems (CoCo) Research
Group at Binghamton University, State University of New York, 26 November 2010.) allow us to appreciate
some of the multiple areas of research that try to find depeer understanding to the physical phenomena.

Automatic

Control

Control
strategy
design

System
modeling
or iden-

tification

Controller
implemen-

tation

Figure 1: Automatic control principal
steps.

In an interview at the 20th world Congress of the Internation Federation of Automatic Control (IFAC 2017),
Dimitri Peaucelle, a researcher at the LAAS (Laboratory of Analysis and Architecture of Systems) mentioned
that one of the future problems that we expect automatic control systems will have the ability to overcome
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the problem of controlling distributed systems (Mussat, 2017). Hence, automatic control future results expect
to consider large-scale systems, multi-agent systems and networks which involve high nonlinear dynamics,
collective behavior and evolution.

Emergence
over scale

Complex Systems

Self-Organization
over time

Time series analysis

Ordinary differential equations

Iterative maps Phase space

Nonlinear Dynamics
Stability analysis Atractors

Population dynamics Chaos

Multistability Bifurcation

Coupled map lattices

Homeostasis

Feedbacks Self-reference

Goal-oriented/guided behavior Sistems dynamics

Systems theory
Sense making Entropy

Cybernetics Autopoiesis

Information theory Computation theory

Complexity measurement

Spatial fractals

Reaction-diffusion systems

Partial differential equations

Pattern Formation
Dissipative structures Percolation

Cellular automata Spatial ecology

Self-replication Spatial evolutionary biology

Geomorphology

Artificial neural networks

Evolutionary computation

Genetic algorithms/Programming

Evolution and Adaptation
Artificial life Machine learning

Evo-Devo artificial intelligence

Evolutionary robotics

Evolvability

Scale-free networks

Social network analysis Small-world networks

Community identification Centrality

Networks
Motifs Graph theory

Scaling Robustness/vulnerability

Systems biology Dynamical networks

adaptative networks

Social dynamics

Collective intelligence

Self-organized critically Herd mentally

Collective Behavior
Phase transition Agent-based modeling

Synchronization Ant color optimization

Particle swarm optimization

Swarm behavior

Prisoner’s dilemma (PD)

Rational desicion making Iterative PD

Bounded rationality n-person PD

Game Theory
Irrational behavior Cooperation versus competition

Spatial/network game theory

Evolutionary game theory

Figure 2: The complex systems topics
diagram.

Essentialy the most basic but still highly used scheme to analyze dynamical systems is using linear models.
This field of linear systems has been declared many times to be “mature”, but interest has repeatedly been
renewed due to new viewpoints and introduction of new theories (Astrom and Kumar, 2014).

Within this general perspective of the automatic control area, in this work a nothing new, but freshly
theory is used for automatic control: Fractional Calculus.

Fractional calculus is used to add up new solutions to the problematics presented in automation, but
considering the basiest case: The linear systems case. This case, even though considered as “mature”, enable us
to find new possibilities due to the generalization of calculus definitions of integrals and derivatives to the
real or even complex order case.
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Fractional calculus will be used in this work as a tool to design a control feedback algorithm for linear
fractional and non fractional order, time-invariant systems with time-delay and as a mathematical modeling
tool for large-scale mechanical systems. The feedback control algorithm considered consists of a fractional PD
and a fractional PI called: PDµ and PIλ, respectively. These new type of controllers allow us to have more
degrees of freedom and new dynamical characteristics due to the fractional-operator properties. Besides, we
search for practical applications and implications of using fractional-order controllers.

u(t)
PDµ/PIλ G(sα)

y(t)+

−

Figure 3: General control diagram

As seen in Fig. 3 when talking about fractional order plants, we will consider commensurate order systems
with rational degree α. Furthermore, we do not consider the general PIλDµ general controller algorithm in
our theoretical analysis, nonetheless we make use of it in some practical applications.

An important contribution of this work lies on the proposal and analysis of new mathematical models
for a type of distributed parameters systems with special geometrical physical constructions implying a
multivalued complex function analysis.

We acknowledge that the results presented in the following pages embody a contribution to the Fractional
Calculus area and a contribution to the Automatic Control theory and practice.

Some publications derived from this work are:

1.- A.-J. Guel-Cortez, C.-F. Méndez-Barrios, V. Ramírez-Rivera, J.G. Romero, E.J. González-Galván. Fractional−PDµ

controllers design for LTI-systems with time-delay. A geometric approach. In 5th International Conference on
Control, Desicion and Information Technologies, 2018.

2.- A.-J. Guel Cortez and C.-F. Méndez-Barrios and E. González-Galván. Geometrical design of fractional
PDµ controllers for LTI-fractional order systems with time delay. Submitted to Journal of Systems and Control
Engineering, 2018.

Hence, we can outline the thesis general and particular objectives as follows:

Thesis general objective

Developing stability criteria to synthesize fractional order controllers of PDµand PIλ-type. Besides,
to study mathematical fractional order models describing infinite mechanical networks.
Thesis particular objectives

• To study the stability of fractional order systems with time-delay of commensurate order.

• To design fractional order PDµ and PIλ controllers for integer and non-integer time-delay linear systems.

• To implement the fractional PDµ controller in a teleoperated system. Based on a bilateral control scheme
formed by two Omni Phantom haptic units.

• To analyze proposed mathematical models for infinte mechanical networks.





1
Preliminaries on fractional order systems

Historical Notes

In 1695 L’Hopital asked Leibniz what meaning could be ascribed to
dn f (t)

dtn if n were a fraction. But it was not until 1884 that the theory of
generalized operators achieved such a level in its development to make
it a subject in modern mathematics.

God made the integers; all else
is the work of man

Leopold Kronecker (1886)

The earliest more or less systematic studies in the subject seem
to have been made in the begining and middle of the 19th century
by Liouville (Liouville, 1832), Riemann (Riemann, 1847), Holmgren
(Holmgren, 1867) (to mention some of them) and others who made
contributions even earlier.
A complete survey on the history of the fractional calculus can be found at (Miller and Ross, 1993; Oldham
and Spanier, 2006).

Fundamental definitions

Fractional calculus is a generalization of the integration and differentiation to non-integer order funda-
mental operator cDα

t , where c and t are the limits of the operation and c ∈ R. There are several alternative
definitions of fractional derivatives, of which the three main ones are considered in this work. The existence
of different definitions is similar to that of integrals of real-valued functions of a real variable that may be
defined according to Riemman or Lebesgue.

Let us first define the especial function Γ as
Definition 1.0.1: Gamma function

We define the Gamma function as
Γ(n) =

∫ ∞

0
tn−1e−tdt

This function is a generalization of the factorial in the following form:

Γ(n) = (n− 1)! (1.1)
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Definition 1.0.2: Riemann-Liouville fractional derivatives

cDα
t =


∫ t

c
(t−τ)−α−1

Γ(−α)
f (τ)dτ, if α ∈ R−

f (t), if α = 0
ddαe

dtdαe cDα−dαe
t f (t), if α ∈ R+

(1.2)

tDα
c =


∫ c

t
(t−τ)−α−1

Γ(−α)
f (τ)dτ, if α ∈ R−

f (t), if α = 0

(−1)dαe ddαe

dtdαe tD
α−dαe
c f (t), if α ∈ R+

(1.3)

where Γ(·) is the Gamma function.
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Figure 1.1: The Γ function.
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Definition 1.0.3: Caputo fractional derivatives

cDα
t =


∫ t

c
(t−τ)−α−1

Γ(−α)
f (τ)dτ, if α ∈ R−

f (t), if α = 0

cDα−dαe
t

ddαe
dtdαe

f (t), if α ∈ R+

(1.4)

tDα
c =


∫ c

t
(t−τ)−α−1

Γ(−α)
f (τ)dτ, if α ∈ R−

f (t), if α = 0

(−1)dαetD
α−dαe
c

ddαe

dtdαe
f (t), if α ∈ R+

(1.5)

where Γ(·) is the Gamma function.

It is important to notice the difference between Definitions 1.0.2 and 1.0.3 stands for α ∈ R+ which
corresponds to the fractional differentation. The Caputo definition of the fractional-derivative integrates
after deriving. In the Caputo case, the derivative of a constant is zero and the initial conditions for the
fractional-order differential equations are in the same form as for the integer-order differential equations.
It is an advantage, because applied problems require definitions of fractional derivatives, where there
are clear interpretations of initial conditions, which contain f (a), f ′(a), f ′′(a), etc. To see more about the
Riemann-Liouville and Caputo definitions see (Li et al., 2011)

Definition 1.0.4: Grünwald-Letnikoff fractional derivatives

cDα
t = lim

h→0+

∑
b t−c

h c
j=0 (−1)j(α

j) f (t− jh)

hα
(1.6)

tDα
c = lim

h→0+

∑
b t−c

h c
j=0 (−1)j(α

j) f (t + jh)

hα
(1.7)

As we will see in further sections the Grünwald-Letnikoff (GL) definition is commonly used when fractional
derivatives and integrals are implemented in digital platforms.

The definitions depicted above are not the unique ones. In fact it is of contemporary interest to find a
general definition for what it would be a fractional integral or derivative. Some other definitions are studied
in (Ortigueira and Machado, 2015; de Oliveira and Machado, 2014).

Geometrical and physical meaning of the fractional derivative

Commonly asked questions in the literature of Fractional Calculus are: What is the meaning of a fractional
derivative?, How can we interpret it geometrically? and some others in the same sense.

When we talk of a half-derivative or a α-derivative we are actually generalizing the concepts of Calculus.
It is known that the integer order derivative represents the scope of a tangent line of some given curve.
Nontheless, in Fractional Calculus there is not a concise geometrical interpretation, because each of them relies
on the definiton being used. Some geometrical interpretations can be found at (Podlubny, 2001; Karci, 2015;
Zhao and Luo, 2017; Tavassoli et al., 2013).
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Now, in terms of the physical interpretation of the Fractional Calculus.

The fractional calculus is the
calculus of the XXI century

K. Nishimoto (1989)

Let us consider the popular differential equations of theoretical physics
of the form

a
∂m f (x, t)

∂tm + b
∂n f (x, t)

∂xn = F, (1.8)

where x, t are the space-time variables, a, b and F are given functions
of x and t, and m, n = 0, 1, 2, . . . are integer numbers. Some popular
versions of equations of mathematical physics are represented in the
following table (see, for instance (Uchaikin, 2013)):

m,n 1D-equations 3D-equations Phys. sense Math. type

1,0 |a| dv
dt + bv = F |a| dv

dt + bv = F
Damped
motion

-

2,0 |a| d2x
dt2 + bx = F |a| d2r

dt2 + br = F Oscillation -

1,1 |a| ∂ f
∂t +

∂(b f )
∂x = F |a| ∂ f (t)

∂t +∇(b f ) = F Continuity -

1,2 |a| ∂ f
∂t − |b|

∂2 f
∂2x = F |a| ∂ f (t)

∂t − |b|∇
2 f = F Diffusion Parabolic

2,2 |a| ∂
2 f

∂2t − |b|
∂2 f
∂2x = F |a| ∂

2 f (t)
∂2t − |b|∇

2 f = F Waves Hyperbolic

0,2 a f + b ∂2 f
∂2x = F a f + b∇2 f = F Static fields Elliptic

µ, v
non-integers

a ∂µ f
∂µt + b ∂2

∂2x

v/2
f = F

t > 0, ∞ < x < ∞
a ∂µ f (t)

∂µt + b∇v/2 f = F ?
Not
yet

classified

Then, according to this table classification, it is clear that there is not
a specific phenomenon already known corresponding to the usage of
Fractional Calculus.

2

1

1 2

Ballistic Diffusion

Wave

µ

v

Figure 1.2: Continuous manifold of frac-
tional partial equations

In spite of such a conclusion, important properties of Nature “seem”
to underlie the mathematical concept of fractional calculus: Hered-
ity, nonlocality, selfsimilarity, and stochasticity. (see, for more details
(Uchaikin, 2013)) when we analyze the mathematical properties of the
kernel in the fractional operator cDα

t .

To explain one of the aforementioned properties that may be represented by using Fractional Calculus, let us
look at the next experiment described by Bird and Curtiss (1984) (Fig. 1.3). A pump leaks a fluid through a
tube. At the beginning of the experiment a section of the fluid is marked with a paint. During the stream
process the marked surface takes the parabolic form typical for the Poiseuille flow. When the pump is turned
off the fluid stops. Herewith the Newtonian liquid keeps being motionless while polymeric liquid streams
some distance back, though it does not take its first position. The back motion process reveals the memory
of polymeric liquid and the fact that the liquid does not take its initial condition, as a spring does, is the
evidence of memory attenuation.

Some steps in the analysis of the physical interpretation of fractional calculus try to study common mechanical
or electrical systems by substituting their derivatives or integrals orders in its mathematical models with a
real order. In (Gómez-Aguilar et al., 2014), J. Gómez A. an application of fractional calculus for modeling is
depicted by using the fractional differential equation for the RC circuit on Fig. 1.4 as

dγq
dtγ

+
1
τγ

q(t) =
C
τγ

v(t), (1.9)

where
τγ =

RC
σ1−γ

, (1.10)
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(a) (b)

Figure 1.3: Hereditary behavior of a New-
tonian liquid (a) versus Polymeric liquid
(b).

can be called the fractional time constant due to its dimensionality sγ. When γ = 1, from (1.10) we have the
well known time constant τ = RC.

Given the values, R = 1MΩ, C = 1µF, we simulate the solution of (1.9) according to (Gómez-Aguilar et al.,
2014), obtaining the results shown in Figures 1.5 and 1.6 of the behavior of the charge and voltage using the
following fractional exponents γ = 0.25, γ = 0.5, γ = 0.75 and γ = 1.

C

-

+

R

i(t)

V(t)

Figure 1.4: RC Circuit.
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Figure 1.5: Step response of the capaci-
tor’s charge.

Now, in (Gómez-Aguilar et al., 2015) a mass-spring system is studied, again by changing the differential
equations model order. The equation of the mass-spring-damper system represented in Fig. 1.7 is given by:

m
σ2(1−γ)

C
0 D2γ

t x(t) +
β

σ1−γ
C
0 Dγ

t x(t) + kx(t) = F(t), (1.11)
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Figure 1.6: Step response of the capaci-
tor’s voltage.

and for the Caputo Fabrizio definition (Caputo and Fabrizio, 2015), we have:

m
σ2(1−γ)

CF
0 D2γ

t x(t) +
β

σ1−γ
CF
0 Dγ

t x(t) + kx(t) = F(t), (1.12)

where the mass is m, the damping coefficient is β, the spring constant is k and F(t) represents the forcing
function.

m

k

β
F(t)

Figure 1.7: Mass-spring-damper system.

Considering the case of a mass-spring system with β = 0, simulating expressions (1.13) and (1.14) using zero
intial conditions we obtain the results on Fig. 1.8.

x(t) =
(

x0 −
f0

k

)
E2γ

{
−η2t2γ

}
+

f0

k
, (1.13)

x(t) =
(

x0 −
f0

k

)
E2γ

{
−γ2(1−γ)t2γ

}
+

f0

k
. (1.14)

The last examples show how the time response of basics systems behave when we change the derivate orders
to some real number. This just gives an insight of which type of behaviours we may model by using Fractional
Calculus.

In further sections of this work we propose some systems modeled by means of fractional derivatives and
analyze some applications.
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Figure 1.8: Mass-spring system with a
constant source, Caputo derivative ap-
proach.

Numerical solutions and implementations

Consider the already known Grünwald-Letnikov (GL) definition, given by

aDα
t f (t) = lim

h→0
h−α

[ t−a
h ]

∑
j=0

(−1)j

(
α

j

)
f (t− jh).

The relation for explicit numerical approximation of r-th derivative at the points kh, (k=1,2,. . . ) has the
following form:

(k− Lm
h )

Dq
tk

f (t) ≈ h−q
k

∑
j=0

(−1)j

(
q
j

)
f (tk−j) = h−q

k

∑
j=0

c(q)j f (tk−j) (1.15)

where Lm is the memory lenght, tk = kh, h is the time step of the calculation and c(q)j , (j = 0, 1, . . . ) are
binomial coefficients. For their calculation we can use the following expression:

c(q)o = 1

c(q)j =

(
1− 1 + q

j

)
c(q)j−1

Writing the factorial as gamma function, it allows the binomial coefficient to be generalized to non-integer
arguments. We can write the relations:

(−1)j

(
q
j

)
= (−1)j Γ(q + 1)

Γ(j + 1)Γ(q− j + 1)
=

Γ(j− q)
Γ(−q)Γ(j + 1)

Obviously, for this simplification we pay a penalty in the form of some inaccuracy. If f (t) ≤ M, we can easily
establish the following estimate for determining the memory length Lm, providing the required accuracy ε:

Lm ≥
(

M
ε|Γ(1− q)|

) 1
q
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This method is named the Power Series Expansion (PSE) of a generating function which can be discretized to
form a FIR filter. The resulting discrete transfer function, approximating fractional-order operators, can be
expressed in the z-domain as follows:

0D±r
kT G(z) =

Y(z)
F(z)

=

(
1
T

)±r
PSE{

(
1− z−1

)±r
} ≈ T∓rRn(z−1)

where T is the sample period, PSE{u} denote the function resulting from applying the power series expansion
to the function u, Y(z) is the Z transform of the output sequence y(kT), F(z) is the Z transform of the input
sequence f (kT), n is the order of the approximation, and R is polynomial of degree n, respectively, in the
variable z−1, and k = 1, 2, . . . . Using a Matlab function based on relation (1.15) we obtained the result shown
in Fig. 1.9 of deriving f = sin(t) from order 0 to 1 on intervals of 0.1.

1

0.5
-1.5

-1

0

-0.5

2

0

4

0.5

06

1

8

Figure 1.9: Evaluation of the fractional
derivative of sin(t) using relation (1.15).

For another example of the use of relation (1.15), consider a three-term differential equation in the form

a2 Dα2
t y(t) +a1 Dα1

t y(t) + a0y(t) = u(t). (1.16)

Substituting (1.15) into the equation (1.16), one can write

a2

hα2

k

∑
j=0

qα2
j y(tk − j) +

a1

hα1

k

∑
j=0

qα1
j y(tk − j) + a0y(tk) = u(tk), (1.17)

where tk = kh (k = 1, 2, . . . , N) and q(α)j are binomial coefficients. After some rearrangement of the terms in
the relation (1.17), we can obtain the numerical solution depicted in Fig. 1.10 of the fractional differential
equation (1.16) in the following form:

y(tk) =
u(tk)− a2

hα2 ∑k
j=1 q(α2)

j y(tk − j)− a1
hα1 ∑k

j=1 q(α1)
j y(tk − j)

a2
hα2 + a1

hα1 + a0
(1.18)
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where k = 1, 2, . . . , N for N = Tsim/h and where Tsim is the total time of the calculation. The above approach
is general and can be used for n-term fractional differential equation

anDαn
t y(t) + an−1Dαn−1

t y(t) + . . . + a0Dα0
t y(t) = bmDβm

t u(t) + bm−1Dβm−1u(t)
t + . . . + b0Dβ0

t u(t).
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Figure 1.10: Solution of the equation
(1.16) for parameters: a2 = 0.8, a1 = 0.5,
a0 = 1, α2 = 2.2, α1 = 0.9 for u(t) = 1,
under zero initial conditions, time step
h = 0.05 and computation time Tsim =
35sec.

Continuous and discrete-time approximation techniques

Continued Fraction Expansion (CFE)

Other approach can be obtained by Continued Fraction Expansion (CFE) of the generating function and then
the approximated fractional operator is in the form of IIR filter, which has poles and zeros.

Taking into account that our aim is to obtain equivalents to the fractional integrodifferential operators in
the Laplace domain, s±r, the result of such approximation for an irrational function, G(s), can be expressed
into the form:

G(s) w a0(s) +
b1(s)

a1(s) +
b2(s)

a2(s)+
b3(s)

a3(s)+...

= a0(s) +
b1(s)

a1(s)+
b2(s)

a2(s)+
b3(s)

a3(s)+
. . .

where ais and bis are rational functions of the variable s, or are constants. The application of the method yields
a rational function, which is an approximation of the irrational function G(s). In other words, for evaluation
purposes, the rational approximations obtained by CFE frequently converge much more rapidly than the PSE
and have a wider domain of convergence in the complex plane. On the other hand, the approximation by PSE
and the short memory principle is convenient for dynamical properties consideration.
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These techniques are based on the approximations of an irrational function, G(s), by a rational function
defined by the quotient of two polynomials in the variable s in frequency s-domain:

G(s) ≡ Ri(i+1)...(i+m) =
Pµ(s)
Qv(s)

=
p0 + p1s + · · ·+ pµsµ

q0 + q1s + · · ·+ qvsv , (m + 1 = µ + v + 1)

passing through the points (si, G(si), . . . , (si+m, G(si+m))).
The resulting discrete transfer function, approximating fractional-order operators, can be expressed as:

0D±r
kT G(z) =

Y(Z)
F(z)

=

(
2
T

)±r
CFE{

(
1− z−1

1 + z−1

)±r

}p,n ≈
(

2
T

)±r Pp(z−1)

Qn(z−1)

where T is the sample period, CFE{u} denotes the function resulting from applying the continued fraction
expansion to the function u, Y(z) is the Z transform of the output sequence y(kT), F(z) is the Z transform
of the input sequence f (kT), p and n are the orders of the approximation, and P and Q are polynomials of
degrees p and n, respectively, in the variable z−1, and k = 1, 2, . . .

In general, the discretization of fractional-order differentiatior/integrador s±r (r ∈ R) can be expressed by
the generating function s ≈ w(z−1). This generating function and its expansion determine the form of the
approximation and the coeficients.

(ω(z−1))±r =

(
1 + a

T
1− z−1

+az−1

)±r

where a is the ratio term and r is the fractional order. The ratio term a is the amount of phase shift and this
tuning knob is sufficient for solving most engineering problems.

The result of such approximation for an irrational function, Ĝ(z−1), can be expressed by G(z−1) in the
CFE form

G(z−1) w a0(z−1) +
b1(z−1)

a1(z−1) + b2(z−1)

a2(z−1)+
b3(z
−1)

a3(z
−1)+...

= a0(z−1) +
b1(z−1)

a1(z−1)+

b2(z−1)

a2(z−1)+

b3(z−1)

a3(z−1)+
. . .

where ai and bi are either rational functions of variable z−1 or constants. The application of the method yields
a rational function, G(z−1), which is an approximation of the irrational function Ĝ(z−1).

The resulting discrete transfer function, approximating fractional-order operators, ca be expressed as:

(w(z−1))±r ≈
(

1+a
T

)±r
CFE{

(
1−z−1

1+az−1

)±r
}p,q =

(
1+a

T

)±r Pp(z−1)

Qq(z−1)
=
(

1+a
T

)±r p0+p1z−1+...+pmz−1

q0+q1z−1+...+qnz−q (1.19)

where CFE{u} denotes the continued fraction expansion of u; p and q are the orders of the approximation
and P and Q are polynomials of degrees p and q. Normally, we can set p = q = n.

Here we present some results for fractional order r = 0.5. The value of approximation order n is truncated
to n = 3 and weighting factor a is chosen a = 1/3 . Assuming sampling period T = 0.001 sec.

Oustaloups Recursive Approximation

The method is based on the approximation of a function of the form:

H(s) = sr, r ∈ R, r ∈ [−1; 1],
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Figure 1.11: Bode diagram comparison of
the discretization of s0.5 by using a FIR
and IIR form.
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Figure 1.12: Step response comparison of
the discretization of s0.5 by using a FIR
and IIR form

for the frequency range selected as (ωb, ωh) by a rational function:

Ĥ = Co

N

∏
k=−N

s + ω′k
s + ωk

, (1.20)
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using the following set of synthesis formulas for zeros, poles and the gain:

ω′k = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

,

ωk = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

,

Co =

(
ωh
ωb

) r
2 N

∏
k=−N

ωk
ω′k

.

where ωh, ωb are the high and low transitional frequencies.
Using the described Oustaloups-Recursive-Aproximation (ORA) method with:

ωb = 10−2, ωh = 102,

the obtained approximation for fractional function H(s) = s
1
2 for N = 3 gives the results shown in Figs. 1.14

and 1.13.
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Figure 1.13: Oustaloup’s-Recursive-
Approximation (ORA) method Bode plot
of s−0.5, using ωn = 10−2, ωh = 102 and
N = 3.

As we can see from the methods presented, there is not an exact possible implementation to solve a fractional
integral or derivative. An approximation is always used, this presents an oportunity area of research.

The methods used in the last sections are disscused widely in (Petráš, 2011a). In (Caponetto, 2010)
some implementations of fractional derivates and integrals are presented by using microprocessors, Field
Programmable Gate Arrays and Field Programmable analog Arrays. In (Podlubny et al., 2002; Dorčák et al., 2013)
posible analogue realizations for fractional order dynamical controllers and systems are presented.
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Figure 1.14: Oustaloup’s-Recursive-
Approximation (ORA) method step re-
sponse of s−0.5, using ωn = 10−2, ωh =
102 and N = 3.

The Laplace transform in fractional calculus

The Laplace transform is one of the most powerful tools used in fractional order systems to stablish criteria
for stability, modeling and system identification. This, due to the simpliciy gained in the frequency domain.

In further sections we will discuss practically all our results by taking a frequency domain analysis. Here,
it is of great interest to stablish what would be the Laplace transform of the most used fractional derivative and
integral definitions.
Riemann-Liouville definition

Theorem 1.0.1: Laplace transform of the Riemann-Liouville definition (Valério and da Costa, 2013)

The Laplace transform of D when the Riemann-Liouville definition is used is given by

L [0Dα
t f (t)] =


sαF(s), if α ∈ R−

F(s), if α = 0

sαF(s)−∑
dαe−1
k=0 sk

0Dα−k−1
t f (0), if α ∈ R+

(1.21)

Proof. The result is trivial for α = 0. For α < 0:

L [0Dα
t f (t)] = L

[
1

Γ(−α)

∫ t

0
(t− τ)−α−1 f (τ)dτ

]
,

= 1
Γ(−α)

L
[
t−α−1

]
L [ f (t)] ,

= 1
Γ(−α)

Γ(−α)
s−α L [ f (t)] .
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For α > 0:

L [0Dα
t f (t)] = L

[
Ddαe0Dα−dαe

t f (t)
]

,

= sdαesα−dαeF(s)−
dαe−1

∑
k=0

skDdαe−k−1
0Dα−dαe

t f (0)�

Theorem 1.0.2: Laplace transform of the Caputo definition (Valério and da Costa, 2013)

The Laplace transform of D nwhen the Caputo definition is used is given by

L [0Dα
t f (t)] =


sαF(s), if α ∈ R−

F(s), if α = 0

sαF(s)−∑
dαe−1
k=0 sα−k−1Dk f (0), if α ∈ R+

(1.22)

Proof. The proof is identical to that of Theorem 1.0.1 save for α > 0, when we will have

L [0Dα
t f (t)] = L

[
0Dα−dαe

t D
]

= sα−dαe
(

sdαeF(s)−
dαe−1

∑
i=0

siDdαe−i−1 f (0)

)
.

Making k = dαe − 1− i we obtain the result �

The Laplace transform of fractional order systems

To start analyzing the Laplace Transform of fractional order system we need to define the Mittag-Leffler function
as follows

Definition 1.0.5: Mittag-Leffler function

The one-parameter and the two-parameter Mittag-Leffler functions are defined as

Eα(t) =
+∞

∑
k=0

tk

Γ (αk + 1)
= Eα,1, α > 0 (1.23)

Eα,β(t) =
+∞

∑
k=0

tk

Γ (αk + β)
, α, β > 0 (1.24)

Remark 1.0.1 (Miller-Ross function). A
generalization of the Mittag-Leffler function
is known as the Miller-Ross function which
is defined as

εt(v, a) =
+∞

∑
k=0

aktk+v

Γ(v + k + 1)
= tvE1,v+1(at).

(1.25)
For more details about the Mittag-Leffler
function see (Gorenflo et al., 2014).

Some particular values of these functions include

E1(t) = E1,1(t) =
+∞

∑
k=0

tk

Γ(k + 1)
=

+∞

∑
k=0

tk

k!
= et (1.26)

E1(at) = E1,1(at) = eat (1.27)

E2,1(t2) =
+∞

∑
k=0

t2k

Γ (2k + 1)
=

+∞

∑
k=0

t2k

(2k)!
= cosh(t) (1.28)
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As we can see, the Mittag Leffler function allow us to find a general way of expressing several functions. In
this vein, the Mittag Leffler function will stablish different decay behaviours.

A powerfull result for finding the Laplace transform of the mayority of the systems in the literature is given
as follows

Theorem 1.0.3: (Valério and da Costa, 2013)

The Laplace transform of tαk+β−1 dkEα,β(±atα)

d(±atα)k is

L
[

tαk+β−1 dkEα,β(±atα)

d(±atα)k

]
=

k!sα−β

(sα ∓ a)k+1 (1.29)

Proof. We start by mentioning the following results

Lemma 1.0.2. The integer derivatives of 1
1∓t are given by

Dk 1
1∓ t

=
k!(±1)k

(1∓ t)k+1 , k ∈ Z+
0 . (1.30)

Corollary 1.0.1

The MacLaurin series of 1
1∓t is ∑+∞

k=0(±t)k.

Then, first notice that

∫ +∞

0
e−ttβ−1Eα,βdt =

∫ ∞

0
e−ttβ−1

+∞

∑
k=0

(±z)ktαk

Γ (αk + β)
dt

=
+∞

∑
k=0

(±)k

Γ (αk + β)

∫ +∞

0
e−ttαk+β−1dt

=
1

1∓ z
(1.31)

Differentiating the rightmost and the leftmost members of (1.31) k ∈ Z+
0 times:

k!(±1)k

(1∓ t)k+1 =
dk

dzk

∫ +∞

0
e−ttβ−1Eα,βdt

=
∫ +∞

0
e−ttβ−1(±tα)k dk

d(±ztα)k Eα,β(±ztα)dt (1.32)

We now replace t with st (and thus dt with sdt) and get

k!(±1)k

(1∓ t)k+1 =
∫ +∞

0
e−stsβ−1tβ−1(±1)ksαktαk dkEα,β(±zsαtα)

d(±zsαtα)k s dt (1.33)
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Rearranging the terms and replacing zsα with a (and thus z with a
sα ):

k!
sβsαk(1∓ a

sα )k+1 =
∫ +∞

0
e−sttαk+β−1 dkEα,β(±atα)

d(±atα)k dt

k!s−βsα

sα(k+1)(1∓ a
sα )k+1

=

k!sα−β

(sα ∓ a)k+1 = � (1.34)

From Theorem 1.0.3 we can stablish the following useful corollaries:

Corollary 1.0.2

L
[
tβ−1Eα,β(±atα)

]
=

sα−β

sα ∓ a
(1.35)

Remark 1.0.3. A more detailed analysis of
the Mittag-Leffler function behaviour can
be found in (Podlubny, 1999), (Valério and
da Costa, 2013) and specially (Gorenflo et al.,
2014).

Proof. The proof follows by making k = 0 in (1.29) �

Corollary 1.0.3

L
[
tα−1Eα,α(±atα)

]
=

1
sα ∓ a

(1.36)

Proof. Making α = β in (1.35) �

Corollary 1.0.4

L
[
tβ−1E1,β(±at)

]
=

s1−β

s∓ a
(1.37)

Proof. Making α = 1 in (1.35) �

Corollary 1.0.5

L
[
tβ−1E1,β(0)

]
= L

[
tβ−1

Γ(β)

]
=

1
sβ

(1.38)

Proof. Making a = 0 in (1.37) �

Hence, to obtain the time response of several useful transfer functions to inputs like: impulse (δ(t)), unit
step (H(s)) and unit ramp (t). Making β = α, α + 1 and α + 2 in (1.38), (1.35) and (1.29), we obtain the
following responses:

L−1
[

1
sα
L [δ(t)]

]
=

tα−1

Γ(α)
(1.39)
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L−1
[

1
sα
L [H(t)]

]
=

tα

Γ(α + 1)
(1.40)

L−1
[

1
sα
L [t]

]
=

tα+1

Γ(α + 2)
(1.41)

L−1
[

1
sα ∓ a

L [δ(t)]
]
= tα−1Eα,α(±atα) (1.42)

L−1
[

1
sα ∓ a

L [H(t)]
]
= tαEα,α+1(±atα) (1.43)

L−1
[

1
sα ∓ a

L [t]
]
= tα+1Eα,α+2(±atα) (1.44)

L−1
[

1
(sα ∓ a)k+1L [δ(t)]

]
=

tα(k+1)−1

Γ(k + 1)
dkEα,α(±atα)

d(±atα)k (1.45)

L−1
[

1
(sα ∓ a)k+1L [H(t)]

]
=

tα(k+1)

Γ(k + 1)
dkEα,α+1(±atα)

d(±atα)k (1.46)

L−1
[

1
(sα ∓ a)k+1L [t]

]
=

tα(k+1)+1

Γ(k + 1)
dkEα,α+2(±atα)

d(±atα)k (1.47)

Multivalued functions

One of the concepts that will be of great use in this work, is the idea of Multivalued functions. We know that
from the stablished concept of single-valued functions, w = f (s), we can naturally ask whether such a function
can always have an inverse whereby s can be specified as a function of w. In those cases where several values
of s yield identical values of w we are in trouble, for then the inverse can not be single-valued, and in the
true sense of the word an inverse function does not exist, the reason is that such a mapping s→ f (w) is not
single-valued.

In complex analysis a function that satisfies

F [z(r, θ + 2π)] = F [z(r, θ)] (1.48)

is called a single-valued function.
For a better understand of the concept of multi-valued functions,

perhaps the simplest example is the inverse of

w = s2, (1.49)

which will be written as,
s = w1/2. (1.50)

Using s instead of w as the independent variable for convenience then
(1.49) is now written with s and w interchanged, as follows:

w = s1/2. (1.51)
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Figure 1.15:
√

s Riemann-surface.

This function has two s planes which map onto a single w-plane. We
exploit the idea of having two s planes. If somehow a distinction can
be made between these two s planes, we could then regard overlying
points in the two s planes as being different, and the function w = s1/2

would appear to be single-valued. Refering to Figs. 1.16 and 1.17, we can
see a pair of edges (one edge from each plane), where one solid line and
one dashed line fit together. The curves such as C and C′ do not cross
such a cut but pass continuously from one plane to the other. When
the two s planes are joined in this way, they form a Riemann-surface
(for a formal definition of Riemann-surface see (Farkas and Kra, 1980)).

<

=

s1

sb

a
bs2

φC

C′

Figure 1.16: Riemann-surface interpreta-
tion of the function w = s1/2. s-plane,
sheet 1

<

=

s′1

sb

a
b

s′2

C′

C

φ + 2π

Figure 1.17: Riemann-surface interpreta-
tion of the function w = s1/2. s-plane,
sheet 2

The Riemann surfaces allow us to define a complex function without introducing artificial branches (Marsden
and Hoffman, 1999). Each of the s planes is called a sheet of the Riemann-surface (RF). Before continuing
with our example, there are two basic concepts we have to consider: Branch points (BP) and Branch cuts (BC).

Definition 1.0.6: Branch points (BP)

The branch point or point of accumulation is defined as the point with the smallest magnitude for
which a function is multivalued (Cohen, 2007). Another definition would be: A branch point is a point
such that the function is discontinuous when going around an arbitrarily small circuit around this
point (see, for further details (Needham, 1997))
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<

=

w1

w′1

w2

w′2

a′

b′

φ
2

φ+2π
2

Figure 1.18: Riemann-surface interpreta-
tion of the function w = s1/2. w-plane

For example, consider the general Nth root function written as

z
M
N = [z(r, θ + 2kπ)]

M
N = r

M
N ej Mθ

N ej2πk M
N . (1.52)

We see that this function has multiple values for all 0 < r < ∞. That is, the multivaluedness starts at r = 0,
and therefore at z = 0. As such, the general Nth root function is said to have a branch point at z = 0. By
replacing z by z− z0 in (1.52), the branch point can be translated to the point z0. Therefore, the expression

FM
N
(z) = (z− z0)

M
N , (1.53)

has a fractional root branch point at z0.

Definition 1.0.7: Branch cuts

Let F(z) be a multivalued function with a BP at z0. We let θ increase so that z varies from z [r, θ + 2πk] to
z [r, θ + 2π(k + 1)]. In doing so, values of F(z) migrate from the kth sheet, defined by F {z [r, θ + 2πk]},
to the (k + 1)th sheet, defined by F {z [r, θ + 2π(k + 1)]}. In order for these values of F(z) to vary
continuously, we envision the kth sheet to be cut along some line called the branch line or branch cut,
which extends from the branch point to ∞. This branch cut allows access to the (k + 1)th sheet from
the kth sheet (Cohen, 2007). Hence, a cut in each sheet of a Riemann-surface is called a branch cut (BC)
and is always formed by any simple arc connecting two branch points (BP)(Needham, 1997)).

We note from the above definition that the increase of θ by 2π can begin at any value of θ. Therefore,
the cut can be oriented at any angle θ0 to the positive real axis. All sheets are cut in this way to allow
access from points on any one sheet to points on any adjacent sheet. The sheet defined by k = 0, for which
θ0 < θ < θ0 + 2π, is called the principal sheet or the principal branch of F(z). The second sheet is defined by
θ0 + 2π < θ < θ0 + 4π and so on.

Then, in our example (1.51) suppose that there are two points s1 and s′1 similarly located in the two sheets
of Fig. 1.16, 1.17 and 1.18. The Riemann-surface interpretation allows them be regarded as different points. In
this way w1 = f (s1) and w′1 = f (s′1) are clearly distinct because ∠(s′1) = 2π +∠(s1). With this interpretation
f (s) becomes single-valued. In sheet 1 of Fig. 1.16 the angle φ lies in the range −π < φ ≤ π, and in sheet 2
of the RF the range is π < φ ≤ 3π.

Consider the neighborhoods of points s and s′, where the unprimed value is always in sheet 1 and
the primed one is on sheet 2. Each of these neighborhoods will be transformed into neighborhoods of
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corresponding points in the w plane. A few particular cases are considered, beginning with points s1 and
s′1. There is no possibility of neighborhood of s′ becoming confused with the neighborhood of s1. This
permits us to use the definition of continuity without being bothered by multivaluedness. A point like s2 on a
solid-line edge of a branch cut can not have a neighborhood completely in one sheet. Its neighborhood must
be in two sheets, as indicated by the two shaded areas in Fig. 1.16 and 1.17. This neighborhood goes into a
neightborhood of w2 in the w plane. The corresponding point s′2 has a neighborhood consisting of the two
nonshaded circular segments, which transforms into a neighborhood of w′2. Although the neighborhoods of
s2 and s′2 are each in two sheets, the function is single-valued in each neighborhood.

Now, analyzing the branch point labeled as sb. If we try to put a small circle around sb in sheet 1, we find
that points a and b cannont be conected; from a point a we must proceed into sheet 2. If points a and b are
allowed to approach each other, the corresponding points in the w plane approach a′ and b′, which are at the
ends of a semicircle, as shown in Fig. 1.18. A small circle which encircles a branch point only once can not
transform into a closed figure in the function plane. Two or more circuits (two in this example) around a
branch point are required to give a closed figure in the function plane. Branch points are designated by an
order number. The order is on less than the number of circuits around it required to give a closed figure in
the function plane.

The above description brings to light other distinctive features of a branch point. Unlike points such as s1

and s2, a branch point can not be assigned to any one sheet of the Riemann-surface, and therefore it can not
have a neighborhood lying in only one sheet. That is, it is impossible to define a neighborhood of a branch
point in which the function is single-valued.

We can use the fact that encircling a branch point only once does not close the figure traced in the function
plane can be used to test wheter or not a given point is a branch point. As an example, we shall test whether
s = 0 and s = 1 are branch points of the function

w = s1/2. (1.54)

At s = 0, we write
s = ρejφ, w = rejθ , (1.55)

giving
r2ej2θ = ρejφ, (1.56)

and
r =
√

ρ, θ =
φ

2
(1.57)

If φ is increased by 2π, so that point s = 0 is encircled once, θ will
increase by π, which carry w only halfway around the origin. Thus,
s = 0 is a branch point. Now, look at the pair of points s = 1 and w = 1.
In their neighborhoods we write

s = 1 + ρejφ, w = 1 + rejθ (1.58)

x, ξ

y, η

z, ζ

N

P̂
S

P

β
φ

a

Figure 1.19: The Riemann-sphere. Sthere-
ographic projection of the (ξ, η, ζ) sphere
onto the s plane.

and
1 + 2rejθ + r2ej2θ = 1 + ρejφ, (1.59)

as r is made very small, the r2 term approaches zero faster than r and
so the above approaches

2rejθ ≈ ρejφ, (1.60)
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showing that point w = 1 is encircled only once when s = 1 is encircled once by a small circle. Thus, s = 1 is
not a branch point.

If the Riemann-sphere interpretation is introduced (see, for further details (Cohn, 1967)), we can also
identify a branch point at the point infinity. A small circular path enclosing the point at infinity on the
Riemann-sphere becomes a large circle in the flat plane. Thus, to test whether the point at infinity is a
branch point, we look at the figure traced in the function plane as we follow one circuit around a large circle
(approaching infinite radius) in the s plane. If the function-plane does not close, the point at infinity is a
branch point.

We conclude that the function w = s1/2 has branch points of order 1, at s = 0 and at infinity. Then, the BC
is the union of such BPs.

Integration around Branch Points

A very powerfull method to identify where the BPs of a multivalued function are, is by menas of the
integral. To see why, consider the following function

F(s) =
1

s1/2 , (1.61)

from previous discussions we know that this function has a BP at s = 0 and at infinity. Although, this function
becomes infinite at the BP, this is not a pole of the function. To find the reason, consider the integral∫

C

1
s1/2 ds, (1.62)

Remark 1.0.4. More details about integra-
tion or derivation around BPs can be found
at (LePage, 1980)

where C is a counterclockwise closed curve encircling the origin once.
For simplicity, consider the curve as a circle of radius ρ. Assuming
s = ρejφ, it follows that∫

C

1
s1/2 =

∫ π

−π

1
√

ρejφ/2 (jρejφ)dφ = j4
√

ρ. (1.63)

It is observed that the integral around BP approaches zero as the radius of integration approaches zero. This
would not be true for integration around a pole.





2
Mathematical modeling of fractional order systems

Infinite networks flow dynamics

We may say that Nature works
with fractional time derivatives

S. Westerlund (1991)

In previous sections we have seen that Fractional Calculus does not
have a physical meaning yet. Nontheless, many results trying to rep-
resent or identify systems by using Fractional Calculus have been pub-
lished.

In (Coimbra, 2003) the use of fractional operators for modeling
viscoeslastic forces is described. For the area of Capacitor theory, Svante
Westerlund et al. propose a new linear capacitor model making use of
the fractional derivative, the model gives arise to a capacitor impedance
Z(jω) = 1

(jω)nC with 0 < n < 1 and C is the known capacitor constant
(see, for further details (Westerlund and Ekstam, 1994)).
A connection of Fractional Calculus with the theory of Viscoelasticity is shown in (Koeller, 1984) due to the
memory or heredity property of fractional operators. Fractional Calculus is considered an interesting tool in
Biology, Chemistry and Medicine (see, for further details (Magin, 2006)), for some examples see: (Simpson
et al., 2012), (Meerschaert et al., 2012), (Neto et al., 2017), (Lundstrom et al., 2008) and (Martínez-García et al.,
2017).

One of the considered properties presented in Fractional Calculus is the Self-similarity property, this means
that we can use it as a tool for decribing systems with self-affinity. In (Heymans and Bauwens, 1994) fractal
rheological models are discussed and in (Nakagawa and Sorimachi, 1992) the characteristics of a fractance
device are analyzed. Both of the mentioned works have something in common: they present the Fig. 2.1 and
Fig. 2.2 as basic topologies for systems presenting fractance which can be modeled by means of fractional
order differential equations.

Given Li, i = 1, 2 as a linear operator, for example L = D where D is the derivative operator. If we look for
a relation between xout(t) and xin(t) in schemes Fig. 2.2 and 2.1 we notice clearly that such a relation is of
infinite-order. We mention that infinite order systems in the Laplace domain present Multivalued functions
sometimes involving fractional order operators (see, (Curtain, 1992; Curtain and Zwart, 1995)).

Within these ideas Jason Mayes and Mihir Sen (see, (Mayes and Sen, 2011)) studied the binary tree in Fig.
2.1 to find such a transfer function relating xout(t) and xin(t)

L∗Nu(t) = ∆x(t), (2.1)
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◦xin(t)

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1 xout(t)
L2

xout(t)

L1 xout(t)
L2

xout(t)

n = 1 n = 2 n = 3 n = N Figure 2.1: Tree configuration (only three
generations shown); ◦ is input, • is fixed.

where u(t) is the total transfer through or across the network, ∆x(t) is the potential difference across the
network and L∗N is the approximate operator relating the potential difference and induced transfer.

Even though, (Mayes and Sen, 2011) presents the general case analysis. Let us consider the following
particular example of a mechanical N = 2 generation tree network in Fig. 2.3 so that x2,1 = x2,2 = x2,3 =

x2,4 = xout.

According to (Mayes and Sen, 2011), for N = 2 there are 2N = 4 possible paths through this network. The six
transfer equations for the system (one for each branch) are

L1u1,1 = ∆x1,1 = xin − x1,1,

L2u1,2 = ∆x1,2 = xin − x1,2,

L1u2,1 = ∆x2,1 = x1,1 − xout,

L2u2,2 = ∆x2,2 = x1,1 − xout,

L1u2,3 = ∆x2,3 = x1,2 − xout,

L2u2,4 = ∆x2,4 = x1,2 − xout,

where ui,j, ∆xi,j and xi,j are functions of time. Additionally, assuming unit weights the conservation equations
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xin(t)
L1 L1 L1 L1 xout(t)

L2

xout(t)

L2

xout(t)

L2

xout(t)

L2

xout(t)

n = 1 n = 2 n = N − 1 n = N Figure 2.2: Ladder configuration; ◦ is
input, • is fixed.

for the two nodes are
u1,1 = u2,1 + u2,2, (2.2)

and
u1,2 = u2,3 + u2,4. (2.3)

Finally, the total flow, u, through the simplified network is given by

u = u1,1 + u1,2, (2.4)

and L∗2 is the operator describing the behaviour of the simplified 2− generation tree in

L∗2u = ∆x. (2.5)

By combining the transfer equations along the four unique paths from inlet to outlet, the interior potentials,
u1,1 and u1,2, are eliminated to yield four new equations

L1u1,1 + L1u2,1 = xin − xout = ∆x,

L1u1,1 + L2u2,2 = xin − xout = ∆x,

L2u1,2 + L1u2,3 = xin − xout = ∆x,

L2u1,2 + L2u2,4 = xin − xout = ∆x.

now, we find the u2,j as

u2,1 = L−1
1 [∆x− L1u1,1] ,

u2,2 = L−1
2 [∆x− L1u1,1] ,

u2,3 = L−1
1 [∆x− L2u1,2] ,

u2,4 = L−1
2 [∆x− L2u1,2] .
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N = 1
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N = 2
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· · ·
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· · ·
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· · ·
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X1,1
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X1,2
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X2,1
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r
X2,4

rrrr

Figure 2.3: Network of interconnected
simple mechanical elements.

Using equations (2.2) and (2.3)

u1,1 =
{

L−1
1 + L−1

2

}
[∆x− L1u1,1] , (2.6)

u1,2 =
{

L−1
1 + L−1

2

}
[∆x− L1u1,2] . (2.7)

Now by expression (2.4) using (2.6) and (2.7) we obtain

u =

{{{
L−1

1 + L−1
2

}−1
+ L1

}−1
+

{{
L−1

1 + L−1
2

}−1
+ L2

}−1
}

∆x. (2.8)

Rewriting (2.8) in the form of (2.5) we see that the system operator for a bifurcating network with N = 2
generatios can be given as:

L∗2 =

{{{
L−1

1 + L−1
2

}−1
+ L1

}−1
+

{{
L−1

1 + L−1
2

}−1
+ L2

}−1
}−1

. (2.9)

The last expression has the form of a Continued Fraction Expantion (see,
for further details (Wall, 1967)). This was proved in (Mayes and Sen,
2011) by adding more generations to the tree to finally conclude that for
a large N, L∗N can either be calculated in the same way or approximated
as L∞ = lim

N→∞
L∗N . For our example the total operator L∗N in the form of

a continued fraction is given by
Remark 2.0.1. Taking advantage of the self-
similarity property presented in a continued
expantion (actually given by the nature of
the operators in each generation of the binary
tree) we can prove that a continued fraction
converges in the following form:

xeq =
1

1 +
1

1 +
1

1 + . . .

,

=
1

1 + xeq
.

L∗N =
1

1
L1+

1
1

L1+···
+ 1

L2+···

+ 1
L2+

1
1

L1+···
+ 1

L2+···

, (2.10)

We can rewrite (2.10) as

L∞ =
1

1
L1+L∞

+ 1
L2+L∞

. (2.11)
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Hence, if we consider the Laplace-transformed operators L1 = 1
k , L2 = 1

bs and L∞ of L1, L2 and L∞ with initial
conditions equals to zero, respectively. The total transfer function L∞ can be found by solving

L2
∞ − L1L2 = 0, (2.12)

which is given by

L∞ =
√
L1L2 =

1√
kbs

, (2.13)

as presented in (Goodwine, 2016).
For the case of the infinity ladder shown in Fig. 2.2 we can use a similar analysis to obtain the total operator

(see, for further details (Sen et al., 2018a)) which can be proved to have an equivalent implicitly-defined
operator Leq describing the dynamic response to the components equal to the solution of

Leq =
1

1
L2

+ 1
L1+Leq

, (2.14)

which is given by

Leq =
1
2

[
−L1 ±

√
L2

1 + 4L1L2

]
. (2.15)

As we can see by (2.13) the total operator relating xout with xin is of fractional nature. And it was given by a
solution of a operator-defining equation F(L) = 0.

For simplicity we have used Laplace-transformed the operators. In the case of avoiding such transformation,
the total operator would be a special case of the solution of a operator-defining equation like

Lm = Dn, (2.16)

where D = d
dt .

A research question arises here: What if the total operator is solution of a given operator-defining
equation F(L) = 0 such as:

• L2 + L = D,

• sin (L) = D,

etc.?
Such type of operators L are known as implicitly-defined operators (see, (Sen et al., 2018b)). The problem

comes when trying to use a time-domain operator defined by means of such operator-defining equations. Take
for example, the solution of the equation L2 + L = D, which is given by L =

√
D + I and L = 0 where I

would be the identity operator. The first solution defines L as
√

d
dt + 1, which is no longer in the theory

fractional calculus where L is always a solution of (2.16).
Nontheless, if we Laplace-transform the operators used, before computing the operator-defining equation we

obtain something meaninful in the complex-domain.
With these briefly discussed ideas, we present the following sections as part of some of the main results in

the present work.
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Infinite networks convergence and paradoxes

To obtain the flow dynamics of a infinite network as we have shown before, we base our analysis in the
idea of convergence of Continued Fractions which are a type of Series. Hence, to study the convergence of
Continued Fractions is of high importance. To understand this idea, consider scheme in Fig. 2.4.

L1
pin

L2
p1 p2

L3 . . . Ln−2
pn−1

Ln−1
pn

Ln
pout

b r r r r r Figure 2.4: Series configuration; ◦ is in-
put, • is fixed.

In this scheme we aim at finding the relation L∗Nq = ∆p = pin − pout, which may be in the form of a
Continued Fraction or not. Based on ideas in (Mayes and Sen, 2011) we know q is the total transfer through the
complete branch, ∆p is the total potential difference across the complete branch and L is the operator relating
the two. In this scheme no bifurcation exists between each generation. Then, the conservation equation of the
complete system would be written as

q = qi ∀ i ∈N
⋃
(∞). (2.17)

Then, if the following set of equations hold

L1q1 = pin − p1,

L2q2 = p1 − p2,

L3q3 = p2 − p3,
... =

...

Lnqn = pn − pout,

we have that
n

∑
k=1
Lkqk = ∆p, (2.18)

and if ∀k ∈ 1, 2, . . . , n Lk = L, we conclude that

∆p
q

= NL. (2.19)

where, such a relation converges when N < ∞.
As we could see (2.18) is in the form of a infinity series, which is natural due to the geometry of scheme

2.4. Therefore, we can apply convergence criterions for Series in this case.
Nontheless, for the infinite ladder and tree networks shown in Fig. 2.1 and 2.2 our criterions change.

The expression shown in Remark 2.0.1 does actually converge to xeq, but such a xeq is a linear operator that
when being Laplace-transformed has a frequency domain attached to it. Some analysis concerning to infinite
networks convergence can be found at (Zemanian, 1988), (Singal, 2013) and (van Enk, 2000). Because we
consider that such convergence considerations would act as design limitations in our models, the sutudy of
convergence will not be considered in this work.
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Inverse Laplace Transform (ILT) of Implicitly defined operators

In this section we will consider Laplace-transformed special cases of the operator-defining equation in the
form of

AL2 + BL + I = D, (2.20)

where A, B are real constants, D = d
dt , I is the identity operator and L is the implicitly-defined operator that

as we have seen above can represent the total transfer function of a infinite tree or ladder network and its
solution of (2.20) can be found using the quadratic equation formula.

As a sketch, the solution when considering (2.20) coming from a Laplace transformed series of operators
would be in the form:

L(s) = −B±
√

B2 − 4A(1 + s)
2A

. (2.21)

(2.21) is clearly a multivalued-function with BPs and a BC. Hence, we must analyze how to ILT multivalued
functions. As a first example of the ILT technique used in this section for multivalued-functions, consider Li

to be the transformed operator defined as

Li :=
1
sα

. (2.22)

From (Valério and da Costa, 2013), we know that the ILT of (2.22) is given by

L −1
[

1
sα

]
=

tα−1

Γ(α)
. (2.23)

By remembering that such a operator Li is a multivalued-function. To proof (2.23) we may use the ILT
definition, and hence by solving the following integral

Li(t) =
1

j2π

∫
Br
Li(s)estds. (2.24)

By Figure 2.5, and from the residue theorem we know that∮
Γ
Li(s)estds =

∫
C1+C2+C3+C4+C5

= 0, (2.25)

besides, ∫
C1

=
∫

C5

= 0, (2.26)

because they vanish when R→ ∞, and ∫
C3

= 0, (2.27)

it can be easily proof that
∫

C3
= 0 when ρ→ 0. In order to do the integration along C2 and C4, let us do

the parameterization s = −r± δ where positive and negative signs correspond to C2 and C4, respectively,
r ∈ (ρ, ∞) and δ, ρ are small positive numbers which tend to zero. Some algebra yields

∫
C2+C4

= ejπ
∫ ρ

∞

e−rt

ejπαrα
dr + e−jπ

∫ ∞

ρ

e−rt

e−jπαrα
dr = −2j sin(πα)

∫ ∞

0

e−rt

rα
dr = −2j sin(πα)tα−1Γ(1− α). (2.28)

Now, because
Γ(α)Γ(1− α) =

π

sin(πα)
, (2.29)
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C4

C3C2

<

=

ρ

R→ ∞

t
Br

C1

C5

Figure 2.5: Integration path of function
(2.22).

for 0 < α < 1. We have that

Li(t) =
tα−1

Γ(α)
. (2.30)

Now consider the following interesting cases, which will be helpful in future results:
Poles under Branch Cuts

The following example allow us to understand how to deal with the integration contour in the ILT definition
when poles of the transfer function are under its Branch cut.

Consider the transfer function given by

H(s) =
1√

s(s + 1)
, (2.31)

whose integration contour is depicted in Figure 2.6-B. From the Residue theroem we have∫
Γ

H(s)estds =
∫

Br+C1+C2+···+C9

= 0 (2.32)

and hence∫ c+j∞

c−j∞
estds√
s(s+1) +

∫ 1+ε

∞

e−xt(−dx)
j
√

x(1−x) +
∫ 0

π

e(−1+εejφ)jεejφdφ√
εejφ−1εejφ

+
∫ ε

1−ε

e−xt(−dx)
j
√

x(1−x) +
∫ −π

π

etεejφ
jεejφdφ√

εejφ(1+εejφ)

+
∫ 1−ε

ε

e−xt(−dx)
j
√

x(1−x) +
∫ π

2π

e(−1+εejφ)t jεejφdφ√
εejφ−1εejφ

+
∫ ∞

1+ε

e−xt(−dx)
−j
√

x(1−x) = 0

By making ε→ 0 the above expression leads to

∫ c+j∞

c−j∞
estds√
s(s+1) +

∫ 1+ε

∞

e−xt(−dx)
j
√

x(1−x) +
∫ ε

1−ε

e−xt(−dx)
j
√

x(1−x) +
∫ 1−ε

ε

e−xt(−dx)
j
√

x(1−x) +
∫ ∞

1+ε

e−xt(−dx)
−j
√

x(1−x) = 0, (2.33)
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(a)

(b)

Figure 2.6: Integration contours for sys-
tem (2.31), (a) Integration contour with-
out considering the pole s = −1, (b) In-
tegration contour considering the pole
s = 1.

using the Cauchy principal value of the integral, this is specifically designed to deal with the pole at x = 1 we
can combine the following integrals

PV
∫ ∞

0

e−xtdx√
x(1− x)

= lim
ε→0

[∫ 1−ε

ε

e−xtdx√
x(1− x)

+
∫ ∞

1+ε

e−xtdx√
1− x

]
, (2.34)

PV
∫ 0

∞

e−xtdx√
x(1− x)

= lim
ε→0

[∫ 1+ε

∞

e−xtdx√
x(1− x)

+
∫ ε

1−ε

e−xtdx√
1− x

]
, (2.35)

then,
1

i2π

∫ c+i∞

c−i∞

est
√

s(1 + s)
ds +

1
2π

PVx
∫ 0

∞

e−tx
√

x(1− x)
dx− 1

2π
PV

∫ ∞

0

e−tx
√

x(1− x)
dx = 0. (2.36)

1
2jπ

∫ c+j∞

c−j∞
estds√
s(s+1) =

1
π

PV
∫ ∞

0

e−xtdx√
x(1− x)

. (2.37)

To solve the above integral we use the change of variable x = u2. Because in this case we are integrating a

even function using the propety
∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx

1
i2π

∫ c+i∞

c−i∞

est
√

s(1 + s)
ds =

1
π

PV
∫ ∞

−∞

e−tu2

1− u2 du. (2.38)

To evaluate the integral, we rewrite as

e−tPV
∫ ∞

−∞

et(1−u2)

1− u2 du = e−t I(t), (2.39)

where
I′(t) = etPV

∫ ∞

−∞
e−tu2

du =
√

πt−1/2et (2.40)
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and I(0) = 0. Thus,

1
i2π

∫ c+i∞

c−i∞

est
√

s(1 + s)
ds = e−t 1

π

√
π
∫ t

0
t′−1/2et′dt′ = e−t 2√

π

∫ √t

0
ev2

dv, (2.41)

or, finally
1

i2π

∫ c+i∞

c−i∞

est
√

s(1 + s)
ds = e−t erfi

(√
t
)

(2.42)

Conjugate Branch Points

The following is a very useful result that allows us to deal with conjugate branch points (i.e. with
multivalued functions with expressions like

√
s2 + a2).

Theorem 2.0.1: ILT of functions with conjugate BPs. (Moslehi and Ansari, 2016)

Let F(s) be an analytic function for <(s) > c, also it has two conjugate branch points ±aj and
F(re−jπ) = F(rejπ), where a > 0 and r > 0. Furthermore, F(s) satisfy the conditions

F(s) = O(1), |s| → ∞

F(s) = O(
1
|s| ) |s| → 0,

for any sector | arg(s)| < π − η, where 0 < η < π. Then the inverse Laplace transfrom f (t) can be
written as two integral representations

f (t) = L −1 {F(s); t} = − 2
π

∫ ∞

a
sin(rt)=

[
F(rej π

2 )
]

dr, (2.43)

f (t) = L −1 {F(s); t} =
2
π

∫ ∞

a
cos(rt)<

[
F(rej π

2 )
]

dr. (2.44)

Theorem 2.0.1 shows that it is possible to find the ILT of a function with conjugate BPs, using any of the
following deformations of the Bromwich integral.

C9

C2

C3

C4

C5

C8

C7

C6

<

=

ρ

ρ

+aj

−aj

R→ ∞

Br

C1

C10

C3

C2

C1

C6

C7

C8

<

=

ρ

ρ

+aj

−aj

R→ ∞

Br

C4

C5

Figure 2.7: Integration path in Example.

Remark 2.0.2. If we have other singularities inside the Bromwich contours (poles and essential singularities) or branch
points, then, the sum of residues of the function F(s)est at these singularities is added to the relations (2.43) and (2.44)
in Theorem 2.0.1.
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Non-conventional fractional order systems

Before presenting physical systems described by multivalued-functions or as we may call them Non-
conventional fractional order transfer functions. Consider the following results:

Proposition 2.0.1

Let Lo be the multivalued operator function defined as

Lo(s) :=
1√

s2 − k2
, (2.45)

where k > 0. Then, its ILT is given by

Lo(t) :=
1
π

∫ k

−k

ert
√

k2 − r2
dr = J0(jkt). (2.46)

where, J0(·) is the Bessel function of the first kind of zeroth order.

Proof. From figure 2.9, we may create a path that satisfies∫
Γ
Lo(s)estds =

∫
Br+C1+C2+C3+C4

= 0, (2.47)

by making ρ→ 0 we have that ∫
C1+C2

= 0. (2.48)

Now, the paths C3 and C4, on which we shall write s = r, where r varies from k− ρ to −k + ρ. We have that

∫
C3+C4

est
√

s2 − k2
ds = −j

∫ k−ρ

−k+ρ

ert
√

k2 − r2
dr + j

∫ −k+ρ

k−ρ

ert
√

k2 − r2
dr = −2j

∫ k−ρ

−k+ρ

ert
√

k2 − r2
dr, (2.49)

then,

Lo(t) =
1

j2π

∫
Br

Lo(s)estds =
1
π

∫ k−ρ

−k+ρ

ert
√

k2 − r2
dr

ρ→0
=

1
π

∫ k

−k

ert
√

k2 − r2
dr. (2.50)

We may evaluate the integral on the right hand side as follows. Substitute r = a cos u, then the integral is
equal to

1
π

∫ π

0
ekt cos udu = I0(kt) (2.51)

We can express the modified first Bessel function in terms of the first Bessel function (this is valid if
−π < arg(kt) ≤ π

2 )

Jα(jkt) = e
απ
2 Iα(kt), (2.52)

Hence we can write

I0(kt) = J0(jkt). (2.53)

This ends the proof �
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Figure 2.8: ILT of system (2.45) using
Proposition 2.0.1 and the result given by
Wolfram Mathematica Lo(t) = J0(j

√
kt)

where J is the Bessel function (see, for fur-
ther details (Arfken, 2005)) using k = 1.

<

=

C1C2
C3

C4

ρρ

−1 1

C

Figure 2.9: s-plane for integration around
branch points of the function (s2 − k2)1/2

with k > 0.

Consider the case when k = 1, the comparison of the ILT plot using Proposition 2.0.1 and the function
InverseLaplaceTransform of the software Wolfram Alpha Mathematica is given in the following picture.

Proposition 2.0.2

Let Lo be the operator transfer function defined as

Lo(s) :=
1√

s2 + k2
, (2.54)

where k > 0. Then, its ILT is given by
Lo(t) := J0(kt). (2.55)

where, J0(·) is the Bessel function of the first kind of zeroth order.

Proof. To proof the Proposition 2.0.2 we use Theorem 2.0.1 to obtain the two relations

Lo(t) =
2
π

∫ ∞

k
sin(rt)

1√
r2 − k2

dr, (2.56)

Lo(t) =
2
π

∫ k

0
cos(rt)

1√
k2 − r2

dr. (2.57)

We know that the first Bessel function is defined as

Jn(x) =
1
π

∫ π

0
cos(nτ − x sin τ)dτ. (2.58)



modeling and control of fractional order systems. the linear systems case 53

Taking (2.57) and substituting r = k sin(θ) where θ ∈ (0, π
2 ) we have

Lo(t) =
2
π

∫ π/2

0
cos(kt sin(x))

k cos(x)dx
k cos(x)

=
2
π

∫ π/2

0
cos(kt sin(x))dx =

2
π

π

2
J0(kt). (2.59)

We can conclude the same for relation (2.56) �

0 2 4 6 8 10

-0.5

0

0.5

1

1.5 Figure 2.10: ILT of system (2.54) using
Proposition 2.0.2 and the result given by
using a numerical evaluation of the ILT
using Matlab for k = 1.

Proposition 2.0.3

Let Lx be the multivalued operator function defined as

Lx(s) :=
√

s2 + k2, (2.60)

where k > 0. Then, its ILT is given by

Lx(t) :=
2k2

π

∫ π/2

0
cos(kt sin(u)) cos2(u)du =

k2 J1(t)
t

. (2.61)

Proof. By using Theorem 2.0.1, expression (2.44) �

0 5 10 15 20 25 30
-0.1

0
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0.2
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0.5

Numerical ILT

Numerical Integration

Figure 2.11: ILT of system (2.60) using
Proposition 2.0.3 and the result given by
using a numerical evaluation of the ILT
and the numerical evaluation of the inte-
gral (2.61) in Matlab for k = 1.
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Modeling an inverted flexible pendulum

According to (Singla, 2013) we may model a flexible inverted pendulum as a series of rigid rods connected
by torsional springs as shown in Figure 2.12. The model of the system will imply a high number of non-linear
differential equations.

v
v

v

θ1

θ2

θ3

k1

k3

k2

m2

m3

m1

Figure 2.12: Flexible pole diagram.

If we obtain the non-linear model of the system considering just the first inverted pendulum of length `1

we have that
m1`1θ̈1 + m1g`1 sin θ1 + k1θ1 = 0, (2.62)

which could be linearized using the small angle criterion as

m1`1θ̈1 + (m1g`1 + k1)θ1 = 0, (2.63)

by making kg1 = m1g`1 + k1 we can easily conclude that the linearized model for the series of rigid rods can
be schematized as in the following picture.

m1

kg1 kg2
m1 m2

kg3
m2 m3m3 . . . mn

kgn
mn

Figure 2.13: Linearized configuration for
flexible inverted pendulum.

The last escheme is a particular case of scheme in Figure 2.4. Then, by Equations (2.17) and (2.19) when
m1 = m2 = · · · = mn and kg1 = kg2 = · · · = kgn we have

Xin − Xout

Ftot
= N

1
ms2 + k

, (2.64)

where, N ≤ ∞. Then, this arquitecture may converge only when N < ∞. Thus, this example is not convinient
for our analysis. Consider now the case when we add a disipating factor to the system using the scheme in
Fig.2.14.

The Rayleigh function for the disipating factor in the first inverted rod is given by

D =
1
2

b1 ẋ2 =
1
2

b1

(
d(`1 sin θ1)

dt

)2

=
1
2

b1`
2
1 cos2 θ1θ̇1

2, (2.65)

where `1 is the length of the first rod. Then, using the Euler-Lagrange formulation we have that the non-linear
dynamical model for the first rod is given by

m1`1θ̈1 + m1g`1 sin θ1 + k1θ1 + b1`
2
1 cos2 θ1θ̇1 = 0, (2.66)
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vb1

b2

b3

v
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θ1

θ2

θ3

k1

k3
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m3

m1

Figure 2.14: Flexible pole diagram
adding damping to the system.

whose linear model is equal to

m1`1θ̈1 + b1`
2
1θ̇1 + (m1g`1 + k1)θ1 = 0, (2.67)

and can be described by the following diagram, taking kgi = mig`i + ki and bgi = bi`
2
i ∀i = 1, 2, 3, . . . , n

m1

kg1 kg2
m1

bg1

m2

kg3
m2

bg2

m3m3
bg3

. . . mn
kgn

mn
bgn

Figure 2.15: Linearized configuration for
flexible inverted pendulum with damp-
ing.

Is obvious that this scheme is similar to the infinite ladder in Figure 2.2. Here, L1 = 1
ms2+k and L2 = 1

bs
considering m = mi, k = kgi and b = bgi ∀i ∈N

⋃
∞. Then the relation between the ∆X and F is given by

∆X(s)
F(s)

=
1
2

(
− 1

k + ms2 ±
√

4
bs (k + ms2)

+
1

(k + ms2)
2

)
, (2.68)

=
−
√

bs±
√

4(k + ms2) + bs√
bs(k + ms2)

. (2.69)
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Proposition 2.0.4: Flexible inverted pendulum impulse response

Consider now, the already detailed transfer function for the linearized flexible inverted pendulum
shown in Figure 2.14 given by Equation (2.69). Then, its impulse response is given by

∆x(t) = − k1 sin(
√

k2t)√
k2

± k3
√

λ
4
√

k3
2

cos(
√

k2t + δ
2 −

3
4 π) + k3

π

∫ ∞

0

√
x2−2xr cos φ+r2
√

x(x2+k2)
e−xtdx + · · ·

+
2k3
√

κ(x)
πυ(x)

∫ ∞

r

ext cos φ sin(sin φ+
φ
2 +

σ(x)
2 −ϕ(x))√

x dx. (2.70)

Where,

λ =

√
(r2 − k2)2 + (2

√
k2r cos φ)2,

δ = arctan( 2r
√

k2 cos φ

r2−k2
),

κ(x) :=
√
(x2 cos 2φ + xr cos 2φ + xr + r2)2 + (x2 sin 2φ + xr sin 2φ)2,

σ(x) := arctan( x2 sin 2φ+xr sin 2φ

x2 cos 2φ+xr cos 2φ+xr+r2 ),

υ(x) :=
√
(x2 cos 2φ + k2)2 + (x2 sin 2φ)2,

ϕ(x) := arctan( x2 sin 2φ

x2 cos 2φ+k2
),

Proof. System (2.69) can be rewritten as

∆X(s)
F(s)

=
−
√

bs±
√

4(k + ms2) + bs√
bs(k + ms2)

,

= − 1
m( k

m + s2)
±
√
(s + z1)(s + z2)

m
√

b
√

s( k
m + s2)

,

= − k1

s2 + k2
± k3

√
(s + z1)(s + z2)√

s(s2 + k2)
, (2.71)

where k1 = 1
m , k2 = k

m , k3 = 1
m
√

b
, z1 = b+

√
b2−64km
8m = σ + jω and z2 = b−

√
b2−64km
8m = σ− jω. We know that

the ILT of the term − k1
s2+k2

is equal to − k1 sin(
√

k2t)√
k2

. The rightmost expression in (2.71) shows a multivalued

function with four BPs (z1, z2, 0, ∞) and two BCs, we write z1,2 = re±jφ where φ = arg(z1),−φ = arg(z2) and
|z1| = |z2| = r. This leads to the following integration contour Γ By the Residue theorem we know that

∫
Γ

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds =

∫
Br+C1+C2+···+C13

= 2jπ
[

k3
√

λ
4
√

k3
2

cos(
√

k2t + δ
2 −

3
4 π)

]
, (2.72)

with λ =
√
(r2 − k2)2 + (2

√
k2r cos φ)2 and δ = arctan( 2r

√
k2 cos φ

r2−k2
).

Based on Figure 2.16 we have that ∫
C1+C5+C9+C13

= 0 (2.73)
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Figure 2.16: Integration path in Example.

and∫
C2

k3

√
(s+σ+jω)(s+σ−jω)√

s(s2+k2)
estds s=−σ+xej

π
2

=
∫ r

∞
k3

√
(xejφ+rejφ)(xejφ+re−jφ)√

xejφ(x2ej2φ+k2)
exejφtejφdx,

∫
C4

k3

√
(s+σ+jω)(s+σ−jω)√

s(s2+k2)
estds s=−σ+xe−j

3π
2

=
∫ ∞

r
k3

√
(xej(φ−2π)+rejφ)(xej(φ−2π)+re−jφ)√

xej(φ−2π)(x2ej2(φ−2π)+k2)
exej(φ−2π)tej(φ−2π)dx,∫

C3

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds

s=ρejθ

=
∫ φ−2π

φ
k3

√
(ρejθ+rejφ)(ρejθ+re−jφ)√

ρejθ(ρ2ej2θ+k2)
eρejθ t jρejθdθ

ρ→0
= 0,

∫
C10

k3

√
(s+σ+jω)(s+σ−jω)√

s(s2+k2)
estds s=−σ+xej

3π
2

=
∫ r

∞
k3

√
(xej(−φ+2π)+rejφ)(xej(−φ+2π)+re−jφ)√

xej(−φ+2π)(x2ej2(−φ+2π)+k2)
exej(−φ+2π)tej(−φ+2π)dx,

∫
C12

k3

√
(s+σ+jω)(s+σ−jω)√

s(s2+k2)
estds s=−σ+xe−j

π
2

=
∫ ∞

r
k3

√
(xe−jφ+rejφ)(xe−jφ+re−jφ)√

xe−jφ(x2e−j2φ+k2)
exe−jφte−jφdx,∫

C11

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds

s=ρejθ

=
∫ −φ+2π

−φ
k3

√
(ρejθ+rejφ)(ρejθ+re−jφ)√

ρejθ(ρ2ej2θ+k2)
eρejθ t jρejθdθ

ρ→0
= 0,∫

C7

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds

s=ρejθ

=
∫ −π

π
k3

√
(ρejθ+rejφ)(ρejθ+re−jφ)√

ρejθ(ρ2ej2θ+k2)
eρejθ t jρejθdθ

ρ→0
= 0,∫

C6

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds s=xejπ

=
∫ ρ

∞
k3

√
(xejπ+rejφ)(xejπ+re−jφ)√

xejπ(x2ej2π+k2)
exejπ tejπdx,∫

C8

k3

√
(s+z1)(s+z2)√

s(s2+k2)
estds s=xe−jπ

=
∫ ∞

ρ
k3

√
(xe−jπ+rejφ)(xe−jπ+re−jφ)√

xe−jπ(x2e−j2π+k2)
exe−jπ te−jπdx.

Now, ∫
C6+C8

= −
∫ ∞

ρ
k3

√
x2−2xr cos φ+r2

j
√

x(x2+k2)
e−xtejπdx +

∫ ∞

ρ
k3

√
x2−2xr cos φ+r2

−j
√

x(x2+k2)
e−xte−jπdx,

ρ→0
= −2jk3

∫ ∞

0

√
x2−2xr cos φ+r2
√

x(x2+k2)
e−xtdx.
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Besides, taking κ(x) :=
√
(x2 cos 2φ + xr cos 2φ + xr + r2)2 + (x2 sin 2φ + xr sin 2φ)2, σ(x) := arctan( x2 sin 2φ+xr sin 2φ

x2 cos 2φ+xr cos 2φ+xr+r2 ),

υ(x) :=
√
(x2 cos 2φ + k2)2 + (x2 sin 2φ)2 and ϕ(x) := arctan( x2 sin 2φ

x2 cos 2φ+k2
)

∫
C1+C4+C10+C12

= −2k3ejφ
∫ ∞

r

√
κ(x)ejσ(x)

√
xejφ(υ(x)ejϕ(x))

exejφtdx + 2k3e−jφ
∫ ∞

r

√
κ(x)e−jσ(x)√

xe−jφ(υ(x)e−jϕ(x))
exe−jφ

dx

= −2k3ej
φ
2
∫ ∞

r

√
κ(x)ejσ(x)e−jϕ(x)

υ(x)
√

x exejφtdx + 2k3e−j
φ
2
∫ ∞

r

√
κ(x)e−jσ(x)ejϕ(x)

υ(x)
√

x exe−jφ
dx

= − 2k3
√

κ(x)
υ(x)

∫ ∞

r
ext cos φej(sin φ+

φ
2 +

σ(x)
2 −ϕ(x))

√
x dx +

2k3
√

κ(x)
υ(x)

∫ ∞

r
ext cos φe−j(sin φ+

φ
2 +

σ(x)
2 −ϕ(x))

√
x dx

= − j4k3
√

κ(x)
υ(x)

∫ ∞

r

ext cos φ sin(sin φ+
φ
2 +

σ(x)
2 −ϕ(x))√

x dx

Finally

1
j2π

∫
Br

= k3
√

λ
4
√

k3
2

cos(
√

k2t+ δ
2 −

3
4 π)+ k3

π

∫ ∞

0

√
x2−2xr cos φ+r2
√

x(x2+k2)
e−xtdx+ 2k3

√
κ(x)

πυ(x)

∫ ∞

r

ext cos φ sin(sin φ+
φ
2 +

σ(x)
2 −ϕ(x))√

x dx

(2.74)

ISSUE: The following simulation made on Matlab is avoiding the last integral in Eq. (2.70), because it
does not converge numerically and no closed solution of the integration has been found using Wolfram
Mathematica by now. Nonetheless, the result is pretty similar to the ILT of (2.71) obtained numerically in
Matlab, showing that the last integral has a convergent solution in the time domain.
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Numerical evaluation of the analytical solution

Numerical evaluation of the ILT

Figure 2.17: Numerical ILT of system
(2.71) and the numerical evaluation of
(2.70) in Matlab for k1 = 1, k2 = 1, k3 = 1,
z1 = 1 + j2 and z2 = 1− j2.

Modeling a flexible beam

Consider the scheme describing a flexible beam of length ` in Fig. 2.18. From Figure 2.18, we can see that
such a scheme is similar to the ladder network in Figure 2.2. Consider the Laplace-transformed operators
L1 = 1

ms2 and L2 = 1
k , where m = mi, i = 1, 2, 3, . . . , n and k = ki, i = 1, 2, 3, . . . , n. Then, Leq is equal to

Leq =
1
2

[
−L1 ±

√
L2

1 + 4L1L2

]
=

1
2

− 1
ms2 ±

√(
1

ms2

)2
+ 4

1
mks2

 =
−
√

k±
√

k + 4ms2

2m
√

ks2
. (2.75)
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Figure 2.18: Linearized configuration for
flexible inverted pendulum.

This leads to the relation between the input and output system as follows

Leq(s) =
∆Y(s)
F(s)

=
Yin(s)−Yg(s)

F(s)
=

Yin(s)
F(s)

=
−
√

k±
√

k + 4ms2

2m
√

ks2
, (2.76)

which holds because yg(t) = 0.

Proposition 2.0.5: Flexible beam impulse response

Consider now, the already detailed transfer function for the flexible beam shown in Figure 2.18 given
by Equation (2.76). Then, its impulse response is given by

yin(t) = −
t

k3
±
[√

k1

k2
t +

2
π

∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx

]
. (2.77)

Where,

k1 = k
4m , (2.78)

k2 =
√

km, (2.79)

k3 = 2m. (2.80)

Proof. Applying the ILT to (2.76) Equation follows from the solution of

yin(t) =
1

2jπ

∫
Br
Leq(s)F(s)estds, (2.81)

where

Leq(s) =
yin(s)
F(s)

=
−
√

k±
√

k + 4ms2

2m
√

ks2
= − 1

k3s2 ±
√

k1 + s2

k2s2 , (2.82)

k1 = k
4m , k2 =

√
km, k3 = 2m and F(s) = 1. The ILT of the term − 1

k3s2 is known to be − t
k3

, then

yin(t) = −
t

k3
± 1

2jπ

∫
Br

√
k1 + s2

k2s2 estds. (2.83)

The Bromwich contour of the lacking integrations can be depicted as in Fig. 2.19.
From Figure 2.19 we have that∫

Γ
Leq(s)estds =

∫
Br+C1+C2+···+C8

= 2π j
√

k1

k2
t, (2.84)

due to the residue theorem. Besides, it can easily be proven that∫
C4+C5

= 0. (2.85)
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Figure 2.19: Integration path in Example.

Now for C2 and C7 we can introduce the notation s = ρejφ ± j
√

k1, ds = jρejφdφ. We consider that C2 and C7

is in the first sheet, it follows that π
2 ≤ φ < − 3π

2 and

∫
C2

√
s2+k1
k2s2 estds =

∫
C2

√
ρ2e2jφ + 2jρejφ

√
k1eρejφ+j

√
k1

k2ρ2e2jφ + 2k2 jρejφ
√

k1 − k1k2
jρejφdφ, (2.86)

∫
C7

√
s2+k1
k2s2 estds =

∫
C7

√
2k1 + ρ2e2jφ + 2jρejφ

√
k1eρejφ+j

√
k1

k2ρ2e2jφ + 2k2 jρejφ
√

k1 − k1k2
jρejφdφ. (2.87)

by making ρ→ 0 we can conclude that ∫
C2+C7

= 0. (2.88)

Now we need to find ∫
Br+C1+C3+C6+C8

. (2.89)

To solve (2.89) we know that

∫
C1

√
k1 + s2

k2s2 estds s=xejπ/2
=

∫ √k1

∞

√
k1 + x2ejπ

k2x2ejπ ejxtejπ/2dx, (2.90)

∫
C3

√
k1 + s2

k2s2 estds s=xejπ/2
=

∫ ∞
√

k1

−
√

k1 + x2ejπ

k2x2ejπ ejxtejπ/2dx, (2.91)

∫
C6

√
k1 + s2

k2s2 estds s=xe−jπ/2
=

∫ √k1

∞

−
√

k1 + x2e−jπ

k2x2e−jπ e−jxte−jπ/2dx, (2.92)

∫
C8

√
k1 + s2

k2s2 estds s=xe−jπ/2
=

∫ ∞
√

k1

√
k1 + x2e−jπ

k2x2e−jπ e−jxte−jπ/2dx, (2.93)



modeling and control of fractional order systems. the linear systems case 61

hence,

∫
C1+C6

=
∫ √k1

∞
2 sin(xt)

√
k1 − x2ejπ

k2x2 dx, (2.94)

∫
C3+C8

=
∫ ∞
√

k1

2 sin(xt)

√
k1 − x2e−jπ

k2x2 dx. (2.95)

Finally because

∫
C1+C3+C6+C8

= −2j
∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx− 2j

∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx = −4j

∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx,

(2.96)
we have that

Leq(t) =
∫

Br
Leq(s)estds = − t

k3
±
[√

k1

k2
t +

2
π

∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx

]
(2.97)

COMMENT: When solving the rightmost integral in expression (2.97) with Wolfram Mathematica we
obtain

2
π

∫ ∞
√

k1

sin(xt)
k2x2

√
x2 − k1dx =

t(πk1t2HHH0(
√

k1|t|)J1(
√

k1|t|)+(−πk1t2HHH1(
√

k1|t|)+2k1t2+2)J0(
√

k1|t|)−2
√

k1|t|(J1(
√

k1|t|)+1))
2k2|t|

,

(2.98)
where HHH0, HHH1 are the StruveH functions of order 0, 1 respectively. Such a solution needs to be proven by hand.
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Figure 2.20: ILT of system (2.76) using the
result given by a numerical evaluation of
the ILT in Matlab and the analytical result
of the ILT of (2.76) in Mathematica (2.98)
for k1 = 1, k2 = 1 and k3 = 1.

Modeling an infinite tree of simple mechanical components

As we have seen, we can conclude that the Laplace transformed operators L are essentially transfer
functions G(s) when considering the initial conditions equals zero. Then, consider now the network of
dampers and springs interconnected as in the following picture:

We have the next results
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Figure 2.21: Networked mechanical sys-
tem.

Proposition 2.0.6: (Goodwine, 2018)

The operator or transfer function G∞(s) satisfying the relation F(s) = G∞(s)∆X(s) where ∆X(s) is the
difference of position between the first node x1,1 and the last node xlast of a network of springs and
dampers interconnected as in Fig. 2.21 is given by

G∞(s) = 1
2

[
(n− 1)k + (m− 1)bs±

√
[(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs

]
, (2.99)

for n > 1 and m ≥ 1.

From Proposition 2.0.6, we have the following useful trasfer functions of the system

G f (s) = ∆X(s)
F(s) = 1

G∞(s) , (2.100)

Gx(s) = Xlast(s)
X1,1(s)

= G∞(s)
mlasts2+G∞(s) . (2.101)

Before computing the ILT (ILT) to expressions (2.100) and (2.101) we first analyze the characterisc polynomial
of both transfer functions and the expression G∞(s) itself to see what kind of singularities we deal with in the
systems.
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Proposition 2.0.7

Let G f (s) be a transfer function given by (2.100). Then, it has a pole in s = 0 when finding the negative
solution of G∞(s) and two real branch points (BP) in

s1 = −2k
√

mn(m + n− 1) + k(mn + m + n− 1)
b(m− 1)2 (2.102)

s2 =
2k
√

mn(m + n− 1)− k(mn + m + n− 1)
b(m− 1)2 (2.103)

for m > 1, when m = 1 we have two real BPs at

s1 = − k(n−1)2

4bn , s2 = ∞. (2.104)

Proof. We have that the characteristic polynomial of the system G f (s) is equal to G∞(s). Then by finding the
solution of G∞(s) = 0 when m ≥ 1 we have

(n− 1)k + (m− 1)bs ±
√
[(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs = 0, (2.105)

(n− 1)k + (m− 1)bs = ∓
√
[(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs, (2.106)

[(n− 1)k + (m− 1)bs]2 = [(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs, (2.107)

0 = 4(n + m− 1)kbs, (2.108)

0 = s. (2.109)

When substituting s = 0 in G∞(s) we find that it is a solution in the case of choosing the negative sign of the
square root in G∞.

The BPs are found by computing the square root argument equal to zero and solving for s

[(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs = 0, (2.110)

this gives equations (2.102) and (2.103) when m > 1 and (2.104) when m = 1. Becuse k > 0 and b > 0, we
conclude that s1 and s2 are always real numbers. This completes the proof.

Proposition 2.0.8

Let Gx(s) be a transfer function given by (2.101). Then, it has two BPs given by (2.102) and (2.103) when
m > 1 and two given by (2.104) when m = 1. Besides, it has two poles solution of the characteristic
equation

P(s) = mlasts2 + G∞(s) = 0, (2.111)

which depend of the sign of the square root in G∞(s).

Proof. The BPs in system Gx(s) are found like in Proposition 2.0.7. Besides, the solution of the characteristic
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equation of Gx(s) is found as follows

mlasts2 + 1
2

[
(n− 1)k + (m− 1)bs±

√
[(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs

]
= 0, (2.112)

(2mlasts2 + (n− 1)k + (m− 1)bs)2 = [(n− 1)k + (m− 1)bs]2 + 4(n + m− 1)kbs,

4m2
lasts

4 + 4mlasts2 [(n− 1)k + (m− 1)bs] = 4(n + m− 1)kbs,

m2
lasts

4 + mlasts2 [(n− 1)k + (m− 1)bs]− (n + m− 1)kbs = 0. (2.113)

(2.113) shows a 4th order equation implying 4 solutions when Eq. (2.111) is a second order polynomial. For
example s = 0 is a solution of (2.113) but it is a solution of (2.111) when G∞(s) has a minus sign in the square
root.

Proposition 2.0.9: Network with multiple springs and one damper

Let n > 1 and m = 1 in G f (s). Then the impulse response of G f (s) when using its positive solution is
given by

∆x(t) = 1√
cπt

e−
a2

c t − a
c Erfc

(
a
√

t
c

)
, (2.114)

where c = 4nkb and a = (n− 1)k.

Proof. Let us express G f (s) as

G f (s) = 1
(n−1)k±

√
(n−1)2k2+4nkbs

= 1
a±
√

a2+cs
= 1√

c
1

a√
c±
√

a2

c +s
, (2.115)

by using the Frequency shifting property we have

L −1

 1
a√
c±
√

a2

c +s

 sgn=+
= e−

a2

c tL −1

[
1

a√
c+
√

s

]
= e−

a2

c tL −1

[
√

s

s− a2

c

−
a√
c

s− a2

c

]
. (2.116)

Then, we see that in the last expression
√

s

s− a2

c

needs a deeper analysis. In this vein, we have

∫
Br+C2+C3+C4

√
sest

s− a2

c

ds = j2π a√
c e

a2

c t, (2.117)

thus

1
j2π

∫
Br

√
sest

s− a2

c

ds = a√
c e

a2

c t + 1
π

∫ ∞

0

√
xe−xt

x+ a2

c

dx. (2.118)
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The last integral in (2.118) is solved as follows

1
π

∫ ∞

0

√
xe−xt

x+ a2

c

dx
u=
√

x
= 2

π

∫ ∞

0

u2e−u2t

u2+ a2

c

du,

= 1
π

∫ ∞

−∞

u2

u2+ a2

c

e−u2tdu,

= 1
π

∫ ∞

−∞
e−u2tdu− 1

π

∫ ∞

−∞

a2

c
a2

c +u2
e−u2tdu,

= 1√
πt
− a√

c e
a2

c tErfc(
√

t√
c

a

).

Hence,

L −1

[
√

s

s− a2

c

]
= a√

c e
a2

c t + 1√
πt
− a√

c e
a2

c t
(

1− Erf
(

a
√

t
c

))
, (2.119)

= 1√
πt

+ a√
c e

a2

c tErf
(

a
√

t
c

)
. (2.120)

Then, the final result is given by

∆x(t) = L −1
[

G f (s)
]
=

[
1√
cπt

e−
a2

c t + a
c Erf

(
a
√

t
c

)]
− a

c = 1√
cπt

e−
a2

c t − a
c Erfc

(
a
√

t
c

)
(2.121)
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Figure 2.22: Numerical and Analytical
Impulse response of system (2.100) for
a = 1 and c = 1.

Consider now (2.101). Then, we can write it as follows

Gx(s)=
Xlast(s)
X1,1(s)

= G∞
mlasts2+G∞

=
$+σs±

√
($+σs)2+ςs

ms2+$+σs±
√

($+σs)2+ςs
, (2.122)

where $ = (n− 1)k, σ = (m− 1)b, ς = 4(n + m− 1)kb and m′ = 2mlast.

Simple binary tree network with one spring and one damper
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When n = 1 and m = 1 in (2.122) this gives us the basiest case:

Gx(s) =
Xlast(s)
X1,1(s)

= G∞(s)
mlasts2+G∞(s) =

±√ςs
m′s2±√ςs . (2.123)

Proposition 2.0.10: One spring and one damper infinite tree respose

Given system (2.123), its impulse response is described by

xlast(t)=

3√ςe
−

3√ςt

2m′2/3

−e
3 3√ςt

2m′2/3 +
√

3 sin
(√

3 3√ςt

2m′2/3

)
+cos

(√
3 3√ςt

2m′2/3

)
3m′2/3

±
3

∑
`=1

z`
[√

ς
(√

r`er`terf
(√

r`t
)
+ 1√

π
√

t

)]
, (2.124)

where,

r1 =
3√ς

m′2/3 (2.125)

r2 = −
3√−1 3√ς

m′2/3 (2.126)

r3 = (−1)2/3 3√c
m′2/3 (2.127)

z1 = m′7/3

(1+ 3√−1)(1+(−1)2/3) 3√ς
(2.128)

z2 = m′7/3

( 3√−1−1)(1+ 3√−1) 3√ς
(2.129)

z3 =
3√−1m′7/3

( 3√−1−1)(1+(−1)2/3) 3√ς
(2.130)

Proof. This statement can easily be proved by computing the ILT of (2.123) by rationalizing it, i.e.

xlast(t) = L −1 [H1(s) + H2(s)] (2.131)

where H1(s) = ±
ms
√

ςs
m′2s3−ς

and H2(s) = − ς

m′2s3−ς
.

H2(s) is clearly easy to ILT and its inversion result corresponds to the first fraction in (2.124), meanwhile
for H1(s) we can use the Laplace transform inversion formula considering that H1(s) has BPs at the origin
and at infinity of the complex plane. We commonly choose The negative real numbers of the complex plane
as a BC. Then, r1, r2 and r3 are the roots of the characteristic polynomial m′2s3 − ς and z1, z2 and z3 are
the partial fraction expantion of m′s

m′2s3−ς
. So that, each element in the summation corresponds to the ILT of

expressions of the type z`
√

ςs
s−r`

∀ ` = 1, 2, 3 corresponding to each pole of H1(s). This completes the proof.

One of our objectives is to proof the efficiency of our results when trying to model tree-networks of finite
generations. This could be uselful for avoiding long computations due to the high number of differential
equations needed when adding more levels to the tree. In the next figures we show some simulations
which compare our analytical expressions with the time response of a FGS. The FGS solution xlastj

(t) ∀
j = 1, 2, · · · , N is computed in Octave by using lsode() routine with a code made by Bill Goodwine presented
in (Goodwine, 2018).
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For such a purpose we considered an impulse like input x1,1(t) = δα(t− 1) ≈ 1
|α|
√

π
e−
( t−1

α

)2

. This input is
time shifted one second in order to obtain better numerical results when solving the differential equations of
the FGSs. So, every xlast(t) expressed analytically from Propositions 2.0.10 were also time shifted by 1 second,
in order to make the comparison of the impulse responses. Furthermore, we add bar plots with error-index
values, the error measured used is the common Integral Square Error (ISE), defined as: EI =

∫ 30
0 ε(t)2dt, where

ε(t) = xlast(t− 1)H(t− 1)− xlastj
(t), H(t) stands for the Heaviside step function.
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Figure 2.23: Impulse response compar-
ison for the case n = 1 and m = 1.
The legend IGS stands for Infinite Gen-
erations System and uses xlast as in Propo-
sition 2.0.10 but time-shifted 1 second,
i-FGS. uses finite generations response
time domain solution using Octave with
x1,1 = δ 1

8
(t− 1).

Matlab methods

The numerical ILT used can be found at https://la.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform.
The numerical integration method used can be found at https://la.mathworks.com/help/matlab/ref/

integral.html.

https://la.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform
https://la.mathworks.com/help/matlab/ref/integral.html
https://la.mathworks.com/help/matlab/ref/integral.html




3
Stability of fractional order systems

Stability of fractional LTI Systems

Consider the fractional system described by

G(s) =
P(s)
Q(s)

, (3.1)

where P(s) and Q(s) are defined as

Q(s) :=
n

∑
k=0

aksαk , (3.2)

P(s) :=
m

∑
k=0

bksδk , (3.3)

where αk and δk are real non-negative numbers and a0 6= 0, b0 6= 0. Without lost of generality we will assume
that αn > αn−1 > · · · > α0 = 0 and δm > δm−1 > · · · > δ1 > δ0 ≥ 0.

The fractional order system described by the transfer function (3.1) is:

• of commensurate order if

αk = kα (k = 0, 1, . . . , n) and δk = kα (k = 0, 1, . . . , m), (3.4)

where α > 0 is a real number,

• of a rational order if it is of commensurate order and α = 1
v , where v is a positive integer (in such a cae

0 < α ≤ 1),

• of non-commensurate order if (3.4) does not hold.

Because, αk and δk are real non-negative numbers a way to choose α is lcm(den(αk, δk)), where lcm(·) and
den(·) lie for the least common multiple and denominator, respectively. In this section we will consider only
fractional systems of commensurate order.

In section we saw how using the ILT we conclude that the time response of a fractional simple system like

G(s) =
1

sα ∓ a
, (3.5)

is expressed in an anomalous decay given by the Mittag Leffler function Eα,α(·). With these ideas the stability
study of commensurate order systems was first done by D. Matignon in (Matignon, 1996) by considering
similar asymptotic expansions of the Mittag Leffler fuction to the following ones reviewed by I. Podlubny:
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Mittag Leffler function asymptotic expansions

Theorem 3.0.1: (Podlubny, 1999)

If 0 < α < 2, β is an arbitrary complex number and µ is an arbitrary real number such that

πα

2
< µ < min{π, απ}, (3.6)

then fo an arbitrary integer p ≥ 1 the following expansion holds:

Eα,β(z) =
1
α

z
1−β

α ez1/α −
p

∑
k=1

z−k

Γ(β− αk)
+ O(|z|−1−p), |z| → ∞, | arg(z)| ≤ µ. (3.7)

Theorem 3.0.2: (Podlubny, 1999)

If 0 < α < 2, β is an arbitrary complex number and µ is an arbitrary real number such that

πα

2
< µ < min{π, απ}, (3.8)

then for an arbitrary integer p ≥ 1 the following expansion holds:

Eα,β(z) = −
p

∑
k=1

z−k

Γ(β− αk)
+ O(|z|−1−p), |z| → ∞, µ ≤ | arg(z)| ≤ π. (3.9)

Theorem 3.0.3: (Podlubny, 1999)

If α ≥ 2 and β is arbitrary, then for an arbitrary integer number p ≥ 1 the following asyptotic formula
holds:

Eα,β(z) =
1
α ∑

n

(
z1αe

j2πn
α

)1−β

ee
j2πn

α z
1
α −

p

∑
k=1

z−k

Γ(β−αk) + O
(
|z|−1−p

)
, (3.10)

where the sum is taken for integer n satisfying the condition

| arg(z) + 2πn| ≤ απ
2 .

The proof of the last statements can be found in (Podlubny, 1999) and (Valério and da Costa, 2013). Besides,
they clearly express that the stability of a fractional commensurate order systems is dependent of the poles
argument and the value of the fractional order α.

Therefore, the stability must obviously be different from that of the integer case (see, for integer order
systems stability criterions (Stojic and Siljak, 1965)). An interesting reason for it is that a stable fractional
system may have roots in right half of the complex w-plane. Since the principal sheet of the Riemann
surface is defined −π < arg(s) < π, by using the mapping w = sα, the corresponding domain is defined by
−απ < arg(w) < απ, and the ω plane region corresponding to the right half plane of this sheet is defined by
−απ/2 < arg(w) < απ/2.

Hence in the case of a fractional order linear time invariant (FOLTI) system with commensurate order
where the system poles are in general complex conjugate, the stability condition can also be expressed as
follows
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Theorem 3.0.4: (Matignon, 1996), (Matignon, 1998)

A commensurate order system described by a rational transfer function

G(w) =
Q(w)

P(w)
,

where w = sα, α ∈ R+, (0 < α < 2), is stable if only if

|arg(λ)| > α
π

2
,

with ∀λi ∈ C the i-th root of P(w) = 0.

Proof. The proof of this theorem is based on the asymptotic approximations shown in section , where
(Matignon, 1996) uses the following similar result

Theorem 3.0.5

We have the following asymptotic equivalents for Ej
α(λ, t) as t reaches infinity:

• for |Arg(λ)| ≤ απ/2,

Ej
α(λ, t) ∼ 1

α(j− 1)!

{(
d

dσ

)j−1
eσ1/αt

} ∣∣∣∣
σ=λ

, (3.11)

it has the structure of a polynomial of degree j− 1 in t, multiplied by eλ1/αt.

• for |Arg(λ)| > απ/2,

Ej
α(λ, t) ∼ 1

Γ(1− α)
(−λ)−jt−α, (3.12)

which decays slowly towards 0.

Here, λ is a fractional pole of for example a transfer fuction like sα−1(sα − λ)−j

by inspection of Theorem 3.0.5, we can conclude easily that the system will have a bounded response if
and only if |Arg(λ)| > α π

2 , in such a case the components of the state decay towards 0 like t−α �

When w = 0 is a single root (singularity at the origin) of P, the system
cannot be stable. For α = 1, this is the classical theorem of pole location
in the complex plane: it has no pole in the closed right half plane of
the first Riemann sheet. The stability region suggested by this theorem
tends to the whole s-plane when α tends to 0, corresponds to the Routh-
Hurwitz stability when α = 1, and tends to the negative real axis when
α tends to 2. <

=

Stable region
Unstable region

Stability boundary

α π
2

Figure 3.1: 0 < α < 1.

The stability analysis criteria for a general FOLTI system can be
sumarized as follow (Radwan et al., 2009):

• The characteristic equation of a generat LTI fractional order system
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of the form:

ansαn + · · ·+ a1sα1 + a0sα0 ≡
n

∑
i=0

aisαi = 0, (3.13)

may be rewritten as:
n

∑
i=0

ais
ui
vi = 0,

and transformed into w-plane

n

∑
i=0

aiwi = 0, (3.14)

with w = s
k
m , where m is the LCM of vi. The procedure of stability

analysis is: <

=

Stable region
Unstable region

Stability boundary

α π
2

Figure 3.2: 1 < α < 2.

1. For a given ai compute the roots of equation (3.14) and find the
absolute phase of all roots |φω |.

2. Roots in the primary sheet of the ω-plane which have correspond-
ing roots in the s-plane can be obtained by finding all roots which

Further reading: For further reading
about the stability analysis in fractional
order systems see (Tavazoei and Haeri,
2009; Petráš, 2011b; Zhang and Li, 2011;
Abu-Saris and Al-Mdallal, 2013; Lenka
and Banerjee, 2018), for another proof
on the stability of commensurate frac-
tional order systems see (Sabatier and
farges, 2012). Finally, for a modifica-
tion of the Mikhailov stability criterion
for fractional commensurate order sys-
tems see (Mendiola-Fuentes and Melchor-
Aguilar, 2018).

lie in the region φω < π
m then applying the inverse transformation

s = ωm. The region where |φω | > π
m is not physical.

3. The condition for stability is π
2m < |φω | < π

m . The condition for
oscillation is |φ| = π

2m otherwise the system is unstable. If there is
no root in the physical s-plane, the system will always be stable.

Example-stability analysis (Caponetto, 2010)

Consider the closed loop system with the controlled system (electrical
heater)

G(s) =
1

39.96s1.25 + 0.598
,

and PD controller
C(s) = 64.47 + 12.46s.

The resulting closed loop transfer function Gc(s) becomes

Gc(s) =
Y(s)
W(s)

=
12.46s + 64.47

36.69s1.25 + 12.46s + 65.068
. (3.15)

The characteristic equation of this system is

36.69s1.25 + 12.46s + 65.068 = 0⇒ 36.69s
5
4 + 12.46s

4
4 + 65.068 = 0.

Using the notation ω = s
1
m , where LCM is m = 4, we obtain a polynomial of the complex variable ω in form

36.69ω5 + 12.46ω4 + 65.068 = 0. (3.16)
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Solving the polynomial (3.16), we get the following roots and their arguments:

ω1 = −1.17474, |arg(ω1)| = π,

ω2,3 = −0.40540± 1.0426j, |arg(ω2,3)| = 1.9416,

ω4,5 = 0.83580± 0.64536j, |arg(ω4,5)| = 0.6575.

This first Riemann sheet is defined as a sector in the w-plane within interval −π/4 < arg(ω) < π/4. Complex
conjugate roots ω4,5 lie in this interval and satisfies the stability condition given as |arg(ω)| > π

8 , therefore
the system is stable. The region where |arg(ω)| > π

4 is not physical. See Fig. 3.3
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Figure 3.3: ω = s1/4 Riemann surface.

Time response analysis of fractional-order LTI systems

Now that we understand the concept of stability for commensurate fractional-order LTI systems. It is
useful to understand and analyze its time response.

For control purposes we consider to analyze the unit step (H(s)) response of the fractional commensurate
order system given by

T(s) = T̄(sα) =
B(sα)

A(sα)
=

bn−1s(n−1)α + · · ·+ b1sα + b0

snα + an−1s(n−1)α + · · ·+ a1sα + a0
(3.17)

If A(s) does not have any multiple roots, the partial fraction expansion of the transfer function T̄(sα) can be
written as

T̄(sα) =
n

∑
k=1

rk
sα − λk

. (3.18)

Proposition 3.0.1

The transfer function (3.18) impulse response is given by

h(t) = tα−1
n

∑
k=1

rkEα,α(λktα). (3.19)
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Proof. The proof follows straightforwardly by using (1.42) in (3.18) �

Proposition 3.0.2: (Tavazoei, 2010)

The step response of system (3.18) is given by

y(t) =
n

∑
k=1

rk
Eα,1(λktα)− 1

λk
(3.20)

Proof. Integrating h(t) brought in (3.19) we get

∫ t

0
h(τ)dτ =

n

∑
k=1

∞

∑
r=0

∫ t

0

rkλr
ktα(r+1)−1

Γ(α(r + 1))
dτ

=
n

∑
k=1

∞

∑
r=0

rkλr
k

Γ(α(r + 1))
tα(r+1)

(α(r + 1))
,

= tα
n

∑
k=1

rkEα,α+1(λktα). (3.21)

which corresponds to the equation already expressed in (1.43) as the step response of one of the partial
fractions. We now want to prove that (3.21) and (3.20) are equivalent.

Taking (3.20) we get

n

∑
k=1

rk
Eα,1(λktα)− 1

λk
=

n

∑
k=1

∞

∑
r=0

rkλr−1
k tαr

Γ(αr + 1)
−

n

∑
k=1

rk
λk

=
n

∑
k=1

rk
λk

+
n

∑
k=1

∞

∑
r=1

rkλr−1tαr

Γ(αr + 1)
−

n

∑
k=1

rk
λk

= tα
n

∑
k=1

∞

∑
r=0

λr
ktαr

Γ(α(r + 1) + 1)
� (3.22)

Proposition 3.0.3

Let A(s) in representation (3.17) does not have any multiple roots. Also, each root of this polynomial
is settled outside of sector |Arg(s)| ≤ απ

2 . Then, the step response of (3.17) is given by

y(t) = −
p

∑
r=1

t−αr

Γ(1− αr)

(
n

∑
k=1

rk

λr+1
k

)
+ O

(
|t|−α(p+1)

)
−

n

∑
k=1

rk
λk

(3.23)

Proof. By substituting (3.9) in (3.20) �

Proposition 3.0.3 will allow us to analyze how the values of α and λ change the time response characteristics
of the system. Before that let us present the following examples:
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Example-time response analysis (a one pole system)

Consider the LTI system given by the following transfer function

G(s) =
3

s1/2 + 2
. (3.24)

Then, we know its step response is given by

L−1
[

3
s1/2 + 2

L [H(t)]
]
= 3t1/2E1/2,3/2(−2t1/2). (3.25)

Because, in this case Arg(−2) = π > απ
2 we can write

3t1/2E1/2,1(−2t1/2) = 3t1/2

[
−

p

∑
k=1

(−2)−kt−k/2

Γ( 3
2 −

k
2 )

+ O(|t|−(1+p)/2)

]
, (3.26)

then, when t→ ∞ we have

3t1/2E1/2,1(−2t1/2) =
3
2

. (3.27)
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Figure 3.4: Step response simulation of
system (3.24)

Note 3.0.1

A more genral example of a transfer function like (3.24) is given by

G(s) =
k

sα − λ
. (3.28)

Whose step response taking λ outside of the region |Arg(s)| ≤ απ
2 is

L−1
[

k
sα − λ

L [H(t)]
]
= ktα

[
−

p

∑
r=1

(λ)−rt−rα

Γ(α + 1− αr)
+ O(|t|−α(1+p))

]
. (3.29)

From (3.29) we see that the t−αr will reach towards zero faster when α is bigger.
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Example-time response analysis (two pole system)

Consider a transfer function D(s) to be written in the following partial fraction expansion

D(s) =
Aejθ

sα + Bejφ +
Ae−jθ

sα + Be−jφ . (3.30)

By some computations we find that D(s) is equal to

D(s) =
2A cos(θ)sα + 2AB cos(θ − φ)

s2α + 2AB cos(φ)sα + B2 . (3.31)

Expression (3.31) is useful to start understanding the time response of fractional order systems with complex
conjugate poles.

From (3.20) we know that the step response of (3.30) is given by

y(t) =
2

∑
k=1

rk
λk

Eα,1(λktα) + C, (3.32)

where

rk = Aejθ(−1)k+1
,

λk = B′ejφ′ ,

where

B′ = Abs(−Bejφ(−1)k+1
)

φ′ = (−1)k+1φ + (−1)kπ

and the function E(·) is defined depending of the Arg(λk) using Teorems 3.0.1 and 3.0.2. Besides, C is defined
as

C =

D(0), Arg(λk) ≥ απ
2

−∑2
k=1

rk
λk

, Arg(λk) <
απ
2

. (3.33)

Using Teorem 3.0.1 we get

y(t) =
2

∑
k=1

rk
λk

{
1
α
(λktα)

1−β
α e(λktα)1/α −

p

∑
r=1

(λktα)−r

Γ(β− αr)
+ O(|t|−α(1+p))

}
+ C,

=
2

∑
k=1

rk
λk

{
1
α

e(λk)
1/αt −

p

∑
r=1

(λktα)−r

Γ(1− αr)
+ O(|t|−α(1+p))

}
+ C. (3.34)

Because expression (3.7) in Theorem 3.0.1 holds for an arbitrary integer p ≥ 1, choosing p = 1 in (3.34) for
simplicity we get

y(t) =
2

∑
k=1

rk
λk

{
1
α

e(λk)
1/αt − t−α

λkΓ(1− α)
+ O(|t|−2α)

}
+ C. (3.35)

Consider now the following three cases
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∗ Case 1: |Arg(λk)| = φ′ = απ
2 . In such a case we expect an oscillatory response given by

y(t) =
2

∑
k=1

rk
λk

{
1
α

e(λk)
1/αt − t−α

λkΓ(1− α)
+ O(|t|−2α)

}
+ D(0)

= Aejθ

αB′ej(φ−π) e(B′ej(φ−π))1/αt + Ae−jθ

αB′ej(−φ+π) e(B′ej(−φ+π))1/αt − Aejθ t−α

B′2ej2(φ−π)Γ(1−α)
− Ae−jθ t−α

B′2ej2(−φ+π)Γ(1−α)
+ O(|t|−2α) + D(0)

= Aejθ

αB′e−jφ′ e
−j(B′)1/αt + Ae−jθ

αB′ejφ′ e
j(B′)1/αt − 2At−α

B′2Γ(1−α)
cos(θ + 2(−φ + π)) + O(|t|−2α) + D(0)

= 2A
αB′ cos((B′)1/αt− θ − (−φ + π))− 2At−α

B′2Γ(1−α)
cos(θ + 2φ′) + O(|t|−2α) + D(0) (3.36)

∗ Case 2: |Arg(λk)| = φ′ > απ
2 . In this case the stable response would be

y(t) = − 2At−α

B′2Γ(1− α)
cos(θ + 2φ′) + O(|t|−2α) + D(0) (3.37)

∗ Case 3: |Arg(λk)| = φ′ < απ
2 . The unstable response its given by

y(t) =
2

∑
k=1

rk
λk

{
1
α

e(λk)
1/αt − t−α

λkΓ(1− α)
+ O(|t|−2α)

}
−

2

∑
k=1

rk
λk

(3.38)

A specific example could be the transfer function

D(s) =
16
3

s2α + 2sα + 5
=

4
3 j

sα + 1 + 2j
+

− 4
3 j

sα + 1− 2j
, (3.39)

whose poles λ1 = −1− 2j and λ2 = −1 + 2j are complex conjugate of order α. We can easily find that the
step response of system (3.39) is

d(t) =
4
3 j

(−1− 2j)
Eα,1((−1− 2j)tα) +

− 4
3 j

(−1 + 2j)
Eα,1((−1 + 2j)tα)−

[
4
3 j

−1− 2j
+
− 4

3 j
−1 + 2j

]
,

=
4
3 j

(−1− 2j)
Eα,1((−1− 2j)tα) +

− 4
3 j

(−1 + 2j)
Eα,1((−1 + 2j)tα) +

16
3
5

. (3.40)

Now, expression (3.40) will behave differently depending on the value of α. The three posible behaviours are
given by

? Case 1: |Arg(λk)| = φ′ = απ
2 . In this case α = 2φ

π = 1.2952

d(t) = 0.9208 cos(1.8614t + 2.6779) + 0.0915t−1.2952 + O(|t|−2(1.2952)) +
16
3
5

. (3.41)

? Case 2: |Arg(λk)| = φ′ > απ
2 . In this case α = 0.8

d(t) = 0.0915t−1.2952 + O(|t|−2(1.2952)) +
16
3
5

. (3.42)

Once we understand how to obtain the time response of two and one pole systems. We can deduce the
following results:
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2.5 Figure 3.5: Step response simulation of
system (3.39) with α = 1.2952.
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1.2 Figure 3.6: Step response simulation of
system (3.39) with α = 0.8.

Theorem 3.0.6: One pole system. How real poles value change the step response

Let α1 > α2 where α1, α2 ∈ (0, 1), to be the commensurate order fractional degrees of H1(s) and H2(s)
which are defined as

H1(s) =
1

sα1 − ξ
(3.43)

H2(s) =
1

sα2 − ξ
(3.44)

and ξ ∈ R−. Then, the time H1(s) takes to arrive the steady gain H1(0) = H2(0) is smaller than the
time for H2(s) in the step response.

Proof. By using Proposition 3.0.3, we find that the step response of H1(s) and H2(s) are given by

y1(t) =
1
ξ

(
−

p

∑
r=1

t−rα1

ξrΓ(1− α1r)
+ O

(
|t|−α1(1+p)

)
− 1

)
, (3.45)

y2(t) =
1
ξ

(
−

p

∑
r=1

t−rα2

ξrΓ(1− α2r)
+ O

(
|t|−α2(1+p)

)
− 1

)
, (3.46)

by inspection we notice that y1(t) = y2(t) = − 1
ξ as t → ∞, but because α1 > α2 then y1(t) show a faster

response due to the faster decay of the t−rα1 and t−α1(1+p) terms.
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Example: One pole system. How real poles value change the step response

Take H(s) to be

H(s) =
1

sα − 1
. (3.47)

where α ∈ (0, 1). Figure 3.7 shows the step response of H(s) when changing α.
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Figure 3.7: Step response y(t) of H(s)
when varying α.

Theorem 3.0.7: One polse system. How fractional order value changes the step response

Let ξ1 < ξ2 such that ξ1, ξ2 ∈ R−, to be the poles of the w-transform transfer functions H1(s) and
H2(s) given by

H1(s) =
1

sα − ξ1
, (3.48)

H2(s) =
1

sα − ξ2
, (3.49)

and α ∈ (0, 2). Then, the time response of H1(s) is faster than the H2(s) response in arriving its steady
gain.

Proof. Taking a fixed α we see that the sumation terms at the step responses of H1(s) and H2(s) in the form

−
p

∑
r=1

t−rα1

ξrΓ(1− α1r)
(3.50)

have smaller impact when ξ is bigger. Then a more negative ξ will lead to a faster response.

Remark 3.0.1. Theorem 3.0.7 shows that a more negative ξ shows a faster response, but the steady gain will decrease,
showing a smaller response.
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Example: One polse system. How fractional order value changes the step response

Take H(s) to be

H(s) =
1

sα − ξ
. (3.51)

where α ∈ (0, 2). Figure 3.8 shows the step response of H(s) when changing ξ.
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Figure 3.8: Step response y(t) of H(s)
when varying ξ.

Theorem 3.0.8: Two pole system. How the magnitude value of its conjugate poles change the step
response

Let the stable fractional order two pole systems H1(s) and H2(s) to be defined as

H1(s) =
2

∑
k=1

χk
sα − ψ′k

, (3.52)

H2(s) =
2

∑
k=1

χk
sα − ψ′′k

, (3.53)

where ψ′k and ψ′′k are the complex conjugate poles of system H1(s) and H2(s) respectively, such that
|ψ′k| > |ψ

′′
k |. Then the step response of the system H1(s) will arise its steady gain H1(0) faster than

system H2(s).
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Theorem 3.0.9: Two pole system. How the fractional order value of its conjugate poles change the
step response

Let α1 > α2 where α1, α2 ∈ (0, 1), to be the commensurate order fractional degrees of H1(s) and H2(s)
which are defined as

H1(s) =
2

∑
k=1

χk
sα1 − ψk

, (3.54)

H2(s) =
2

∑
k=1

χk
sα2 − ψk

, (3.55)

and ψk ∈ C for k = 1, 2 are complex conjugated poles. Then, the time H1(s) takes to arrive the
steady gain H1(0) = H2(0) is smaller than the time for H2(s) in the step response. Furthermore if
Arg(ψk) u αiπ

2 , k = 1, 2. Then, we start having oscilations in the system Hi(s), i = 1, 2 response.

Example: Two pole system. How the magnitude and fractional order values of its conjugate poles change the
step response

Consider the two pole fractional order system given by

H(s) =
ω2

n
s2α + 2ξωnsα + ω2

n
=

2

∑
k=1

rk
sα − ψk

, (3.56)

then, according to Theorem 3.0.8 if we increase the magnitud of the complex conjugate poles ψk of H(s) we
will obtain a rapid response. The following figures show the simulation results
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Figure 3.9: Step response simulation of
system (3.56) with using the complex con-
jugate poles ψ = −1− ∆± j(2 + ∆) and
α = 0.5.
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Figure 3.10: Step response simulation of
system (3.56) with using the complex con-
jugate poles ψ = −1− ∆± j(2 + ∆) and
α = 1.
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Figure 3.11: Step response simulation of
system (3.56) with using the complex con-
jugate poles ψ = −1− ∆± j(2 + ∆) and
α = 1.5.

Overshoot in the step response
Further reading: A common way to an-
alyze the time response of integer order
systems is by means of the Root-Locus
method. This method for fractional order
systems is discussed in (Merrikh-Bayat
and Afshar, 2008).

One of the important characteritics in the time response of a system
is the overshoot. In this vein, if we do a Matlab simulation for the step
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response of (3.28) we obtain something similar to the result of Fig. 3.12

for various α values and taking λ = −2 and k = 3. This shows that the
settling time is smaller when α is bigger but if α > 1 the step response
shows the existence of an overshoot.
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Figure 3.12: Step response simulation of
system (3.24)

If we aim to find the reasons of existence of an overshoot we can apply the idea of using weighting functions
(see, for further details (Sigdell, 1967) and (Genin and Calvez, 1970)).

First, we define the response f (t) to have an overshoot if, for any t > 0, we have f (t) > lim
t→∞

f (t) = A.

Another case (besides the oscillatory one), where it is simple to say that an overshoot exists, is when
f (+0) > A or in the Laplace domain,

∃ lim
s→∞

sF(s) > lim
s→+0

sF(s) = A, (3.57)

where F(s) = L [ f (t)]. If none of the elementary criteria above is applicable, we may still have an overshoot.
One approach to determining wheter this is the case is to investigate the integral :∫ ∞

0
ς(t) { f (t)− A} dt, (3.58)

where ς(t) ≥ 0 in (0, ∞). If this integral is positive or zero for ay such (nontrivial) ς(t), an overshoot must
exist. (For appropiate ς(t) : s, this approach includes the cases where the elementary criteria above apply.)
We can determine the values of this integral for ς(t) = tn quite easily by expanding the Laplace transform in
a Maclaurin series, whithin the neighbourhood of the origin of the complex plane

F(s) =
∫ ∞

0
e−st f (t)dt =

A
s
+
∫ ∞

0
e−st { f (t)− A} dt,

=
A
s
+
∫ ∞

0
{ f (t)− A}

∞

∑
n=0

(−1)n(st)n

n!
dt. (3.59)

In engineering applications , the function f (t) is such that we may integrate each term in the sum individually:

F(s) =
A
s
+

∞

∑
n=0

(−1)nansn

n!
(3.60)

where
an =

∫ ∞

0
tn { f (t)− A} dt. (3.61)

Lemma 3.0.2. Let F(s) being expanded in series as in (3.60). If for any n we
have an ≥ 0, then , there must be an overshoot. If not, there may be still one.
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Remark 3.0.3. Equation (3.60) requires,
that F(s) has not more than one pole at the
origin (due to the step-function input), but if
it had a multiple pole there, then f (t) would
show a unstable behaviour.

Lemma 3.0.2 requires to determine the value of an. We can determine
an from the derivatives of F(s), as is clear from the serial development.
an alternative way is to use the Laplace formula

L [tn f (t)] = (−1)n f (n)(s) (3.62)

which gives

an =
∫ ∞

0
tn { f (t)− A} dt = lim

s→+0

{
(−1)n f (n)(s)− An!

sn+1

}
. (3.63)

There are other alternative criteria for weighting functions ς(t), such as
eβt or 1 + sin (ωt + φ), may also be used:∫ ∞

0
e−βt { f (t)− A} dt = F(s)− A

β
, (3.64)

if β > 0; for β < 0 the integral may not exists (in fact, β must lie to the right of all poles) or∫ ∞

0
{1 + sin (ωt + φ)} { f (t)− A} dt = lim

s→+0

{
F(s)− A

s

}
+

1
2j

{
ejφF(−jω)− e−jφF(jω)

}
− A

w
cos(φ)

(3.65)
Another approach would be to inspect from which direction f (t) approaches its limit for large t. If lim

t→∞
f (t) =

A + 0, the function f (t) must clearly have an overshoot. But we would like to judge this from F(s) and its
behaviour as s→ 0.

Based on the above ideas we get the following result

Theorem 3.0.10: (Tavazoei, 2011)

The strictly proper and BIBO stable transfer function G(s) in the form

G(s) =
Q(s)
P(s)

=
qmsβ + qm−1sβm2−1 + · · ·+ q1sβ1 + q0

sαr + pr−1sαr−1 + · · ·+ p1sα1 + p0
(3.66)

with the steady state gain G(0) 6= 0 has always an overshoot in its step response if

lim
s→0

G(s)− G(0)
s

= 0 (3.67)

Proof. Without loss of generality, assume that G(0) > 0. Also, let y(t) be the step response of G(s), i.e.
y(t) = L−1

{
G(s)

s

}
. It can be easily verified that∫ ∞

0
(1± cos(ω0t)) {y(t)− G(0)} dt =

∫ ∞

0
{y(t)− G(0)} dt±

∫ ∞

0
cos(ω0t) {y(t)− G(0)}

(3.67)
= (3.68)

= lim
s→0

(
G(s)− G(0)

s

)
±=

[
G(jω0)

ω0

]
, (3.69)

where ω0 ∈ (0, π). If condition (3.67) is hold, we have∫ ∞

0
(1± cos(ω0t)) {y(t)− G(0)} dt = ±=

[
G(jω0)

ω0

]
. (3.70)
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Hence, at least one of the integrals
∫ ∞

0 (1 + cos(ω0t)) {y(t)− G(0)} dt and
∫ ∞

0 (1− cos(ω0t)) {y(t)− G(0)} dt
should be nonnegative. According to this point and considering the inequality 1± cos(ω0t) ≥ 0 for all
t ∈ (0, ∞), it is concluded that there existis an interval time (t1, t2) such that y(t) > G(0) = y(∞) for all
t ∈ (t1, t2). This means that the step response y(t) has an overshoot. The proof for the case G(0) < 0 is similar
as that presented for the case G(0) > 0, and consequently ommited here �

Corollary 3.0.1: Existence of an overshoot in the step response (Tavazoei, 2011)

The step response of a stable fractional-order transfer function in the form (3.66) has an overshoot if
α1 > 1 and β1 > 1.

Corollary 3.0.2: Existence of an overshoot in the step response (Tavazoei, 2011)

The step response of each stable fractional-order system with commensurate order α, where 1 < α < 2,
has an overshoot.

Corollary 3.0.3: One pole system

The step response of the transfer function H(s) given by

H(s) =
1

sα − 1
(3.71)

with commensurate order α has an overshoot if 1 < α < 2.

Proof. Taking H(s) as in Eq. (3.71) and its steady gain H(0) 6= 0 we have always an overshoot in its step
response if

lim
s→0

H(s)− H(0)
s

= 0, (3.72)

then,

lim
s→0

1
sα−ξ + 1

ξ

s
= lim

s→0

sα

ξs(sα − ξ)
(3.73)

which is equal to zero when α > 1

Example: Overshoot in a one pole system

Take H(s) to be (3.71) where α ∈ (1, 2). The following figure shows Further reading: A survey paper about
time response analysis of fractional or-
der systems recommended is (Tavazoei,
2014).

the step response of H(s) when changing α.
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Figure 3.13: Step response y(t) of H(s)
when varying α.

Stability for fractional LTI systems with time delay

Time-delay systems are of great interest in this work, there are many practical systems and problems in
engineering that involve time lags: Bioreactors, Rolling mills, Ship stabilization, turbojet engine, Microwave
oscillator, etcetera (see, (Kolmanovskii and Nosov, 1986)).

It is known, that the classical stability analysis for non time-delay systems is made by criterions like:
Routh-Hurwitz, Nyquist, Mikhailov and Hermite-Biehler (see, for further details (Stojic and Siljak, 1965),(Ho et al.,
1999) and (Ho et al., 2000) ). But, when talk about linear time-delay systems, such criterions change. The
characteristic polynomials of time-delay systems are known as Quasi-polynomials, which are functions of the
following type:

F(s) =
n

∑
k=0

fk(s)eλks, (3.74)

where fk(s) are polynomials in s with constant coefficients, and λk, k = 0, . . . , n, are real (0r complex)
numbers. By other words, (3.74) is a sum, where the terms are the product of an exponential and a polynomial
function with constant coefficients. In control theory, such exponentials corresponds to delays which can
be commensurable real numbers, that is λk = kλ k = 0, . . . , n, and λ > 0. One of the most used criterions
for stability analysis of quasi-polynomials is the generalization of the Hermite-Biehler theorem by Pontryagin
in (Pontryagin, 1955). Successively in (Bhattacharyya et al., 1995) and (Bellman and Cooke, 1963), based on
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Pontryagin’s results, and extension of the Hermite-Biehler theorem was developed to study the stability of a
certain class of quasipolynomials.

Now for Linear-Time-Invariant (LTI) fractional commensurate order
systems with time-delay, consider a system of such a nature described
by the transfer function Further reading: For further reading

about the stability criterions for time-
delay systems (Gu et al., 2003) and
(Michiels and Niculescu, 2007).P(s) = ∑

n2
i=0 qi(s)e−βi s

∑
n1
i=0 pi(s)e−γi s = N(s)

D(s) (3.75)

where 0 = γ0 < γ1 < · · · < γn1 , 0 ≤ β0 < · · · < βn2 , the pi and qi

being polynomials of the form Further reading: In (Buslowicz, 2008) the
stability of fractional order systems of
retarded type is also discussed. The suf-
ficient and neccesary conditions for sta-
bility of fractional time-delay systems of
neutral type is discussed in (Moornani
and Haeri, 2011). Besides (Nguyen and
Bonnet, 2012; Bonnet et al., 2009) and (Fio-
ravanti et al., 2010) present some results
in stability analysis for fractional time-
delay of neutral type.

pi(s) =
li

∑
k=0

aksαk , (3.76)

qi(s) =
mi

∑
k=0

bksδk , (3.77)

where αk and δk are real non-negative numbers. We shall assume that
throughout that N(s) and D(s) have no common zeroes in {< [s] ≥
0} \ {0}.

Note that, for s 6= 0 and δ ∈ R, we define sδ to be eδ(log |s|+j arg(s)), and
a continuous choise of arg(s) in a domain leads to an analytic branch of
sδ. In this work we shall normally make the choice −π < arg(s) < π,
for s ∈ C \R−.

As for the classical delay systems, we shall consider the class of
retarded and neutral systems, that is systems which satisfy, respectively,
condition 1 or 2 below:

Conditions 3.0.4 (Retarded and neutral type systems). Condition 1: deg p0 > deg pi for i = 1, . . . , n1 and
deg p0 > deg qi for i = 0, . . . , n2.

Condition 2: deg p0 ≥ pi for i = 1, . . . , n1 (with equality for at least one polynomial pi) and deg p0 > deg qi for
i = 0, . . . , n2.
Note that these conditions imply that we deal here with strictly proper systems. Besides, these conditions

are similar to those used to classify integer order time-delay systems.
In this work we will consider only the case of retarded systems. to investigate the properties of the class of

retarded systems of type (3.75) satisfying Condition 1. the necessary and sufficient condition of stability turns
out to be the same as for the classical class of retarded systems.

Theorem 3.0.11: (Bonnet and Partington, 2000, 2002)

Let P(s) of the form (3.75) be the strictly proper transfer function, where N(s) and D(s) have no
common zeros. Then the fractional order system described by the transfer function (3.75) is bounded-
input bounded-output (BIBO) stable (shortly stable) if and only if P(s) has no poles with non-negative
real parts, i.e.

D(s) 6= 0 for <(s) ≥ 0. (3.78)
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The fractional degree characteristic quasi-polynomial of the system of retarded type form of (3.75) has the
form

D(s) = p0(s) +
n1

∑
i=1

pi(s)e−γis. (3.79)

Then, the following Lemmas are of great interest to analyze the stability of (3.79):
Lemma 3.0.5 ((Buslowicz, 2008)). The fractional quasi-polinomial of (3.79) satisfy the condition (3.78) if and only if
all its zeros satisfy the condition

|Arg(w)| > α π
2 , (3.80)

where w = sα and −π < Arg(w) ≤ π.

Proof. From Theorem 3.0.11, we concluded that the boundary of the satbility region of the fractional quasi-
polynomial (3.79) is the imaginary axis of the complex s-plane with the parametric description s = jω
ω ∈ (−∞, ∞). Zeros of fractional quasi-polynomial D(s) of the form (3.79) satisfy the relationship λ = sα.
Hence, the boundary of stability region in the complex λ−plane has the parametric description

λ = (jω)α = |ω|αejαπ/2, ω ∈ (−∞, ∞). (3.81)

All zeros of quasi-polynomial (3.79) lie in the stability region with the boundary (3.81) if and only if (3.80)
holds �

Lemma 3.0.6 ((Buslowicz, 2008)). The fractional quasi-polynomial (3.79) is not stable for any α > 1.

Proof. From (3.80) and Fig. 3.2 it follows that if 1 < α < 2 then the
stability region is a cone in the open left half-plane. The fundamental
properties of distribution of zeros of quasi-polinomials show that a
quasi-polynomial like (3.79) of retarded type always has at least one
chain of asymptotic zeros satisfying the conditions Further reading: For time domain analy-

sis of linear fractional differential system
with time delays see (Deng et al., 2007)
and (Xiao et al., 2017).

lim
|λ|→∞

<(λ) = −∞, lim
|λ|→∞

=(λ) = ±∞. (3.82)

Therefore, the condition (3.80) with α > 1 does not hold for the asymp-
totic zeros of quasi-polinomial (3.79) �

Overshoot in the step response for delayed systems

The following analysis is a generalization of the overshoot in the step response of fractional order systems
without time delat discussed in Section by using weighting functions.

Let y(t− τ)u(t− τ) with u(t− τ) = 0 for 0 ≤ t < τ, be the step response of the fractional LTI system with
time delay G(s) in the form

G(s) =
Q (sα)

P (sα)
e−τs, (3.83)

where

P (sα) =
m

∑
k=0

pksαk , αk = kα (k = 0, 1, . . . , m), (3.84)

Q (sα) =
n

∑
k=0

qksαk , αk = kα (k = 0, 1, . . . , n), (3.85)
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τ > 0, P (sα), α ∈ (0, 1] and deg P < deg Q. Besides, G(s) is considered to be BIBO-stable.
Using the weighting functions introduced in (Genin and Calvez, 1970), let A to be equal to

lim
s→+0

sF(s) = A (3.86)

where F(s) = L [y(t− τ)u(t− τ)]. From (Genin and Calvez, 1970) we see that an overshoot must exist if the
integral (3.58) is positive or zero. Then, applying the same analysis we see that for ς = tn and expanding the
Laplace transform in a Maclauring series, within the neighbourhood of the origin of the complex plane we get

F(s) =
∫ ∞

0
e−st f (t− τ)u(t− τ)dt = =

A
s
+
∫ ∞

0
e−st { f (t− τ)u(t− τ)− A} dt,

=
A
s
+
∫ ∞

0
{ f (t− τ)u(t− τ)− A}

∞

∑
n=0

(−1)n(st)n

n!
dt,

=
A
s
+

∞

∑
0
(−1)nϑn

sn

n!
, (3.87)

where
ϑn =

∫ ∞

0
tn { f (t− τ)u(t− τ)− A} dt (3.88)

To determine the value of ϑn, we use the Laplace formula

L [tn f (t− τ)u(t− τ)] = (−1)n dn

dsnL [ f (t− τ)u(t− τ)] = (−1)n dn

dsn

{
e−τsL [ f (t)]

}
(3.89)

which gives

ϑn =
∫ ∞

0
tn { f (t− τ)u(t− τ)− A} dt = lim

s→+0

{
(−1)n dn

dsn

{
e−τsL [ f (t)]

}
− A

n!
sn+1

}
= lim

s→+0

{
(−1)n dn

dsn

{
e−τsF(s)

}
− A

n!
sn+1

}
(3.90)

If for any n we have ϑn ≥ 0, there must be an overshoot. If not as in the case without time delay, there may be
still be one. Lets take (1± cos(ω0t)) as our weighting function with ω0 ∈ (0, π). Then, we get the following∫ ∞

0
(1± cos(ω0t)) { f (t− τ)u(t− τ)− A} dt=lim

s→0
L [(1± cos(ω0t)) { f (t− τ)u(t− τ)− A}] ,

= lim
s→+0

{
e−τsF(s)− A

s

}
± lim

s→0
L [cos(ω0t) f (t− τ)u(t− τ)] ,

= lim
s→+0

{
G(s)e−τs−A

s

}
± lim

s→0

[
e−τsG(s−jω0)

s−jω0
+ e−τsG(s+jω0)

s+jω0

]
,

= lim
s→+0

{
G(s)e−τs−G(0)

s

}
±
[

G(−jω0)
−jω0

+ G(jω0)
jω0

]
,

= lim
s→+0

{
G(s)e−τs−G(0)

s

}
±=

[
G(−jω0)−G(jω0)

ω0

]
. (3.91)

A sufficient but not neccesary condition for the integral
∫ ∞

0 (1± cos(ω0t)) { f (t− τ)u(t− τ)− A} dt ≥ 0 is
that in (3.91)

lim
s→+0

{
G(s)e−τs − G(0)

s

}
= 0, (3.92)

then the system will have an overshoot. Since, (3.92) holds such an integral should be nonnegative. According
to this point, it is concluded that there exist an interval time (t1, t2) such that y(t) > G(0) = y(∞) for all
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t ∈ (t1, t2). This may happen when G(0) is either positive or negative. We state this as the following result
Theorem 3.0.12: Overshoot existence in time-delay fractional order systems

The strictly proper and BIBO stable transfer function G(s) in (3.83) with steady state gain G(0) = A 6= 0
has always an overshoot in its step response if

lim
s→+0

{
G(s)e−τs − G(0)

s

}
= 0. (3.93)

The Mittag-Leffler stability of fractional order systems

The concept of exponential stability is very known in control theory
of integer order systems. Nevertheless, fractional order systems time Further reading: The Mittag-Leffler stabil-

ity is presented and discussed deeply in
(Li et al., 2009),(Baleanu et al., 2010) and
(Wyrwas and Mozyrska, 2015).

response is of anomalous decay (i.e. non-exponential). We saw in
previous sections that fractional order systems time response uses the
Mittag-Leffler funcion. Hence, we may talk about a Mittag-Leffler stability,
which is defined as follows:

Definition 3.0.1: Definition of the Mittag-Leffler stability (Li et al., 2009)

The solution of

t0 Dα
t x(t) = f (t, x) (3.94)

which is a considered fractional nonautonomous system with initial condition x(t0). where D denotes
either the Caputo or Riemann-Liouville fractional operator, α ∈ (0, 1), f : [t0, ∞]×Ω→ Rn is piecewise
continuoues in t and locally Lipschitz in x on [t0, ∞]×Ω, and Ω ∈ Rn is a domain that contains the
origin x = 0.
Is said to be Mittag-Leffler stable if

‖ x(t) ‖≤ {m [x(t0)] Eα(−λ(t− t0)
α)}b , (3.95)

where λ > 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally lipschitz on x ∈ B ∈ Rn with Lipschitz
constant m0.

Lyapunov direct method

Lyapunov direct method provides a way to analyze the stability of dynamical systems without solving their
differential equations. It is especially advantageous when the solution is difficult or even impossible to find
with classical methods. Therefore, it is interesting to investigate extension of the method for non-integer order
systems. Such extension relies heavily on a notion of Mittag-Leffler stability.

Lyapunov direct method for fractional order systems is proposed in (Li et al., 2010) and is reviewed in
(Zagórowska et al., 2015).
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Complex order systems stability

Fractional order systems generalizes the idea of integer order systems by considering real order derivatives
and integrals in their dynamics. Hence, it is natural to wonder about the case of complex-order systems which
may consider derivatives and integrals of order q such that q ∈ C.

Consider a linear complex-order system having the transfer function

G(s) =
p

sq − k
, (3.96)

where p, q, k ∈ C. Then, the output of the system will be given by

Y(s) =
[

p
sq − k

]
U(s). (3.97)

For the unit impulse input u(t) = δ(t), the Laplace transform will be U(s) = 1. Therefore (3.97) becomes

Y(s) =
p

sq − k
,

∴ y(t) = L −1 [Y(s)] .

We know that the ILT in this case is given by

L −1
[

1
sq − k

]
= tq−1Eq,q(ktq). (3.98)

Hence,
y(t) = ptq−1Eq,q(ktq). (3.99)

(3.99) is a series that is complex-valued. since complex time-reponse is meaningless, we use a combination of
this system with its complex conjugate-order system to obtain a series that is real-valued. The conjugate-order
system is defined by the transfer function

G(s) =
p

sq − k
+

p̄
sq̄ − k̄

, (3.100)

that will have an output

Y(s) =
[

p
sq − k

+
p̄

sq̄ − k̄

]
U(s), (3.101)

which is real-valued.
The stability for these type of systems is presented by Jay L. Adams et al. in (Adams et al., 2012) and a

review of time and frequency domain stability analysis is presented in (Jacob et al., 2016).

Extension of the concept of stability

We mentioned in the Preliminaries section of this work that the concept of Multivalued functions would be
used continuously. In this section we show a stability result that concludes how not only the poles but also
the branch points (which are part of Multivalued functions) are crucial in determining the stability.

Almost all LTI systems can be represented by rational transfer functions (possibly with delay) but there are
some important exceptions. In (Curtain and Zwart, 1995) some examples of infinite-dimentional systems that
lead to fractional order transfer functions are shown. For example

H(s) =
tanh(

√
s)√

s
, (3.102)
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appears in a boundary controlled and observed diffusion process in a bounded domain. Besides, the transfer
function

H(s) =
cosh(

√
sx0)√

s sinh(
√

s)
, 0 < x0 < 1, (3.103)

corresponds to the heat equation with Neumann boundary control.
For these kind of tranfer functions we must consider the following result when talking about their stability:

Theorem 3.0.13: (Merrikh-Bayat and Karimi-Ghartemani, 2008)

A given multivalued transfer function is stable if and only if it has no pole in C+ and no BP in C−.
Here, C+ and C− stand for the closed right half plane (RHP) and the open RHP of the first Riemann
sheet, respectively.

Proof. The proof needs the following definition

Definition 3.0.2: Region of Convergence (ROC)

Let h(t) denote the impulse response of an LTI causal system. Then its Laplace transform H(s) (the
system transfer function) is defined as ∫ ∞

0
h(t)e−stdt. (3.104)

Then, the set of all points on the first Riemann sheet for which the Laplace integral (3.104) is absolutely
convergent is called the region of convergence (ROC), that is, s = σ + jω belongs to ROC if∫ ∞

0
|h(t)e−st|dt =

∫ ∞

0
|h(t)|e−σtdt < ∞. (3.105)

It is obvious that the ROC of (3.104) is a half-plane to right of the abscissa of convergence σc. The
left-hand boundary of ROC is a line parallel to the imaginary axis.

Assume the class of bounded input signals u ∈ L∞, that is , maxt{|u(t)|} < ∞. The system is stable if for
every input u ∈ L∞, the output y(t) = u(t) ∗ h(t) =

∫ ∞
0 h(τ)u(t− τ)dτ is also bounded, that is, y ∈ L∞. It is

easy to prove that for a causal LTI system with impulse response h(t) to be BIBO stable (as defined above),
the necessary and suficient condition is that h ∈ L1, that is∫ ∞

0
|h(t)|dt < ∞. (3.106)

Comparing to (3.105), h(t) corresponds to a stable system if and only if the ROC of H(s) includes the
imaginary axis. It will be the case if and only if H(s) has no pole in C+ and no BP in C−(because, else the
Laplace integral will not be convergent). This completes the proof �

Example: Stability effect by the location of Branch Points in a multivalued function

Consider the following multivalued transfer function

G(s) =
1√

s2 + k
, (3.107)



modeling and control of fractional order systems. the linear systems case 93

where k ∈ R. It can be proof that the impulse response of (3.107) is given by

y(t) = L −1
[

1√
s2 + k

]
=


J0(
√

kt) if k > 0

J0(j
√

kt) if k < 0

1 if k = 0

, (3.108)

where, J0(·) is known as the Bessel function of the first kind of order zero. It is clear that the cases in (3.108)
depend on the location of the BPs of (3.107), which can be found by solving s2 + k = 0. If Theorem 3.0.13 is
true when k < 0 the system must be unstable, this can be proof by plotting (3.108).
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Figure 3.14: Step response of system
(3.107).

Consider now the system

G(s) =
1√

s + k
, (3.109)

where k ∈ R. We can proof that the impulse response of system (3.109) is given by

y(t) = L −1
[

1√
s + k

]
=


e−kt
√

πt
if k > 0

ekt
√

πt
if k < 0

1√
πt

if k = 0

. (3.110)

In this case the position of the BP is found by solving s + k = 0 and its easy to conclude that according to
Theorem 3.0.13, (3.109) must be unstable when k < 0 which is correct according to (3.110).





4
Design of fractional PDµ and PIλ controllers

In (Podlubny, 1994) Podlubny published the idea of creating a PID-type controller containig non-integer
order derivate and integral terms, titled the fractional PIλDµ controller. Therefore, fractional order controllers
are a very recent idea. This type of algorithms are proved to provide better results when being applied to
fractional-order systems (Podlubny, 1994, 1999). However, when they are applied to integer order systems we
can used them as PID-type controller algorithms with more degrees of freedom which is helpful to obtain
results that otherwise would be difficult or even impossible to characterize (Valério and da Costa, 2013).

As we have seen, it is said that fractional order operators present heredity, nonlocality, selfsimilarity and
stochasticity properties(Uchaikin, 2013). Besides, some infinite dimensional order systems are presented
as examples of fractional order systems(Curtain, 1992) and many recent results in system modeling using
fractional calculus(Hollkamp et al., 2018; Leyden and Goodwine, 2016; Goodwine, 2014; Mayes and Sen, 2011;
Galvao et al., 2013) justify the study of stability and control design for fractional order systems.

In this vein, we propose the study of the design of fractional PDµ and PIλ controllers for non-integer
order systems. Meanwhile, we have shown in (Guel-Cortez et al., 2018) that for integer order systems the
PDµ controller improves the performance of the derivative term when using a classical PD controller in a
robotic system based on the hypothesis concluded by visualizing a simulation (Fig. 4.1) comparing the result
of deriving and half-deriving a sinusoidal noisy signal, where we see the almost null effect in the noise of the
half derivative compared to the integer order one.
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c) Figure 4.1: Fractional derivative com-

pared with the integer derivative. (a)
Sine wave signal with intermittent high-
frequency noise. (b) Integer order deriva-
tive. (c) Fractional derivative with µ =
1/2.

Various results in designing fractional order controllers have been
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published,(Hamamci, 2007, 2008; Caponetto, 2010; Monje et al., 2010)
but there is a need for easier methodologies and applications to the
methods in real experiments (Shah and Agashe, 2016; Caponetto, 2010). Further reading: To see more about

fractional PID controllers see (Shah and
Agashe, 2016). A comparison between
fractional and integero order controllers
can be found at (Dulău et al., 2017). De-
tails about the fractional PDλ algorithm
are discussed in (Tavazoei, 2012). Be-
sides, more fractional order PIλDµ de-
sign algorithms can be found at (Oprzęd-
kiewicz and Dziedzic, 2017; Boudjehem
and Boudjehem, 2016).

One of the contributions of this work, is a geometrical method for
finding the stabilizing PDµ controllers for linear time invariant (LTI)
fractional order systems with time delay. Which is based on the D-
partition curves (Neimark, 1949; Gryazina, 2004; Gryazina et al., 2008),
allowing us to construct the stability crossing curves in the parameters
space defined by the gains ’kp’ (proportional gain) and ’kd’ (fractional
derivative gain of order µ) and the implicit function theorem that
permit us to detect the cross direction (to stability or instability) of the
roots of the characteristic polynomial of the closed loop system which
enables the determination of the number of unstable roots in each
region. Furthermore, we show the procedure in a general algorithm
and discuss the performance of the closed-loop system in terms of the
controller’s fragility.

Problem Formulation

Consider a LTI-fractional order system with time-delay described by the transfer function

G(s) = P(s)
Q(s) e−τs, (4.1)

where τ > 0,

P(s) := bmsβm + · · ·+ b1sβ1 + b0sβ0 , (4.2)

Q(s) := ansαn + · · ·+ a1sα + a0sα0 (4.3)

and ak (k = 0, . . . , n), bk (k = 0, . . . , m) are constant real numbers; and αk (k = 0, . . . , n), βk (k = 0, . . . , m) are
arbitrary rational numbers which can be arranged as αn > αn−1 > · · · > α0 and βm > βm−1 > · · · > β0 with
deg P < deg Q. Hence, we can express (3.75) as an integer order system of the form

G(w) = bmwm+···+b1w+b0
anwn ···+a1w+a0

e−τwv
= P(w)

Q(w)
e−τwv

, (4.4)

by using the transformation w = sα, α = 1
v with v > 1 given by the lcm(den(αk, βk)).

The closed-loop fractional characteristic quasi-polynomial of system (4.1) is defined by

∆G(s) := Q(s) + P(s)e−τs. (4.5)

Let the w-transformed system (4.4) where P and Q are assumed to satisfy the following assumptions:
Assumption 1. Polynomials P and Q satisfy the following conditions:

(i) deg Q(w) > deg P(w).

(ii) P(w) and Q(w) are coprime polynomials.

(iii) |P((jω)α)| > 0, ∀ ω ∈ R.



modeling and control of fractional order systems. the linear systems case 97

(iv) If Q((jω∗)α) = 0, then |Q′((jω∗)α)| > 0, ω∗ ∈ R.

It is clear that assumption (i) states that we are looking at systems of retarded type. If assumption (ii) is not
fulfilled, this implies that there exist a non constant common factor c(w), such that P(w) = c(w)P̄(w) and
Q(w) = c(w)Q̄(w). In such a case, choosing c(w) to be of the highest possible degree, the analysis can be
pursued if c(w) is a stable polynomial satisfying Theorem 3.0.11, contrarily, the system will remain unstable
independently of the control action. Finally, in order to simplify the presentation, assumptions (iii) and (iv)
are imposed to avoid multiple roots on the imaginary axis in P and Q, respectively.

The problems considered in this paper can be sumarized as follows:
Problem 1. To find precise conditions on the parameters (kp, kd) such that the Fractional-PDµ controller

C(s) = kp + kdsµ, (4.6)

makes the closed-loop plant described by the transfer function (4.1) BIBO stable.
Problem 2. To find precise conditions on the parameters (kp, ki) such that the Fractional-PIλ controller

C(s) = kp + kisλ, (4.7)

makes the closed-loop plant described by the transfer function (4.1) BIBO stable.
In the sucessive results we will focus in solving Problem 1. Subsequently, we will mention the considerations

we must take to apply the same procedure to Problem 2.

Fractional PDµ controller design

Let us solve Problem 1 as stated above and the following problem:
Remark 4.0.1. In this work we take µ to be a
fixed value defined as µ := uα where u ∈N,
such that u ≥ 0. Besides, it is neccesary
to have a closed loop system of the retarded
type in order to use Theorem 3.0.11,(Bonnet
and Partington, 2002) for this µ < αn −
βm. Furthermore, we always consider the
parameter τ ∈ R+ as a fixed value.

Remark 4.0.2. In this paper we will use the
term w-transformation when refering to the
already used transformation using w = sα,
α = 1

v to some equation dependent of s ∈ C.

Problem 3. To determine a Fractional-PDµ controller k∗ :=
[
kp, kd

]T ∈ R2

and a positive value d such that the controller (4.6) stabilizes system (3.75) for
any kp and kd, satisfying√

(kp − k∗p)2 + (kd − k∗d)
2 < d. (4.8)

From a geometrical perspective, we can define the collection of all controller
gains k ∈ R2 as points in the kp-kd parameters plane. Thus, Problem 2 can
be explained as the task of finding at least one region in the kp-kd parameters
plane such that, for all k-points inside this region, the characteristic equation
of the closed-loop system has all of its roots in the LHP. A region of the kp-kd

parameters plane with such a feature is defined as a stability region.

Stability Crossing Curves

We start by characterizing the stability crossing curves for fractional-PDµ controllers applied to general
LTI-fractional order systems, meanwhile we announce some useful definitions.

We are interested in finding stability regions in the (kp, kd)-parameter space of the closed-loop system
described by its characteristic equation given by:

∆(s; kp, kd) := Q(s) + P(s)(kp + kdsµ)e−τs = 0. (4.9)
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Definition 4.0.1: Frequency crossing set

The frequency crossing set Ω ⊂ R is the set of all ω such that, there exists at least a duplet (kp, kd) for
which

∆(jω; kp, kd) = Q(jω) + P(jω)(kp + kd(jω)µ)e−jτω = 0. (4.10)

Remark 4.0.3. It is clear that if we take the complex conjugate of (4.10), the following equality holds:

∆(−jω; kp, kd) = ∆(jω; kp, kd).

Therefore, in the rest of the paper we will consider only nonnegative frequencies. i.e. Ω := Ω+ ∪ {0}, where Ω+ = R+.

Definition 4.0.2: Stability crossing curves

The stability crossing curves T is the set of all parameters (kp, kd) ∈ R2 for which there exists at least
one ω ∈ Ω such that ∆(jω; kp, kd) = 0. Additionally, any point k ∈ T is known as a crossing point.

Stability crossing curves characterization

Imaginary crossing curves (ICC)

Proposition 4.0.1: Imaginary Crossing Curves

Let τ ∈ R+ be a fixed value. Then, ω ∈ Ω+ is a crossing frequency if and only if k(ω) :=[
kp(ω), kd(ω)

]T , where

kp(ω)=
cos( µπ

2 −τω)=
{

Q(jω)
P(jω)

}
−sin( µπ

2 −τω)<
{

Q(jω)
P(jω)

}
sin
( µπ

2

) , (4.11a)

kd(ω)=−
cos(τω)=

{
Q(jω)
P(jω)

}
+sin(τω)<

{
Q(jω)
P(jω)

}
ωµ sin

( µπ
2

) , (4.11b)

defines a crossing point k(ω) ∈ T .

Proof. Consider the characteristic equation (4.9). It is clear that all the crossing points k ∈ T are given by the
pairs k ∈ R2 solving (4.9) for s = jω. Taking the real and imaginary part gives the following:

<
[
∆(jω; kp, kd)

]
= 0, (4.12)

=
[
∆(jω; kp, kd)

]
= 0, (4.13)

the solution of this system for kp and kd leads to (4.11a) and (4.11b) by using simple algebraic manipulations.
Furthermore, from (4.11a) and (4.11b), it can be observed that k(ω) is a real solution for ω ∈ R+. Therefore,
k(ω) is a real solution for all ω ∈ Ω+.
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Proposition 4.0.2

Let k(ω) ∈ R2 be defined by (4.11). Then,

lim
ω→0

k (ω) =

[
− q0

p0

0

]
. (4.14)

Proof. We have that

H(s) =
Q(s)
P(s)

=
qnsn + qn−1sn−1 + · · ·+ q1s + q0

pmsm + pm−1sm−1 + · · ·+ p1s + p0
, (4.15)

evaluating in the boundary s = jω, we can write Q(jω) and P(jω) as follows

Q(jω) = Qe(ω) + jωQo(ω), (4.16)

P(jω) = Pe(ω) + jωPo(ω), (4.17)

where

Qe(ω) = q0 − q2ω2 + q4ω4 − · · · ,

Q0(ω) = q1 − q3ω2 + q5ω4 − · · · ,

Pe(ω) = p0 − p2ω2 + p4ω4 − · · · ,

P0(ω) = p1 − p3ω2 + p5ω4 − · · · .

Hence

H(jω) =
Qe(ω)Pe(ω) + ω2Qo(ω)Po(ω)

Pe(ω)2 + ω2Po(ω)2 + j
ω (Pe(ω)Qo(ω)− Po(ω)Qe(ω))

Pe(ω)2 + ω2Po(ω)2 , (4.18)

the last equation describes how = [H(jω)] and < [H(jω)] are defined. Now, computing their limits as ω

approaches 0 we obtain the following

lim
ω→0
= [H(jω)] = 0,

lim
ω→0
< [H(jω)] =

q0

p0
.

Then, straightfordwardly we have that for kp(ω)

lim
ω→0

kp(ω) = − q0

p0
, (4.19)

As mentioned. Now, for the case of kd(ω) we start from the fact that for µ ∈ (0, 1)

lim
ω→0

ωµ = 0, (4.20)

and here we have

lim
ω→0

kd(ω) = lim
ω→0
− 1

ωµ

cos θ1

sin θ2
= [H(jω)] + lim

ω→0
− 1

ωµ

sin θ1

sin θ2
< [H(jω)] , (4.21)

here, we obtain limits in the indeterminated form 0/0 which can be computed by means of the L’Hôpital’s
rule. An important observation tells us that

dωµ

dω
= µωµ−1 = µ

1
ω1−µ

∀µ ∈ (0, 1). (4.22)
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Therefore

lim
ω→0
− 1

ωµ

cos θ1

sin θ2
= [H(jω)] = lim

ω→0
−
− sin θ1= [H(jω)] + cos θ1

d
dω= [H(jω)]

µ 1
ω1−µ sin θ2

= lim
ω→0
−
−ω1−µ sin θ1= [H(jω)] + ω1−µ cos θ1

d
dω= [H(jω)]

µ sin θ2

= 0 + lim
ω→0
−

ω1−µ cos θ1

(
A dB

dω − B dA
dω

)
µ sin θ2 A2

= 0.

Where

A = Pe(ω)2 + ω2Po(ω)2,

B = ω (Pe(ω)Qo(ω)− Po(ω)Qe(ω)) .

A similar analysis for the rightmost term in Eq. (4.21) give us that

lim
ω→0

kd(ω) = 0. (4.23)

Remark 4.0.4. Proposition 4.0.2 grant us to conclude that the initial crossing point of k(ω) is at a k∗ =
[
− q0

p0
, 0
]
,

which helps to build the stability region charts and to stablish restrictions in Algortihm 1.

Real crossing curves (RCC)

Proposition 4.0.3: Real Crossing Curves

Let τ ∈ R+ be a fixed value. Then, k0 belongs to the stability crossing curve, where k0 is the line with
coordinates given by

k0 :=

[
− q0

p0

kd

]
, (4.24)

with kd ∈ R. Furthermore, this corresponds to a crossing through the origin of the complex plane.

Proof. By taking s = 0 in (4.9), we have

∆(0; kp, kd) = 0,

↔ q0
p0

+ kp = 0.

Then, kp = − q0
p0

for every kd ∈ R which gives (4.24). Finally, it can be observed that k0 is a real solution for
ω = 0. Therefore, k0 is a crossing point k ∈ T .

Remark 4.0.5. We can find equivalent stability crossing curves to Propositions 4.0.1 and 4.0.3, by substituting
w = (jω)α in the w-transformed characteristic equation of (4.9).
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Given all the crossing points k and the crossing-frequency set Ω, we can define each stability crossing
curve through its continuity, as follows,

T0 :=
{
[−q0/p0, kd]

T ∈ R2|kd ∈ R
}

, (4.25)

Tω :=
{

k(ω) ∈ R2|ω ∈ Ω+

}
. (4.26)

Then, it is evident that
T = Tω

⋃
T0. (4.27)

Crossing Directions

The results presented in Propositions 4.0.1-4.0.3 enable us to determine the values of kp and kd for which a
crossing root exists, but do not give any information on their crossing direction. Thus, in order to characterize
regions according to their number of unstable roots, we must make a distinction between switches (crossing
towards instability) and reversals (crossing towards stability), and carry out a careful accounting of the
unstable roots in each region.

Proposition 4.0.4: Crossing Directions

Consider the w-transformed characteristic equation ∆ (w; kp∗, kd∗), where w = s1/v. Then, one root of
∆ will cross through w∗ from the left to the right of the Γ−boundary as k crosses the stability crossing
curve T through k∗, in the increasing direction of kχ for χ ∈ {p, d} if:

Sχ > 0, (4.28)

where Sχ is defined as
Sχ := 〈Γχ, û〉 , (4.29)

with Γχ and û ∈ R2 are defined as:

Γχ =


<
{

dw
dkχ

∣∣∣∣
(w∗ ,k∗)

}

=
{

dw
dkχ

∣∣∣∣
(w∗ ,k∗)

}
 , û =

[
sin( π

2v )

− cos( π
2v )

]
. (4.30)

Proof. Let χ ∈ {p, d}, w∗ be a point on the Γ−boundary and let k∗ be the corresponding gain. Thus, it is
clear to see that a solution w (k) will cross from the LHP to the RHP of the Γ−boundary in the increasing
direction of kχ if the following inequality holds:

<
{

ej v−1
2v π dw

dkχ

}
> 0.

Now, by the Implicit Function Theorem we know that

dw
dkχ

= −
∂∆
∂kχ

∂∆
∂w

.
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Let us define

α + jβ :=
dw
dkχ

∣∣∣∣
(w∗ ,k∗)

,

and observe that
ej v−1

2v π = sin
(

π
2v
)
+ j cos

(
π
2v
)

.

Thus, the proof follows straightforwardly by noticing that

<
{
(α + jβ)

(
sin
(

π
2v
)
+ j cos

(
π
2v
))}
≡ 〈Γχ, û〉 .

Corollary 4.0.1

Let u = 1 and kd 6= 0 then one root of the characteristic equation (4.9) will cross from the LHP to
the RHP of the complex plane through the origin as k crosses the stability crossing curve T0, in the
increasing direction of kp if:

kd < 0, (4.31)

otherwise, it will cross from the RHP to the LHP.

Proof. We have to compute the crossing direction Sp when ω = 0. In this fashion, from the fact that (4.9) is
equivalent to the w-transformed characteristic equation at s = 0. Then, for w ∈ C we can express (4.9) as

∆r(w, kp, kd) :=
Q(w)

P(w)
+ (kp + kdwu)e−wvτ = 0. (4.32)

Now, according to the Implicit function theorem, we know that

dw(kp ,kd)
dkp

= −
(

∂∆r(w,kp ,kd)
∂kp

)
/
(

∂∆r(w,kp ,kd)
∂w

)
, (4.33)

where
∂∆r(w,kp ,kd)

∂kp
= e−wvτ , (4.34)

∂∆r(w,kp ,kd)
∂w = P(w)Q′(w)−Q(w)P′(w)

P(w)2 + kduwu−1e−τwv −

vτwv−1e−τwv (
kdwu + kp

)
, (4.35)

and the condition
∂∆r(0,kp ,kd)

∂w 6= 0, (4.36)

must be satisfied in order to compute dw(kp ,kd)
dkp

|w=0.
From the fact that µ := u

v ∈ (0, 1) and u, v ∈N where v > u. Condition (4.36) is satisfied for kd 6= 0 if and
only if u = 1. Then, for kd 6= 0 and u = 1 we have that

dw(kp ,kd)
dkp

∣∣∣∣
w=0

= −
(

∂∆r(0,kp ,kd)
∂kp

)
/
(

∂∆r(0,kp ,kd)
∂w

)
= − 1

kd
, (4.37)

consequently

sgn
[

dw(kp ,kd)
dkp

∣∣∣∣
w=0

]
= sgn [−kd] . (4.38)

By (4.38) we derive (4.31), which completes the proof.
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Remark 4.0.6. By Corollary 4.0.1 we conclude that the w-transformed characteristic equation (4.32) has a root at the
origin with multiplicity of at least u. Hence, for kd 6= 0 and u > 1 we should derive at least u-times such a characteristic
equation to find ∆r(0, kp, kd) 6= 0. Furthermore, for kd, kp = 0 it has a root at the origin with multiplicity of at least v.

Stability index determination

Let k? :=
[
k?p, k?d

]T
to be a chosen point on the kp − kd parameters plane such that k? /∈ T and η the

invariant number of roots in a given region of the parameter space. Besides, let η0 be the number of roots for
k = [0, 0]T . We propose a linear path for k from the origin (at which η = η0) to k?. Let us define the set Ωs

as the set of all ω ∈ Ω for which the vector k? intersects Tω. This set corresponds to all ω ∈ Ω such that the
following expression holds

k?pkd(ω)− k?dkp(ω) = 0, (4.39)

and satisfies at least one of the following conditions:

0 ≤ kp(ω)
k?p

< 1, 0 ≤ kd(ω)
k?d

< 1. (4.40)

Besides, there can only exist an intersection between k? and T0 if and oly if (4.24) holds for k = εk? where
ε ∈ (0, 1). This brings to the definition of the indicative function Jε as follows

Jε :=

1 if ε ∈ (0, 1),

0 if ε /∈ (0, 1),
(4.41)

where ε is computed as
ε = − q0

k?p p0
∀ k?d ∈ R. (4.42)

Jε establishes the existence of an intersection between k? and T0 if and only if Jε = 1.
The situation when Tω or T0 crosses at the origin of the parameter space, is related to the existence of roots

on the imaginary axis of the open-loop characteristic equation. Such a case must be treated separately, and
for that reason we define the sets Ωc0 and Ωc+ , as

Ωc0 := {ω ∈ {0} Q(jω) = 0} . (4.43)

and the set
Ωc+ := {ω ∈ Ω+ Q(jω) = 0} . (4.44)

Finally, considering Proposition 4.0.4 and Corollary 4.0.1; we construct the functions ∇ and ∇0 as

∇0(k) := sgn(−kd) (4.45)

∇(k, ω) := sgn(Sχ), (4.46)

it is neccesary that µ = α to use expresion (4.45).
According to Proposition 4.0.2 the origin of the parameter-space place k = [0, 0] can be located as in the

three cases depicted in Figs. 4.2, 4.3 and 4.4.
Based on the previous lines, consider the following result:



104 adrián josué guel cortez

kp

kd

bk?
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RCC

Figure 4.2: Position of the point k =

[0, 0]T . Case (i)

kp

kd

bk?

ICC

RCC

Figure 4.3: Position of the point k =

[0, 0]T . Case (ii)

kp

kd

bk?

ICC

RCC

Figure 4.4: Position of the point k =

[0, 0]T . Case (iii)
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Proposition 4.0.5

Let G be a transfer function defined as (4.4) with deg Q > deg P, τ ∈ R+ and µ = α be fixed values

and let k? :=
[
k?p, k?d

]T
∈ R? ⊂ R2 such that k? /∈ T . If Ωc0 = ∅, then ∀ k ∈ R the number of roots

η on the RHP of the complex plane of the w-transformed of (4.9) can be computed by

η = η0 + Jε∇0(k) + 2 ∑
ω∈Ωs

∇(k, ω), (4.47)

besides, when Ωc0 6= ∅
η = η0 +∇0(δk?) + 2 sgn(ω) ∑

ω∈Ωs

∇(k, ω), (4.48)

where δ ≈ 0.

Proof. Consider the fixed values k?, η0 and ε, as well as he sets Ωs, Ωt, Ωc0 and Ωc+ , and the functions Jε,
∇0(k) and ∇(k, ω), as defined above.

In order to determine η, we need to observe the behaviour of the roots of the w-transformed characteristic
equation of (4.9) as k varies from the origin to k∗. As we have shown in Figs. 4.2, 4.3 and 4.4, we have three
possible escenarios for locating k = [0, 0]T into the parameters space D-partition. These escenarios are of
interest to analyze the behaviour of the roots as k varies along the vector k∗, such escenarios can be described
as follows:

(i) The point k = [0, 0]T is located at the stability crossing curve formed by T0 ∩ Tω.

(ii) The point k = [0, 0]T is not at T .

(iii) The point k = [0, 0]T is at Tω.

Evidently, for case (ii) η = η0 at k = 0. Then starting from such a point, we can analyze the behaviour of the
roots when k varies along the vector k? by means of (4.47).

Now, for case (iii) because (4.40) consider the case when k =
[
kp(ω), kd(ω)

]T
= 0 we can use (4.47) yet for

this case. Finally for case (i), because k = 0 ∈ T0 ∩ Tω we can analyze the crossing direction by choosing a
k = δk? in ∇0 and not considering ∇ in ω = 0. This completes the proof.

Definition 4.0.3: Stability Region

The stability region in the parameter space kp − kd is the set of all k ∈ R ⊂ R2 such that the number
of roots in the RHP of the complex plane η = 0.

Characterization of stability regions algorithm

In the spirit of deriving an algorithm to characterize the stability regions by a number of unstable roots
(invariant in each region), let’s assume that we have `−regions R1, R2, . . . ,R`, with ` ≥ 2. Without any loss
of generality, assume that R1 and R2 are the first two neighboring regions (relabeled if necessary) of interest
(for instance, closest to the origin), let k

(j)
be a point on the boundary of regions Rj and Rj+1 and Nj denote

the number of roots of (4.9) for Rj. Sχ corresponds to the crossing direction sign (pointing in the increasing
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direction) passing through a given k
(j)

found by means of Proposition 4.0.4. Then, we have the algorithm
described in 1.

Algorithm 1: Stability Regions Characterization
Input: ` ∈N regions with ` ≥ 2, r roots of Q(s) in the RHP
Output:

StabilityRegionsC(`, r, Tω)

j := 0
N0 := 0

k
(0)

:= [0, 0]T

if (k
(0) ∈ Tω) then

if (k
(0) ∈ T0) then

Select k
(0)

:=
[
0, k∗d

]
where k∗d 6= 0

N0 := r− sgn
(
k∗d
)

else
N0 = r + 2 sgn(Sχ)

else
N0 := r

repeat
Compute Sχ for k

(j+1)

if (k
(j+1)

/∈ T0) then
Nj+1 := Nj + 2 sgn(Sχ)

else

Choose a k∗d 6= 0 such that k
(j+1)

:=
[
− q0

p0
, k∗d
]

Nj+1 := Nj − sgn
(
k∗d
)

j := j + 1
until (j > `)

Remark 4.0.7. Algorithm 1, describes a step by step process of analyzing the root crossing directions to identify the
stability region. This process has been summarized with expresions (4.47) and (4.48) in Proposition 4.0.5.

Fragility of Fractional−PDµ Controllers

An important issue in control design is the analysis concerning to the control fragility which give a
measure of the robustness of the closed-loop system against parametrical uncertainties in the control gains.
This consists of computing the maximum controller parameters deviation d of a given stabilizing controller
k̄ := (k̄p, k̄d)

T , such that the closed-loop system remains stable, as long as the controller parameters k satisfy
the inequality: √

(kp − k̄p)2 + (kd − k̄d)2 < d. (4.49)

In order to address this problem, let k(ω) =
[
kp(ω), kd(ω)

]T as given in Proposition 1 and the function
ξ : R+ → R+ to be defined as

ξ(ω) :=
√
(kp(ω)− k̄p)2 + (kd(ω)− k̄d)2. (4.50)
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We have the following:
Proposition 4.0.6: Fragility Determination

Let k̄ be a stabilizing controller. Then, the maximum parameter deviation d of k, such that the
closed-loop system remains stable, is given by

d := min{d̃, d0}, (4.51)

where d̃ and d0 are given by:

d̃ := min
ω∈Ω f

{ξ(ω)}, (4.52)

d0 := q0
p0

+ k̄p, (4.53)

where Ω f denote the set of all roots of f (ω) defined as

f (ω) :=
〈

k(ω)− k̄, dk(ω)
dω

〉
. (4.54)

Proof. By assumption, k̄ is located inside some stability region delimited by some appropriate stability
crossing curves, thus, the closed-loop system is unstable if the controller k̄ has a parameter deviation such
that it crosses for at least one of its boundaries. Therefore, the objective is to compute the minimal distances
between k̄ and the different boundaries of the stability region. In order to compute the minimal distance
between a point k̄ and the stability crossing curves with ω 6= 0, we need to identify the points k(ω) at which
the tangent vectors to the curve are orthogonal to k(ω)− k̄. In other words, to find points in which ω is a
root of (4.54). Therefore, the minimum distance d̃ to a stability crossing curve with ω 6= 0 is given by (4.52).
In addition, we can note that the boundaries of the stability crossing curve related to ω = 0 are described by
(4.24). Thus, the minimum distance to this line can be computed as follows:

Substituting (4.24) in (4.50) leads to

ξ(0) =
√
( q0

p0
+ k̄p)2 + (kd − k̄d)2, (4.55)

the gain kd at which ξ(0) attains its minimum, is given by the solution of the following equation:

dξ2(0)
dkd

= 2kd − 2k̄d = 0. (4.56)

Then, this value is defined as d0 and can be obtained by substituting the solution of (4.56) into (4.55). Finally,
the proof ends by noticing that the minimal distance d can be computed by means of (4.51).

Numerical and Experimental Results

Inverted Pendulum

Consider the linear normalized transfer function of an inverted pendulum given by

G(s) =
e−sτ

s2 − 1
, (4.57)
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where we consider a delayed input u as the acceleration of the pivot and the output as the pendulum angle θ.v
θ1

m1

Figure 4.5: Inverted pendulum.

Now, in order to illustrate the proposed results we analyze the system subject to the PDµ controller given
by (4.6). First, we found the ICC and the RCC of the closed-loop system by following Propositions 4.0.1 and
4.0.3. Next, by using the w-transformation of the closed-loop characteristic polynomial we apply Proposition
4.0.4 to compute the crossing directions. Finally, in order to ilustrate how Proposition 4.0.4 in conjunction
with Algorithm 1 can be used to identify the stability regions avoiding unnecessary computations let us
consider the points k

(1)
, k

(2)
, k

(3)
and k

(4)
of the parameter space, besides, the fixed parameters µ = 1/5 and

τ = 1/7 (sec.). The results are summarized in Fig. 4.6 and Table .

Crossing Directions
Point kp kd ω x Sx sgn

k
(1)

0.9455 0.154703 0.237682 p 0.536718 +
k

(2)
1.053 0.629733 0.797508 d -0.00946026 -

k
(3)

1.053 2.03733 1.491597 d 0.00333839 +
k

(4)
0.8391 2.92063 1.75329 d 0.00503787 +

kp(ω)
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

k
d
(ω

)

0

0.5

1

1.5

2

2.5

3 N4 = 3

N2 = 2

ICC

N0 = 1
RCC

k
(0)

N1 = 3

k
(1)

N3 = 0

k
(3)

k
(2)

k
(4)

Figure 4.6: Crossing Directions Analysis.
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First order time delay system

Consider the first order time delay system described by

G(s) =
k

Ts + 1
e−sL, (4.58)

where k represents the steady-state gain of the plant, L represents the time delay, and T represents the time
constant of the plant taken from (Caponetto, 2010).

This simple system region stability canbe analyzed by means of Proposition 4.0.4 to obtain the red-shaded
region shown in figure 4.7.

15

kp

10

5

0
-10

-5

kd

0

5

0.8

0.6

0.4

0

0.2

1

µ

Figure 4.7: Stability region fractional or-
der PDµ controller for k = 1, T = 2 and
L = 1.2.

Fractional order system with time delay

Consider the fractional order system taken from (Hamamci, 2008) adding a constant time delay τ

G(s) = s3.8+2s2.8+39s1.9+48s1.1−4
s5+2s4.1+31s3.1+35s2.2+49s0.9+92 e−sτ . (4.59)

Let τ = 0.5seg and µ = 0.5. By using Proposition 4.0.4 we obtain the results shown in Fig. 4.8.
Networked mechanical system

Its demostrated that the inifite binary tree of springs and dampers shown in Fig. 4.9 has a fractional
order behaviour.(Goodwine, 2016) Besides, this scheme can be used to represent the interactions in a robot
formation. The fractional dynamics of the netwoked mechanical system is proved to be valid for at least 4

generations in the binary tree (Leyden and Goodwine, 2016).
Acording to (Goodwine, 2016) the transfer function relating the last position xlast(t) with the first position

x1,1(t) in Fig. 1.8 when adding a constant time delay τ is given by

G(s) =
√

kb
mlasts1.5+

√
kb

e−sτ . (4.60)
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Figure 4.8: Stability region analysis for
system (4.59).
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rrrr
N = 1

N = 2
N = 3 Figure 4.9: Networked mechanical sys-

tem.

We aim to design a fractional PDµ controller to system (4.60). Hence, we can write the closed-loop w-
transformed characteristic equation as

∆(w, kp, kd) := mlastw3 +
√

kb +
√

kbe−w2τ
(
kp + kdw

)
(4.61)

Now by means of Proposition 4.0.5, consider the points k1 and k2 which are the points where the choosen
vector k? crosses to T . Because, k = [0, 0]T /∈ T we deal with case (ii) of Fig. 4.3 and hence we can use
expression (4.47) to find the number of roots η in the RHP of the complex plane for each enclosed region of
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Figure 4.10: Stability region detection for
networked mechanical system.

the parameter space. The results can be seen in the following picture:

Fractional PIλ controller design

Consider now Problem 2. To apply the same ideas discussed for the PDµ controller design we have to
consider the following:

Note 4.0.1: System restrictions

The fractional w-transformed closed-loop characteristic equation when using the PIλ-controller is
given by

∆t(w; kp, kd) =
Q(w)
P(w)

+ e−τwv (
kp + kiw−u) = 0. (4.62)

Then, by multiplying (4.62) by wu we get

∆t(w; kp, kd) =
Q(w)wu

P(w)
+ e−τwv (

kpwu + ki
)
= 0, (4.63)

which, when kp = ki = 0 shows to have a zero of multiplicity u at the origin. For the actual algorithm
the following system restrictions must be considered

1. u = 1.

2. Q((jω)α) > 0 for ω = 0.

3. |P((jω)α)| > 0 ∀ω ∈ R.

4. if Q((jω∗)α) = 0, then |Q′((jω∗)α)| > 0, ω∗ ∈ R\{0}).
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Hence, even when we are talking about a PIλ controller our methods discussed for PDµ controllers design
can be also applied to this type of controllers as we will see in further applications and so we will not write
the same statements declared for fractional PDµ controllers using the PIλ controller.



5
Practical applications of fractional-order controllers

Fractional PDµ Controller for Transparent Bilateral Control Scheme
for Local Teleoperating System

Master Device

Slave Device
Position feedback

Figure 5.1: Conceptual Control Scheme
for local teleoperating system.

Influenced by the contributions of (Liacu et al., 2013) and (Tavakoli et al., 2003), we outline in this example
a bilateral control scheme using two Phantom Omni Haptic devices (see, Fig. 5.1) whose dynamics can be
described as a decoupled time-invariant linear model formed by three mechanical admittances of each joint
given by:

P(s) := Θ(s)
Λ(s) =

1
s(ms+b) . (5.1)

where each mechanical admittance P(s) is described by the transfer function from each torque input Λ(s) to
its respectively angular position Θ(s) and depicts the behavior of each mechanical joint. The main goal of
the proposed control scheme is to achieve a perfect bilateral position tracking under the interaction of the
exogenous forces of the human and the remote environment on the master and slave device, respectively.

The bilateral control scheme proposed is shown in Fig. 5.1 and 5.2 where τp is considered as the delay
due to signal processing, Λh and Λ` are the exogenous torques related to the human operator and the
remote environment, respectively. PM and PS are the mechanical admittances of the master and the slave
device, respectively: furthermore, a similar notation is used for the controllers CM and CS and the angular
positions ΘM and ΘS. This scheme is a variation presented in (Hernández-Díez et al., 2016) of the one used
in (Liacu et al., 2013) for haptic-virtual systems, however here, instead of using a PD or a P− δ controller, a
fractional-PDµ controller is proposed.
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Λh
Master device PM Slave controller CS e−τps

Λe

e−τps Master controller CM Slave device PS

+ ΘM + + −

−

− +
−

Figure 5.2: Control diagram of the bilat-
eral control scheme.

From (Hernández-Díez et al., 2016), the characteristic equation of the closed-loop system can be written as
follows:

2P(s)C(s)e−τps + 1 = 0 (5.2)

Stability Analysis

In the sequel, whitout any loss of generality, we can say that the analysis presented in this paper can be
used in any of the decoupled time-invariant systems of each joint (5.1). The characteristic function ∆ : C→ C,
of the system (5.2) can be rewritten as:

∆(s; kp, kd) := ms2 + bs + 2e−τps (kp + kdsµ
)

. (5.3)

The system parameters are taken from (Hernández-Díez et al., 2016), where the estimated used delay is
τp = 0.001 seconds and considering only Joint 1 for the sake of brevity, its parameters are m = 0.0131 and
b = 0.0941. Then, we have the following:
Stability crossing curves

Let θ1, θ2, θ3 ∈ R here to be defined as θ1 := τω, θ2 := µπ
2 , and θ3 := πµ

2 − τω, respectively. Then by using
the ideas of Proposition 4.0.3 we find that the RCC is given by

kp = 0, (5.4)

and using steps in Proposition 4.0.1 the ICC is described by:

kp(ω) :=
1
2

ω(cos(θ1) (b cot (θ2) + mω) + sin(θ1) (b−mω cot (θ2))),

kd(ω) :=
1
2

ω1−µ csc (θ2) (mω sin(θ1)− b cos(θ1)).

Crossing Directions

Following the procedure given by Proposition 4.0.4 we show a simulation in Fig. 5.3 of the Sχ behavior
when changing the parameters kp or kd and its correspondent kp − kd parameters plot.

By inspection of sgn(Sχ), we conclude that the kp − kd parameters stability region corresponds to the gray
shaded region in Fig. 5.4.
Fragility

Using the scheme given by Proposition 4.0.6 we chose two stabilizing controllers k∗1 and k∗2 and show the
results in Fig. 5.4 and Table , respectively:
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Figure 5.3: Stability region analysis for
Joint 1. k1 and k2 are the points where
condition (4.28) starts to hold.

Fragility Results
k kp kd ω d` d0 d
k∗1 100 80 {129.638, 531.717, 775.909} 59.0678 100 59.0678
k∗2 600 60 {415.574, 633.24, 531.7041} 26.4114 600 26.4114
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Figure 5.4: Stability Region for Joint 1.

Experimental results
See audiovisual evidence: https://

youtu.be/AwWq6prKfbwIn order to illustrate how the PDµ controller works experimentally,
we use the transparent bilateral control scheme example in a experimen-
tal setup implemented by means of two Phantom Omni devices and
the Matlab-Simulink toolkits Phansim (Mohammadi et al., 2008) and

https://youtu.be/AwWq6prKfbw
https://youtu.be/AwWq6prKfbw
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Ninteger (Valerio and da Costa, 2004). Now, using the stability analysis,
we show the control response taking µ = 0.5 and the controller’s gains
as k = [5, 1]T , k = [11, 2]T and k = [5, 0.5]T for the joint one, two and
three, respectively. Furthermore, we propose an experimental test per-
ceiving a plastic sphere. This test consists of manipulating the master
device in order to "feel" the plastic sphere in a remote environment,
where the slave device is located. The experimental results are illus-
trated in Fig. 5.5, which shows how the control scheme implemented
drives the trajectory of the master device which is also guided by the
human operator but restricted by the plastic sphere. Fig. 5.6 illustrates
the same experiment but using a classical PD controller with k = [5, 1]T ,
k = [5, 1]T and k = [5, 0.5]T as the controller’s gains for joint one, two
and three, respectively.
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Figure 5.5: Master-Slave comparison us-
ing fractional-PDµ controller.
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Fractional PIλ controller for current-mode control for boost power
converters

The commonly used PI-controller is well known to cope with steady
state error. Meanwhile, the fractional-PIλ controller sometimes may
lead to not desirable performances when applied to integer-order sys-
tems. In this sense, it would be of interest to analyze some other
desirable characteristics of the PIλ controller.

In this section we contemplate the application of a fractional-PIλ con-
troller to a current-mode control for boost power converters1 (see, (Langarica- 1 This work was an attempt of a colabora-

tion with Dr. Diego Langarica-Cordoba
at Instituto Potosino de Investigación
Científica y Tecnológica.

Cordoba et al., 2017)) as an illustrative example of the utilization of our
design methodology. The application considers the following control
diagram

U

Figure 5.7: Block diagram of the pro-
posed closed-loop system.

for the conventional boost converter system set-up shown in Fig. 5.8.

U

Figure 5.8: Conventional boost converter
system set-up.

The non-linear average model of the Boost converter is given by

İL =
1
L
[−(1−U)Vo + E] ,

V̇o =
1
C

[
(1−U)IL −

Vo

R

]
. (5.5)
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Let

IL = ĪL + ĩL, (5.6)

Vo = V̄o + ṽo, (5.7)

U = ū + ũ, (5.8)

then, the linear model is given by[
˙̃iL
˙̃vo

]
=

[
0 − (1−ū)

L
(1−ū)

C − 1
RC

] [
ĩL

ṽo

]
+

[
V̄o
L
− ĪL

C

]
ũ. (5.9)

Here, we will only deal with the transfer function relating the input as the control signal ũ with the inductor
current ĩL as the output (which corresponds to the inner loop of Fig. 5.7. A similar analysis must be done for
the outer loop in Fig. 5.7). Such a transfer function is described as

ĩL(s)
ũ(s)

=
V̄o

(1− ū)2

1− L
R(1−ū)2 s

LC
(1−ū)2 s2 + L

R(1−ū)2 s + 1
. (5.10)

The proposed PIλ controller is defined as

C(s) = kp + kis−λ. (5.11)

Thus, in order to consider a more realistic escenario we will borrow the system parameter values from
(Langarica-Cordoba et al., 2017), where according to this work such values are given as follows

C = 518µF,

L = 55µH,

E = 12V,

V̄o = 24V,

ū = 0.5,

R = 4.5Ω.
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Now, in order to derive the D-decomposition curves in the remaining part of the text we will take λ = 1
2 .

Hence, the closed-loop characteristic function will be given as

R
(

Cs
(

kiV̄os−λ + kpV̄o + Ls
)
+ (ũ− 1)2

)
+ 2V̄o

(
kis−λ + kp

)
+ Ls = 0. (5.12)

Therefore, by applying the results derived in the previous chapter we obtain the stability crossing curves
depicted in Fig. 5.9
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Figure 5.9: Stability region analysis. N
stands for the number of roots in the
RHP.

According to Fig. 5.9, all parameters belonging to the shaded region are stabilizing controllers. Hence,
by taking kp = 0.01 and ki = 2 we obtain the response illustrated in Fig. 5.10 (all simulations consider the
nominal values V̄o = 24 V, and ĪL = 10.666 A).
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Figure 5.10: Current IL and control ũ
response, using kp = 0.01, ki = 2 and
λ = 0.5.

The results depicted in Fig. 5.10 show a highly acceptable closed-loop system response in comparison with
the open loop system behavior. Now, according to our previous results if follows that choosing gains kp, ki in
a zone where N > 0 in Fig. 5.9 we must obtain an unstable behavior. Such cases are illustrated in Figs. 5.11

and 5.12 where we have chosen, the parameter gains (kp, ki) = (−0.15, 1) and (kp, ki) = (−0.027, 3).
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Figure 5.11: Current IL and control ũ re-
sponse, using kp = −0.015 and ki = 1.
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Figure 5.12: Current IL and control ũ re-
sponse, using kp = −0.027 and ki = 3.

Conclusions

Our main goal by considering this example was to show how our methodology can be applied straighfor-
wardly in this kind of systems. It is worth mentioning that a second PIλ controller must be designed for the
voltage loop in Fig. 5.7.

For future work we plan to complete the analysis of this application in deeper details. Besides, we persuit
to implement the PIλ controller by using a dSpace-platform in a real scenario.



Conclusions

In this work fractional calculus has been used to provide a different method to describe physical phenomena
and a new tool to develope feedback control techniques.

We have arrived to the conclusion of an existent connection between infinite-dimensional order systems and
fractional order systems by using the Laplace-transform and hence a complex variable analysis in various
proposed physical phenomena. We have added a comparison between the infinite order model with the finite
generations model for a special system, demostrating the usefulness of the propositions when modeling high
order systems. Nevertheless, we have left as a future work the control design analysis for this type of systems
but we have exemplified how the multivalued nature of this type of functions in the complex domain must be
included as an important part in our future analysis.

Besides, the use of the fractional PIλDµ-type feedback control technique has been discussed and imple-
mented experimentally. We propose that the fractional derivative properties and its implementation methods
permit us to use it as a high-frequency noise filter meanwhile it works as a stabilizing controller, but deeper
experimental analysis must be done as a future work to have a stronger conclusion. Eventhough, we have
focused in the design of fractional PDµ controllers we have considered the same methodology for the design
of fractional PIλ controllers. Such a methodology can be easily extended to the fractional PIλDµ controller
and we have considered that case as part of future work.

From the results obtained experimentally, fractional order controllers still have much to be improved in
terms of its implementation. Hence, implementing fractional order controllers is concluded to be a research
area with many gaps and could be a part of our forthcoming interests. Digital technology limits are an
obstacle for implementing fractional derivatives and integrals due to its definitions itself. The definition of a
non-integer order derivative or integral is still an issue for the Fractional Calculus community and hence a
great obstacle and open problem in the area.

Therefore, Fractional Calculus has a significat amount of open problems. Our main future work will consists
in trying to find systems which should or can be modeled by means of this mathematical tool. There is a
great interest in using Fractional Calculus to provide better models for non-linear, distribuided-parameters,
large-scale or cyber-physical systems, to mention some of them.

Finally, we conclude that the aims of this work were achieved and we are aware of the proportions of our
contribution, this permit us think about continuing working in this research area and bring out more possible
applications and solutions to the actual problems in engineering.
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