A variable fidelity model management framework for designing multiphase materials

Mejía-Rodríguez, G., Renaud, J.E., Tomar V.,
ASME Journal of Mechanical Design, vol. 130, 091702-1, 2008.


Research applications involving design tool development for multi phase material design are at an early stage of development. The computational requirements of advanced numerical tools for simulating material behavior such as the finite element method (FEM) and the molecular dynamics (MD) method can prohibit direct integration of these tools in a design optimization procedure where multiple iterations are required. One, therefore, requires a design approach that can incorporate multiple simulations (multiphysics) of varying fidelity such as FEM and MD in an iterative model management framework that can significantly reduce design cycle times. In this research a material design tool based on a variable fidelity model management framework is presented. In the variable fidelity material design tool, complex “high-fidelity” FEM analyses are performed only to guide the analytic “low-fidelity” model toward the optimal material design. The tool is applied to obtain the optimal distribution of a second phase, consisting of silicon carbide (SiC) fibers, in a silicon-nitride Si3N4 matrix to obtain continuous fiber SiC–Si3N4 ceramic composites with optimal fracture toughness. Using the variable fidelity material design tool in application to two test problems, a reduction in design cycle times of between 40% and 80% is achieved as compared to using a conventional design optimization approach that exclusively calls the high-fidelity FEM. The optimal design obtained using the variable fidelity approach is the same as that obtained using the conventional procedure. The variable fidelity material design tool is extensible to multiscale multiphase material design by using MD based material performance analyses as the high-fidelity analyses in order to guide low-fidelity continuum level numerical tools such as the FEM or finitedifference method with significant savings in the computational time. DOI: 10.1115/1.2965361